Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores
Abstract
:1. Introduction
2. Overview of Fungal Siderophores
3. Biosynthesis of Siderophores and Regulation
4. Siderophore Mediated Iron Transport in Fungi
4.1. Ferric Reductase Enzymes (FRE)
4.2. Multicopper Permease
4.3. Siderophore-Iron Transporters
5. Biotechnological Applications of Siderophores
5.1. Treatment of Infectious Diseases and Anticancer Activity
5.2. Application of Siderophore as Drug Delivery Agents
5.3. Application of Siderophores in Vaccine Development
5.4. Application of Siderophores in Diagnostics
5.4.1. Radiolabeled Siderophores for Imaging Fungal Infections
5.4.2. Diagnostics of Siderophore from Urine
5.5. Bioremediation of Metal Polluted Environments
5.6. Plant Growth Enhancement and Biocontrol of Plant Pathogens
5.7. Enzyme-Inhibiting Activity
5.8. Computational Approaches for the Application of Siderophores
6. Importance of Siderophores in Nature
6.1. Weathering of Soil Minerals
6.2. Oceanic Biogeochemical Cycle of Fe
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TAFC | triacetyl fusarine C |
FsC | fusarine C |
FSR | fusarinine |
CPG | coprogen |
Frr | ferricrocin |
FRC | ferrichromes |
Fsg | fusigen |
NRPS | nonribosomal peptide synthetases |
SIT | siderophore-iron transporter |
Estb | esterase |
FIT | facilitator of iron transport |
FREs | ferric reductase enzymes |
Fet | ferrous iron transporter |
DFO | desferrioxamine B |
References
- Winkelmann, G. Importance of siderophores in fungal growth, sporulation and spore germination. Front. Mycol. 1991, 1991, 49–65. [Google Scholar]
- Ducklow, H.W.; Oliver, J.L.; Smith, W.O. The Role of Iron as a Limiting Nutrient for Marine Plankton Processes. 2018. Available online: pal.lternet.edu/docs/bibliography/Public/259lterc.pdf (accessed on 21 April 2021).
- Mustoe, G.E. Biogenic weathering: Solubilization of iron from minerals by epilithic freshwater algae and cyanobacteria. Microorganism 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Dubey, R. Characterization of protein involved in nitrogen fixation and estimation of Co-factor. Appl. J. Curr. Res. Biosci. Plant Biol. 2015, 2, 89–97. [Google Scholar]
- Martinez, J.L.; Delgado-Iribarren, A.; Baquero, F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microb. Rev. 1990, 7, 45–56. [Google Scholar] [CrossRef]
- Wang, X.; Pecoraro, L. Analysis of soil fungal and bacterial communities in Tianchi Volcano crater, northeast China. Life 2021, 11, 280. [Google Scholar] [CrossRef]
- Neilands, J. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270, 26723–26726. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Singh, P.; Srivastava, A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res. 2018, 212–213, 103–111. [Google Scholar] [CrossRef]
- Chincholkar, S.B.; Chaudhari, B.L.; Rane, M.R. Microbial Siderophore: A State of Art. In Microbial Siderophores; Soil Biology; Varma, A., Chincholkar, S.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 12. [Google Scholar]
- Boukhalfa, H.; Crumbliss, A. Chemical aspects of siderophore mediated iron transport. Biometals 2002, 15, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Devireddy, L.; Hart, D.; Goetz, D.; Green, M. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 2010, 141, 1006–1017. [Google Scholar] [CrossRef] [Green Version]
- Pluháček, T.; Lemr, K.; Ghosh, D.; Milde, D.; Novák, J.; Havlíček, V. Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 2016, 35, 35–47. [Google Scholar] [CrossRef]
- Aguado-Santacruz, G.A.A.; Moreno-Gomez, B.A.; Jimenez-Francisco, B.B.; Garcia-Moya, E.B.; Preciado-Ortiz, R.E. Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: A synthesis. Rev. Fitotec. Mex. 2012, 35, 9–21. [Google Scholar]
- Raymond, K.; Dertz, E.; Kim, S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 2003, 100, 3584–3588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, D.H. Acquisition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev. 1999, 12, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawen, A.; Lane, D.J.R. Mammalian iron homeostasis in health and disease: Uptake, storage, transport, and molecular mechanisms of action. Antioxid. Redox Signal. 2013, 18, 2473–2507. [Google Scholar] [CrossRef]
- Mech, F.; Wilson, D.; Lehnert, T.; Hube, B.; Figge, M.T. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Cytom 2014, 85, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.; Wilson, D. Essential metals at the host-pathogen interface: Nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res. 2015, 15, fov071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellenger, J.P.; Wichard, T.; Kraepiel, A.M.L. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl. Environ. Microbiol. 2008, 74, 1478–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, V.C.; Singh, S.K.; Prakash, S. Bio-control and plant growth promotion 926 potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J. Basic Microb. 2011, 51, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, Y.; Takahashi, R.; Bashir, K.; Shimo, H.; Senoura, T.; Sugimoto, K.; Ono, K.; Yano, M.; Ishikawa, S.; Arao, T.; et al. Characterizing the role of 699 rice NRAMP5 in Manganese, Iron and Cadmium Transport. Sci. Rep. 2012, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.; Banerjee, S.; Sengupta, C. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J. Biopest. 2017, 10, 105–112. [Google Scholar]
- Schrettl, M.; Ibrahim-Granet, O.; Droin, S.; Huerre, M.; Latgé, J.; Haas, H. The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect. 2010, 12, 1035–1041. [Google Scholar] [CrossRef]
- Oberegger, H.; Schoeser, M.; Zadra, I.; Abt, B.; Haas, H. SREA is involved in regulation of siderophore biosynthesis: Utilization and uptake in Aspergillus nidulans. Mol. Microbiol. 2001, 41, 1077–1089. [Google Scholar] [CrossRef]
- Arantes, V.; Milagres, A.M.F. Response of Wolfifiporia cocos to iron availability: Alterations in growth, expression of cellular proteins, Fe3+-reducing activity and Fe3+- chelators production. J. Appl. Microbiol. 2008, 104, 185–193. [Google Scholar]
- Haselwandter, K.; Häninger, G.; Ganzera, M.; Haas, H.; Nicholson, G.; Winkelmann, G. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor? Biometals 2013, 26, 969–979. [Google Scholar] [CrossRef]
- Osman, A.; Işıl, V.; Fatih, K. Microbial siderophores: Potential medicinal applications of the siderophores. J. Biotechnol. Sci. Res. 2019, 6, 32–40. [Google Scholar]
- Hagen, J.B. Five Kingdoms, More or Less: Robert Whittaker and the Broad Classification of Organisms. BioScience 2012, 62, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Philpott, C.C. Iron uptake in fungi: A system for every source. Biochim. Biophys. Acta 2006, 1763, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.S.; Vidhale, N.N. Bacterial siderophore and their application: A review. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 303–312. [Google Scholar]
- Drechsel, H.; Tschierske, M.; Thieken, A.; Jung, H.; Zähner, G.; Winkelmann, G. The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentation. J. Ind. Microbiol. 1995, 14, 105–112. [Google Scholar] [CrossRef]
- Butler, A.; Theisen, R.M. Iron (III)–siderophore coordination chemistry: Reactivity of marine siderophores. Coord. Chem. Rev. 2010, 254, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Braud, A.; Geoffroy, V.; Hoegy, F.; Mislin, G.L.; Schalk, I.J. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2010, 2, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014, 31, 1266–1276. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Prasad, R.; Srivastava, A.; Giang, P.H.; Bhatnagar, K.; Varma, A. Fungal siderophores: Structure, functions and regulation. In Microbial Siderophores; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–42. [Google Scholar]
- Baakza, A.; Dave, B.P.; Dube, H.C. Chemical nature, ligand denticity and quantification of fungal siderophores. NISCAIR 2004, 42, 96–105. [Google Scholar]
- Winkelmann, G. Microbial siderophore-mediated transport. Biochem. Soc. Trans. 2002, 30, 691–696. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. Int. 2016, 23, 3984–3999. [Google Scholar] [CrossRef] [PubMed]
- Anke, H.; Kinn, J.; Bergquist, K.E.; Sterner, O. Production of siderophores by strains of the genus Trichoderma—Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol. Met. 1991, 4, 176–180. [Google Scholar] [CrossRef]
- Charlang, G.; Ng, B.; Horowitz, N.H.; Horowitz, R.M. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol. Cell Biol. 1981, 1, 94–100. [Google Scholar]
- Mor, H.; Kashman, Y.; Winkelmann, G.; Barash, I. Characterization of siderophores produced by different species of the dermatophytic fungi Microsporum and Trichophyton. Biometals 1992, 5, 213–216. [Google Scholar] [CrossRef]
- Jalal, M.A.F.; Helm, D. Siderophores of highly phytopathogenic Alternaria longipes. Biol. Met. 1989, 2, 11–17. [Google Scholar] [CrossRef]
- Jalal, M.A.F.; Love, S.K.; van der Helm, D. N alpha-dimethylcoprogens three novel trihydroxamate siderophores from pathogenic fungi. Biol. Met. 1988, 1, 4–8. [Google Scholar] [CrossRef]
- Hossain, M.B.; Jalal, M.A.F.; Benson, B.A.; Barnes, C.L.; Van der Helm, D. Structure and conformation of two coprogentype siderophores: Neocoprogen I and neocoprogen II. J. Am. Chem. Soc. 1987, 109, 4948–4954. [Google Scholar] [CrossRef]
- Frederick, C.B.; Bentley, M.D.; Shive, W. Structure of triornicin, a new siderophore. Biochemistry 1981, 20, 2436–2438. [Google Scholar] [CrossRef]
- Chowdappa, S.; Jagannath, S.; Konappa, N.; Udayashankar, A.C.; Jogaiah, S. Detection and Characterization of Antibacterial Siderophores Secreted by Endophytic Fungi from Cymbidium aloifolium. Biomolecules 2020, 10, 1412. [Google Scholar] [CrossRef]
- Diekmann, H. Metabolic products of microorganisms 81. Occurrence and structures of coprogen B and dimerum acid. Arch. Mikrobiol. 1970, 73, 65–76. [Google Scholar] [CrossRef]
- Emery, T. Malonichrome, a new iron chelates from Fusarium roseum. Biochim. Biophys. Acta 1980, 629, 382–390. [Google Scholar] [CrossRef]
- Jalal, M.A.F.; Love, S.K.; van der Helm, D. Siderophore Mediated Iron (III) Uptake in Gliocladium virens: 1. Properties of cis-Fusarinine, trans-Fusarmine, Dimerum Acid, and Their Ferric Complexes. J. Inorg. Biochem. 1986, 28, 417–430. [Google Scholar] [CrossRef]
- Eng-Wilmot, D.L.; Rahman, A.; Mendenhall, J.V.; Grayson, S.L.; Dick, V.D.H. Molecular structure of ferric neurosporin, a minor siderophore-like compound containing Nδ-hydroxy-D-ornithine. J. Am. Chem. Soc. 1984, 106, 1285–1290. [Google Scholar] [CrossRef]
- Pidacks, C.; Whitehill, A.R.; Pruess, L.M.; Hesseltine, C.W.; Hutchings, B.L.; Bohonos, N.; Williams, J.H. Coprogen, the isolation of a new growth factor required by Pilobolus species. J. Am. Chem. Soc. 1953, 75, 6064–6065. [Google Scholar] [CrossRef]
- Moore, R.E.; Emery, T. N(alpha)-acetylfusarinines: Isolation, characterization, and properties. Biochemistry 1976, 15, 2719–2723. [Google Scholar] [CrossRef]
- Lesuisse, E.; Raguzzi, F.; Crichton, R.R. Iron Uptake by the Yeast Saccharomyces cerevisiae: Involvement of a Reduction Step. J. Gen. Microbiol. 1987, 133, 3229–3236. [Google Scholar] [CrossRef] [Green Version]
- Haselwandter, K.; Dobernigg, B.; Beck, W.; Jung, G.; Cansier, A.; Winkelmann, G. Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals 1992, 5, 51–56. [Google Scholar] [CrossRef]
- Senthilnithy, R.; De Costa, M.D.P.; Gunawardhana, H.D. The pKa values of ligands and stability constants of the complexes of Fe(III), Cu(II) and Ni(II) with some hydroxamic acids: A comparative study of three different potentiometric methods. J. Natl. Sci. Found. 2008, 36, 191–198. [Google Scholar]
- Silva-Bailão, M.G.; Bailão, E.F.L.C.; Lechner, B.E.; Gauthier, G.M.; Lindner, H.; Bailão, A.M.; Haas, H.; de Almeida Soares, C.M. Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides spp. PLoS ONE 2014, 9, e105805. [Google Scholar] [CrossRef] [Green Version]
- Atkin, C.L.; Neilands, J.B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. Isolation and characterization. Biochemistry 1968, 7, 3734–3739. [Google Scholar] [CrossRef]
- Muller, G.; Barclay, S.J.; Raymond, K.N. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of Rhodotorulic acid. J. Biol. Chem. 1985, 260, 13916–13920. [Google Scholar] [CrossRef]
- Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chem. Biochem. 2005, 6, 601–611. [Google Scholar] [CrossRef]
- Sah, S.; Singh, R. Siderophore: Structural and functional characterization—A comprehensive review. Agriculture 2015, 61, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Crosa, J.H.; Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 223–249. [Google Scholar] [CrossRef] [Green Version]
- Ravel, J.; Cornelis, P. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol. 2003, 11, 195–200. [Google Scholar] [CrossRef]
- Nadia, K.; Challis, G.L. Complex enzymes in microbial natural product biosynthesis. Methods Enzymol. 2009, 458, 431–435. [Google Scholar]
- Hider, R. Siderophore mediated absorption of iron. Struct. Bond. 1984, 58, 25–87. [Google Scholar]
- Mei, B.; Leon, S.A. Molecular biology of iron transport. In Metal Ions in Fungi; Marcel Dekker: New York, NY, USA, 1994; pp. 117–148. [Google Scholar]
- Plattner, H.J.; Diekmann, H. Enzymology of siderophore biosynthesis in fungi. In Metal Ions in Fungi; Winkelmann, G., Winge, D.R., Eds.; Decker: New York, NY, USA, 1994; pp. 99–116. [Google Scholar]
- De Luca, N.G.; Wood, P.M. Iron uptake by fungi: Contrasted mechanisms with internal or external reduction. Adv. Microb. Physiol. 2001, 43, 39–74. [Google Scholar]
- Ong, D.E.; Emery, T.F. Ferrichrome biosynthesis: Enzyme catalyzed formation of the hydroxamic acid group. Arch. Biochem. Biophys. 1972, 148, 77–83. [Google Scholar] [CrossRef]
- Neilands, J.B.; Konopka, K.; Schwyn, B.; Coy, M.; Francis, R.T.; Paw, B.H.; Bagg, A. Comparative biochemistry of microbial iron assimilation. In Iron Transport in Microbes, Plants and Animals; Winkelmann, G., Winge, D.R., Eds.; VCH Weinheim: New York, NY, USA, 1987; pp. 3–34. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and 878 determinations of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Anke, H.; Anke, T.; Diekmann, H. Biosynthesis of sideramines in fungi. Fusigen synthetase from extracts of Fusarium cubense. FEBS Lett. 1973, 36, 323–325. [Google Scholar] [CrossRef] [Green Version]
- Calvente, V.; Benuzzi, D. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegrad. 1999, 43, 167–172. [Google Scholar] [CrossRef]
- Hummel, W.; Diekmann, H. Preliminary characterization of ferrichrome synthetase from Aspergillus quadricinctus. Biochim. Biophys. Acta 1981, 657, 313–320. [Google Scholar] [CrossRef]
- Yuan, W.M.; Gentil, G.D.; Budde, A.D.; Leong, S.A. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J. Bacteriol. 2001, 183, 4040–4405. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, S.E.; Lumsden, R.D.; Straney, D.C. Peptide synthetase gene in Trichoderma virens. Appl. Environ. Microbiol. 2001, 67, 5055–5062. [Google Scholar] [CrossRef] [Green Version]
- Leong, S.A.; Winkelmann, G. Molecular biology of iron transport in fungi. Met. Ions Biol. Syst. 1998, 35, 147–186. [Google Scholar]
- Ahmad, E.; Holmstrom, S.J.M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Sanchez, N.; Brown, E.A.; Olsen, Y.; Vadstein, O.L.; Humberto, E.; Gonzalez, I.; Van Ardelan, M. Effect of Siderophore on Iron Availability in a Diatom and a Dinoflagellate Species: Contrasting Response in Associated Bacteria. Front. Mar. Biol. 2018, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ernst, J.F.; Bennet, R.L.; Rothfield, L.I. Cunstitutive expression if the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 1978, 135, 928–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hantke, K. Cloning of the repressor protein gene of iron regulated systems in E. coli K12. Mol. Gen. Genet. 1984, 197, 337–341. [Google Scholar] [CrossRef]
- De Lorenzo, V.; Bindereif, A.; Paw, B.H.; Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 1986, 165, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanui, C.K.; Shyntum, D.Y.; Priem, S.L.; Theron, J.; Moleleki, L.N. Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium Carotovorum subsp. Brasiliense. PLoS ONE 2017, 12, e0177647. [Google Scholar] [CrossRef]
- Scazzocchio, C. The fungal GATA factors. Curr. Opin. Microbiol. 2000, 3, 126–131. [Google Scholar] [CrossRef]
- Kim, I.H.; Wen, Y.; Son, J.S.; Lee, K.H.; Kim, K.S. The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus. Infect. Innum. 2013, 81, 2888–2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Z.; Mei, B.; Yuan, W.M.; Leong, S.A. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J. 1997, 16, 1742–1750. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, G.M.; Sullivan, T.D.; Gallardo, S.S.; Brandhorst, T.T.; Wymelenberg, V.; Cuomo, C.A.; Suen, G.; Currie, C.R.; Klein, B.S. SREB, a GATA Transcription Factor That Directs Disparate Fates in Blastomyces dermatitidis Including Morphogenesis and Siderophore Biosynthesis. PLoS Pathog. 2010, 6, e1000846. [Google Scholar] [CrossRef] [PubMed]
- Voisard, C.; Wang, J.; McEvoy, J.L.; Xu, P.; Leong, S.A. Urbsl, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell. Biol. 1993, 13, 7091–7100. [Google Scholar]
- Zhou, L.W.; Haas, H.; Marzluf, G.A. Isolation and characterization of a new gene, sre, which encodes a GATAtype regulatory protein that controls iron transport in Neurospora crassa. Mol. Gen. Genet. 1998, 259, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Haas, H.; Angermayr, K.; Zadra, I.; Stoffler, G. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J. Biol. Chem. 1997, 272, 22576–225882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, H.; Zadra, I.; Stoffler, G.; Angermaryr, K. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 1999, 274, 4613–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoe, K.L.; Won, M.S.; Yoo, O.J.; Yoo, H.S. Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem. Mol. Biol. Int. 1996, 39, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, B.; Trott, A.; Morano, K.A.; Labbe, S. Functional characterization of the iron-regulatory transcription factor Fep1 from Schizosaccharomyces pombe. J. Biol. Chem. 2005, 280, 25146–25161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi-Iwai, Y.; Dancis, A.; Klausner, R.D. AFT1: A mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 1995, 14, 1231–1239. [Google Scholar] [CrossRef]
- Yamaguchi-Iwai, Y.; Stearman, R.; Dancis, A.; Klausner, R.D. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 1996, 15, 3377–3384. [Google Scholar] [CrossRef] [PubMed]
- McRose, D.L.; Baars, O.; Seyedsayamdost, M.R.; Morel, F. Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proc. Natl. Acad. Sci. USA 2018, 115, 7581–7586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tshikantwa, T.S.; Ullah, M.W.; He, F.; Yanh, G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front. Microbiol. 2018, 9, 1156. [Google Scholar] [CrossRef] [Green Version]
- Butler, A. Marine siderophores and microbial iron mobilization. Biometals 2005, 18, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Emerson, D. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem. Soc. Trans. 2012, 40, 1211–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelissen, C.N.; Sparling, P.F. Neisseria. Iron Transp. Bact. 2004, 2004, 256–272. [Google Scholar]
- Butt, A.T.; Thomas, M.S. Iron acquisition mechanisms and their role in the virulence of Burkholderia species. Front. Cell Infect. Microbiol. 2017, 7, 460. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.K.; Liu, X.; Song, Z.Y.; Li, R.; Shao, C.W.; Yin, Y.P. Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence. Front. Microbiol. 2016, 7, 931. [Google Scholar] [CrossRef] [PubMed]
- Matzanke, B.F.; Bill, E.; Trautwein, A.X.; Winkelmann, G. Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Biol. Met. 1988, 1, 18–25. [Google Scholar] [CrossRef]
- Eisendle, M.; Oberegger, H.; Zadra, I.; Haas, H. The siderophore system is essential for viability of Aspergillus nidulans: Functional analysis of two genes encoding 1-ornithine N5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 2003, 49, 359–375. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Orlean, P. The Molecular and Cellular Biology of the Yeast Saccharomyces; Cell Cycle and Cell, Biology; Pringle, J.R., Broach, j.R., Jones, E.W., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 229–362. [Google Scholar]
- Marathe, R.; Phatake, Y.; Sonawane, A. Bioprospecting of Pseudomonas aeruginosa for their potential to produce siderophore: Process optimization and evaluation of its bioactivity. Int. J. Bioassays 2015, 4, 3667–3675. [Google Scholar]
- Johnstone, T.; Nolan, E. Beyond iron: Non-classical biological functions of bacterial siderophores. Dalton Trans. 2015, 44, 6320–6339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renshaw, J.; Robson, G.; Trinci, A.; Wiebe, M.; Livens, F.; Collison, D.; Taylor, R. Fungal siderophores: Structures, functions and applications. Mycol. Res. 2002, 106, 1123–1142. [Google Scholar] [CrossRef]
- Huschka, H.G.; Jalal, M.A.F.; Helm, D.V.D.; Winkelmann, G. Molecular recognition of siderophores in fungi: Role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. J. Bacteriol. 1986, 167, 1020–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protchenko, O.; Ferea, T.; Rashford, J.; Tiedeman, J.; Brown, P.O.; Botstein, D.; Philpott, C.C. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276, 49244–49250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, H.O.; Ward, A.; Kaplan, J. Transition metal transport in yeast. Ann. Rev. Microbiol. 2002, 56, 237–261. [Google Scholar] [CrossRef] [PubMed]
- Kosman, D.J. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 2003, 47, 1185–1197. [Google Scholar] [CrossRef]
- Hassett, R.; Kosman, D.J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 1995, 270, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, S.A.B.; Lesuisse, E.; Stearman, R.; Klausner, R.D.; Dancis, A. Reductive iron uptake by Candida albicans: Role of copper, iron and the TUP1 regulator. Microbiology-SGM 2002, 148, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Finegold, A.A.; Shatwell, K.P.; Segal, A.W.; Klausner, R.D.; Dancis, A. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J. Biol. Chem. 1996, 271, 31021–31024. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.W.; Ferea, T.; Rashford, J.; Ardon, O.; Brown, P.O.; Botstein, D.; Kaplan, J.; Philpott, C.C. Desferrioxamine-mediated Iron Uptake in Saccharomyces cerevisiae; evidence for two pathways of iron uptake. J. Biol. Chem. 2000, 275, 10709–10715. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.W.; Bauler, M.; Moore, R.E.; Klebba, P.E.; Philpott, C.C. The Role of the FRE Family of Plasma Membrane Reductases in the Uptake of Siderophore-Iron in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276, 10218–10223. [Google Scholar] [CrossRef] [Green Version]
- Dhungana, S.; Crumbliss, A.L. Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol. J. 2005, 22, 87–98. [Google Scholar] [CrossRef]
- Askwith, C.; Eide, D.; Van Ho, A.; Bernard, P.S.; Li, L.; Davis Kaplan, S.; Sipe, D.M.; Kaplan, J. The FET3gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76, 403–410. [Google Scholar] [CrossRef]
- Dancis, A.; Roman, D.G.; Anderson, G.J.; Hinnebusch, A.G.; Klausner, R.D. Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 1992, 89, 3869–3873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, D.; Davis-Kaplan, S.; Fergestad, J.; Kaplan, J. Purification and characterization of Fet3 protein, a yeast homologue of ceruplasmin. J. Biol. Chem. 1997, 272, 14208–14213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassett, R.F.; Romeo, A.M.; Kosman, D.J. Regulation of high affinity iron uptake in the yeast Saccharomyces cerevisiae. Role Dioxygen Fe J. Biol. Chem. 1998, 273, 7628–7636. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.J.; Pufahl, R.A.; Dancis, A.; O’Halloran, T.V.; Culotta, V.C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 1997, 272, 9215–9220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.S.; Stearman, R.; Dancis, A.; Dunn, T.; Beeler, T.; Klausner, R.D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA 1995, 92, 2632–2636. [Google Scholar] [CrossRef] [Green Version]
- Dunaief, J.L.; Strober, B.E.; Guha, S.; Khavari, P.A.; Ålin, K.; Luban, J.; Begemann, M.; Crabtree, G.R.; Goff, S.P. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 1994, 79, 119–130. [Google Scholar] [CrossRef]
- Felice, M.R.; De Domenico, I.; Li, L.; Ward, D.M.; Bartok, B.; Musci, G.; Kaplan, J. Post-transcriptional regulation of the yeast high affinity iron transport system. J. Biol. Chem. 2005, 280, 22181–22190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiang, T.; Baillie, D.L. Comparison of the Yeast Proteome to Other Fungal Genomes to Find Core Fungal Genes. J. Mol. Evol. 2005, 60, 475–483. [Google Scholar] [CrossRef]
- Day, J.P.; Ackrill, P. The chemistry of desferrioxamine chelation for aluminium overload in renal dialysis patients. Ther. Drug Monit. 1993, 15, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Faa, G.; Crisponi, G. Iron chelating agents in clinical practice. Coord. Chem. Rev. 1999, 184, 291–310. [Google Scholar] [CrossRef]
- Peterson, C.M.; Garziano, J.H.; Grady, R.W.; Jones, R.L.; Vlassara, H.V.; Canale, V.C.; Miller, D.R.; Cerami, A. Chelation studies with 2,3-dihydroxybenzoic acid in patients with thalassaemia major. Br. J. Haematol. 1976, 33, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Kontoghiorghes, G.J. Comparative efficacy and toxicity of desferrioxamine, deferriprone and other iron and aluminium che-lating drugs. Toxicol. Lett. 1995, 80, 1–18. [Google Scholar]
- Dexter, D.T.; Ward, R.J.; Florence, A.; Jenners, P.; Crichton, R.R. Effects of desferrithiocin and its derivatives on peripheral iron and striatal dopamine and 5-hydroxytryptamine metabolism in ferrocene-loaded rat. Biochem. Pharmacol. 1999, 58, 151–155. [Google Scholar] [CrossRef]
- Martell, S.J.D.; Beattie, A.I.; Walters, C.J.; Nayar, T.; Briese, R. Simulating fisheries management strategies in the Strait of Georgia ecosystem using Ecopath and Ecosim. Fish. Cent. Res. Rep. 2002, 10, 16–23. [Google Scholar]
- Bergeron, R.J.; Wollenweber, M.; Wiegand, J. An investigation of desferrithiocin metabolism. J. Med. Chem. 1994, 37, 2889–2895. [Google Scholar] [CrossRef]
- Grady, R.W.; Peterson, C.M.; Jones, R.L.; Graziano, J.H.; Bhargava, K.K.; Berdoukas, V.A.; Kokkini, G.; Loukopoulos, D.; Cerami, A. Rhodotorulic acid - investigation of its potential as an iron-chelating drug. J. Pharmacol. Exp. Ther. 1979, 209, 342–348. [Google Scholar]
- Stradling, G.N. Decorporation of actinides: A review of recent research. J. Alloys Compd. 1998, 271/273, 11–12. [Google Scholar] [CrossRef]
- Weinberg, E.D. The role of iron in protozoan and fungal infectious diseases. J. Eukaryot. Microbiol. 1999, 46, 231–238. [Google Scholar] [CrossRef]
- Estrov, Z.; Tawa, A.; Wang, X.H.; Pube, I.D.; Cohen, A.; Gelfand, E.W.; Freedman, M.H. In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood 1987, 69, 757–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergne, A.F.; Walz, A.J.; Miller, M.J. Iron chelators from mycobacteria and potential therapeutic applications. Nat. Prod. Rep. 2000, 17, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Miller, M.J. Syntheses and studies of multi warhead siderophore-5-fluorouridine conjugates. Bioorg. Med. Chem. 1999, 7, 3025–3038. [Google Scholar] [CrossRef]
- Durbin, P.W.; Kullgren, B.; Xu, J.; Raymon, K.N. New agents for in vivo chelation of uranium (VI): Efficacy and toxicity in mice of multidentate catecholate and hydroxypyridinonate ligands. Health Phys. 1997, 72, 865–879. [Google Scholar] [CrossRef]
- Ghosh, A.; Miller, M.J. Synthesis of novel citrate-based siderophores and siderophore-beta-lactam conjugates. Iron transport-mediated drug delivery systems. J. Org. Chem. 1993, 58, 7652–7659. [Google Scholar] [CrossRef]
- Minnick, A.A.; McKee, J.A.; Dolence, E.K.; Miller, M.J. Iron transport-mediated antibacterial activity and development of resistance to hydroxamate and catechol siderophore-carbacephalosporin conjugates. Antimicrob. Agents Chemother. 1992, 36, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Wencewicz, T.A.; Long, T.E.; Möllmann, U.; Miller, M.J. Trihydroxamate siderophore–fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjugate Chem. 2013, 24, 473–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivault, F.; Liébert, C.; Burger, A.; Hoegy, F.; Abdallah, M.A.; Schalk, I.J.; Mislin, G.L.A. Synthesis of pyochelin–norfloxacin conjugates. Bioorg. Med. Chem. Lett. 2007, 17, 640–644. [Google Scholar] [CrossRef]
- Souto, A.; Montaos, M.A.; Balado, M.; Osorio, C.R.; Rodríguez, J.; Lemos, M.L.; Jiménez, C. Synthesis and antibacterial activity of conjugates between norfloxacin and analogues of the siderophore vanchrobactin. Bioorg. Med. Chem. 2013, 21, 295–302. [Google Scholar] [CrossRef]
- Möllmann, U.; Ghosh, A.; Dolence, E.K.; Dolence, J.A.; Reissbrodt, R. Selective growth promotion and growth inhibition of Gram-negative and Gram-positive bacteria by synthetic siderophore-β-lactam conjugates. Biometals 1998, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Petrik, M.; Pfister, J.; Misslinger, M.; Decristoforo, C.; Haas, H. Siderophore-Based Molecular Imaging of Fungal and Bacterial Infections—Current Status and Future Perspectives. J. Fungi 2020, 6, 73. [Google Scholar] [CrossRef]
- Bergeron, R.J.; Bharti, N.; Singh, S.; Mcmanis, J.S.; Wiegand, J.; Green, L.G. Vibriobactin antibodies: A vaccine strategy. J. Med. Chem. 2009, 52, 3801–3813. [Google Scholar] [CrossRef] [Green Version]
- Mike, L.; Smith, S.; Sumner, C.; Mobley, H. LB-S & T-35 siderophore vaccine conjugates protect against uropathogenic Escherichia coli in a murine model of urinary tract infection. J. Urol. 2016, 195, e351. [Google Scholar]
- Mike, L.A.; Smith, S.N.; Sumner, C.A.; Eaton, K.A.; Mobley, H.L.T. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl. Acad. Sci. USA 2016, 113, 13468–13473. [Google Scholar] [CrossRef] [Green Version]
- Brumbaugh, A.R.; Smith, S.N.; Mobley, H.L. Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect. Immun. 2013, 81, 3309–3316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J.T.; Thomson, D.U.; Drouillard, J.S.; Thornton, A.B.; Nagaraja, T.G. Efficacy of Escherichia coli O157: H7 siderophore receptor/porin proteins–based vaccine in feedlot cattle naturally shedding E. coli O157. Foodborne Pathog. Dis. 2009, 6, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, P.; Malito, E.; Biancucci, M.; Surdo, P.L.; Bottomley, M.J. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem. J. 2013, 449, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B.; Beigelman-Aubry, C.; Lamoth, F.; Dunet, V.; Slavin, M.; Richardson, M.D. Diagnosis and treatment of invasive fungal infections: Looking ahead. J. Antimicrob. Chemother. 2019, 74, ii27–ii37. [Google Scholar] [CrossRef] [Green Version]
- Petrik, M.; Haas, H.; Dobrozemsky, G.; Lass-Florl, C.; Helbok, A.; Blatzer, M.; Dietrich, H.; Decristoforo, C. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: Proof of principle. J. Nucl. Med. 2010, 51, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Petrik, M.; Haas, H.; Schrettl, M.; Helbok, A.; Blatzer, M.; Decristoforo, C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012, 39, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrik, M.; Haas, H.; Laverman, P.; Schrettl, M.; Franssen, G.M.; Blatzer, M.; Decristoforo, C. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine e for aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2014, 16, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Kaeopookum, P.; Summer, D.; Pfister, J.; Orasch, T.; Lechner, B.E.; Petrik, M.; Novy, Z.; Matuszczak, B.; Rangger, C.; Haas, H.; et al. Modifying the siderophore triacetylfusarinine C for molecular imaging of fungal infection. Mol. Imaging Biol. 2019, 21, 1097–1106. [Google Scholar] [CrossRef] [Green Version]
- Pfister, J.; Summer, D.; Petrik, M.; Khoylou, M.; Lichius, A.; Kaeopookum, P.; Kochinke, L.; Orasch, T.; Haas, H.; Decristoforo, C. Hybrid imaging of aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules 2020, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, H.Y.; Wang, Z.Z.; Cong, Y.; Zhang, P.; Liu, G.L.; Liu, C.G.; Chi, Z.M.; Chi, Z. Metabolic rewiring improves the production of the fungal active targeting molecule Fusarinine C. ACS Synth. Biol. 2019, 8, 1755–1765. [Google Scholar] [CrossRef]
- Skriba, A.; Pluhacek, T.; Palyzova, A.; Novy, Z.; Lemr, K.; Hajduch, M.; Petrik, M.; Havlicek, V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front. Microbiol. 2018, 9, 2356. [Google Scholar] [CrossRef]
- Hoenigl, M.; Orasch, T.; Faserl, K.; Prattes, J.; Loeffler, J.; Springer, J.; Gsaller, F.; Reischies, F.; Duettmann, W.; Raggam, R.B.; et al. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J. Infect. 2019, 78, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Wasi, S.; Tabrez, S.; Ahmad, M. Toxicological effects of major environmental pollutants: An overview. Environ. Monit. Assess. 2013, 185, 2585–2593. [Google Scholar] [CrossRef]
- Schalk, I.J.; Hannauer, M.; Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 2011, 13, 2844–2854. [Google Scholar] [CrossRef]
- Hernlem, B.J.; Vane, L.M.; Sayles, G.D. The application of siderophores for metal recovery and waste remediation: Examination of correlations for prediction of metal affinities. Water Res. 1999, 33, 951–960. [Google Scholar] [CrossRef]
- Barton, L.E.; Quicksall, A.N.; Maurice, P.A. Siderophore-mediated dissolution of hematite (α-Fe2O3): Effects of nanoparticle size. Geomicrobiol. J. 2012, 29, 314–322. [Google Scholar] [CrossRef]
- Sinha, S.; Mukherjee, S.K. Cadmium–induced siderophore production by a high cd-resistant bacterial strain relieved cd toxicity in plants through root colonization. Curr. Microbiol. 2008, 56, 55–60. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Merten, D.; Svato, A.; Buchel, G.; Kothe, E. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol. Biochem. 2009, 41, 154–162. [Google Scholar] [CrossRef]
- Compant, D.; Nowak, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [Green Version]
- Kayser, A.; Wenger, K.; Keller, A.; Attinger, W.; Felix, H.R.; Gupta, S.K.; Schulin, R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ. Sci. Technol. 2000, 34, 1778–1783. [Google Scholar] [CrossRef]
- Braud, A.; Jézéquel, K.; Bazot, S.; LEb Eau, T. Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 2008, 74, 280–286. [Google Scholar] [CrossRef]
- Dahlheimer, S.R.; Neal, C.R.; Fein, J.B. Potential mobilization of platinum-group elements by siderophores in surface environments. Environ. Sci. Technol. 2007, 41, 870–875. [Google Scholar] [CrossRef]
- Hong, J.W.; Park, J.Y.; Gadd, G.M. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 2010, 108, 2030–2040. [Google Scholar] [PubMed]
- Duckworth, O.W.; Sposito, G. Siderophore−Manganese(III) Interactions II. Manganite Dissolution Promoted by Desferrioxamine B. Environ. Sci. Technol. 2005, 39, 6045–6051. [Google Scholar] [CrossRef]
- Hesse, E.; O’Brien, S.; Tromas, N.; O'Brien, S.; Tromas, N.; Bayer, F.; Luján, A.M.; van Veen, E.M.; Hodgson, D.J.; Buckling, A.; et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 2018, 21, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Ledin, M.; Pedersen, K. The environmental impact of mine wastes-roles of microorganisms and their significance in treatment of mine wastes. Earth Sci. Rev. 1996, 41, 67–108. [Google Scholar] [CrossRef]
- Gray, S.N. Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem. Soc. Trans. 1998, 26, 666–670. [Google Scholar] [CrossRef] [Green Version]
- Gopalan, A.S.; Huber, V.J.; Zincircioglu, O.; Smith, P.H. Novel tetrahydroxamate chelators for actinide complexation: Synthesis and binding studies. J. Chem. Soc. Chem. Commun. 1992, 17, 1266–1268. [Google Scholar] [CrossRef] [Green Version]
- Brainard, J.R.; Strietelmeier, B.A.; Smith, P.H.; Langsten-Unkefer, P.F.; Barr, M.E.; Ryan, R.R. Actinide binding and solubilization by microbial siderophores. Radiochim. Acta 1992, 58/59, 357–363. [Google Scholar] [CrossRef]
- Neubauer, U.; Nowak, B.; Furrer, G.; Schulin, R. Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 2000, 34, 2749–2755. [Google Scholar] [CrossRef]
- Kraemer, D.; Tepe, N.; Pourret, O.; Bau, M. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores. Geochim. Cosmochim. Acta 2016, 196, 197–208. [Google Scholar] [CrossRef]
- Crowley, D.E.; Reid, C.P.; Szaniszlo, P.J. Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol. 1988, 87, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, C.E.; Neu, M.P.; Vanderberg, L.A. Plutonium and uranium interactions with siderophores of aerobic soil microbes. J. Inorg. Biochem. 1999, 74, 282. [Google Scholar]
- Crowley, D.A. Microbial siderophores in the plant rhizosphere. In Iron Nutrition in Plants and Rhizospheric Microorganisms; Barton, L.L., Abadía, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 614, pp. 169–189. [Google Scholar]
- Mengel, K. Iron availability in plant tissues—Iron chlorosis on calcareous soils. In Iron Nutrition in Soils and Plants; Abadia, J., Ed.; Kluwer: Dordrecht, The Netherlands, 1995; pp. 389–397. [Google Scholar]
- Kosegarten, H.U.; Hoffmann, B.; Mengel, K. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 1999, 121, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Masalha, J.; Kosegarten, H.; Elmacio, M.K. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils 2000, 30, 433–439. [Google Scholar] [CrossRef]
- Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling plant–microbe interactions: Can multi-species transcriptomics help? Trends Biotechnol. 2012, 30, 177–184. [Google Scholar] [CrossRef]
- Caris, C.; Hordt, W.; Hawkins, H.J.; Römheld, V.; George, E. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 1998, 8, 35–39. [Google Scholar] [CrossRef]
- Sagar, A.; Rathore, P.; Ramteke, P.W.; Ramakrishna, W.; Reddy, M.S.; Pecoraro, L. Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021, 9, 1491. [Google Scholar] [CrossRef]
- Yadav, S.; Kaushik, R.; Saxena, A.K.; Arora, D.K. Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J. Basic Microbiol. 2011, 51, 98–106. [Google Scholar] [CrossRef]
- Shah, D.; Khan, M.S.; Aziz, S.; Ali, H.; Pecoraro, L. Molecular and Biochemical Characterization, Antimicrobial Activity, Stress Tolerance, and Plant Growth-Promoting Effect of Endophytic Bacteria Isolated from Wheat Varieties. Microorganisms 2022, 10, 21. [Google Scholar] [CrossRef]
- Schippers, B.; Lugtenberg, B.; Weisbeek, P.J. Plant growth control by fluorescent pseudomonads. In Innovative Approaches to Plant Disease Control; Chet, J., Ed.; Wiley: New York, NY, USA, 1987; pp. 19–36. [Google Scholar]
- Gamalero, E.; Glick, B.R. Mechanisms used by plant growth-promoting bacteria. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, M.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 17–46. [Google Scholar]
- Bergeron, R.J.; Braylan, R.; Goldey, S.; Ingeno, M. Effects of the Vibrio cholerae siderophore vibriobactin on the growth characteristics of L1210 cells. Biochem. Biophys. Res. Commun. 1986, 136, 273–280. [Google Scholar] [CrossRef]
- Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637–657. [Google Scholar] [CrossRef] [PubMed]
- Sazinas, P.; Hansen, M.L.; Aune, M.I.; Fischer, M.H.; Jelsbak, L. A rare thioquinolobactin siderophore present in a bioactive Pseudomonas sp. DTU12.1. Genome Biol. Evol. 2019, 11, 3529–3533. [Google Scholar] [CrossRef]
- Samsonov, S.A.; Zsila, F.; Maszota-Zieleniak, M. Acute phase α1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. J. Mol. Graph. Model. 2021, 105, 107861. [Google Scholar] [CrossRef]
- Xie, F.; Dai, S.; Zhao, Y.; Huang, P.; Yu, S.; Ren, B.; Wang, Q.; Ji, Z.; Alterovitz, G.; Zhang, Q.; et al. Generation of fluorinated amychelin siderophores against Pseudomonas aeruginosa infections by a combination of genome mining and mutasynthesis. Cell Chem. Biol. 2020, 27, 1532–1543. [Google Scholar] [CrossRef]
- Swayambhu, G.; Moscatello, N.; Atilla-Gokcumen, G.E.; Pfeifer, B.A. Flux balance analysis for media optimization and genetic targets to improve heterologous siderophore production. Iscience 2020, 23, 101016. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S.M. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 2004, 66, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, M.; Nourbakhsh, F. Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite. Appl. Clay Sci. 2010, 48, 393–397. [Google Scholar] [CrossRef]
- Holmén, B.A.; Casey, W.H. Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite [α-FeOOH (s)]. Geochim. Cosmochim. Acta 1996, 60, 4403–4416. [Google Scholar] [CrossRef]
- Kalinowski, B.; Liermann, L.J.; Brantley, S.L.; Barnes, A.; Pantano, C.G. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim. Cosmochim. Acta 2000, 64, 1331–1343. [Google Scholar] [CrossRef]
- Matzanke, B.F. Structures, coordination chemistry and functions of microbial iron chelates. In CRC Handbook of Microbial Iron Chelates; CRC Press: Boca Raton, FL, USA, 2017; pp. 15–64. [Google Scholar]
- Perrin, D. Stability Constants: Part B; IUPAC: Pergamon, Turkey, 1979. [Google Scholar]
- Reichard, P.; Kretzschmar, R.; Kraemer, S.M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 2007, 71, 5635–5650. [Google Scholar] [CrossRef]
- Watteau, F.; Berthelin, J. Microbial dissolution of iron and aluminium from soil minerals: Efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur. J. Soil Biol. 1994, 30, 1–9. [Google Scholar]
- Sokolova, T.; Tolpeshta, I.; Topunova, I. Biotite weathering in podzolic soil under conditions of a model field experiment. Eurasian Soil Sci. 2010, 43, 1150–1158. [Google Scholar] [CrossRef]
- Hiradate, S.; Inoue, K. Dissolution of iron from iron (hydr) oxides by mugineic acid. Soil Sci. Plant. Nutr. 1998, 44, 305–313. [Google Scholar] [CrossRef]
- Reichard, P.; Kraemer, S.M.; Frazier, S.W.; Kretzschmar, R. Goethite dissolution in the presence of phytosiderophores: Rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 2005, 276, 115–132. [Google Scholar] [CrossRef]
- Gómez-Galera, S.; Sudhakar, D.; Pelacho, A.M.; Capell, T.; Christou, P. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Plant Physiol. Biochem. 2012, 53, 46–53. [Google Scholar] [CrossRef]
- Gledhill, M.; Buck, K.N. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 2012, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Boyd, P.W.; Jickells, T.; Law, C.S.; Blain, S.; Boyle, E.A.; Buesseler, K.O.; Coale, K.H.; Cullen, J.J.; de Baar, H.J.W.; Follows, M.; et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 2007, 315, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Cordero, O.X.; Ventouras, L.A.; DeLong, E.F.; Polz, M.F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl. Acad. Sci. USA 2012, 109, 20059–20064. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.S.; Butler, A. Marine amphiphilic siderophores: Marinobactin structure, uptake, and microbial partitioning. J. Inorg. Biochem. 2007, 101, 1692–1698. [Google Scholar] [CrossRef] [Green Version]
- Barbeau, K.; Rue, E.L.; Bruland, K.W.; Butler, A. Photochemical cycling of iron in the surface ocean mediated by microbial iron (III)-binding ligands. Nature 2001, 413, 409–413. [Google Scholar] [CrossRef]
- Hunter, K.A.; Boyd, P.W. Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environ. Chem. 2007, 4, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Mawji, E.; Gledhill, M.; Milton, J.A.; Tarran, G.A.; Ussher, S.; Thompson, A.; Wolff, G.A.; Worsfold, P.J.; Achterberg, E.P. Hydroxamate siderophores: Occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 2008, 42, 8675–8680. [Google Scholar] [CrossRef]
- Amin, S.A.; Amin, S.A.; Green, D.H.; Waheeb, D.A.; Gärdes, A.; Carrano, C.J. Iron transport in the genus Marinobacter. Biometals 2012, 25, 135–147. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Marchisio, M.A.; Gupta, V.K.; Pecoraro, L. Genome-based engineering of ligninolytic enzymes in fungi. Microb. Cell Factories 2021, 20, 20. [Google Scholar] [CrossRef]
Siderophores | Types | Characteristics | References |
---|---|---|---|
Hydroxamates | Rhodotorulic acid | The diketopiperazine ring of N5-acetyl-N5-hydroxy-l-ornithine units linked head-to-head. Produced mainly by basidiomycetous yeasts such as Rhodotorula spp. | Haas [35]; Das et al. [36] |
Coprogens | The diketopiperazine ring (dimerum acid) of diketopiperazine ring (dimerum acid) units linked head-to-head. Produced generally by a number of plant pathogens, such as H. capsulatum, B. dermatitidis, Fusarium dimerum and Curvularia lunata. These are di or tri-hydroxamates derivatives of rhodotorulic acid with a linear structure composed of trans-fusarinine units. | Haas [35]; Das et al. [36] | |
Ferrichromes | Cyclic hexapeptides consisting of tripeptide of N-acyl-N-hydroxyornithine and three amino acids, serine, glycine and alanine. Several different acyl groups have been found in this family such as acetyl, malonyl, transb-ethylglutaconyl, trans-anhydromevalonyl, and cis-anhydromevalonyl. Ferrichromes are produced by phytopathogenic fungi and by Microsporum sp., Trichophyton sp., and Aspergillus spp. Another function of ferrichromes is the intracellular storage of iron. | Haas [35]; Das et al. [36] | |
Fusarinines | Linear or cyclic hydroxamates composed of N-hydroxyornithine, which is N-acylated by anhydromevalonic acid. Produced by Fusarium spp., Paecilomyces spp., and Aspergillus spp. | Das et al. [36] | |
Polycarboxylates | Rhizoferrin | A citric acid-containing polycarboxylate called rhizoferrin has been isolated from Rhizopus microsporus var. rhizopodiformis. The molecule is composed of two citric acid units linked to diaminobutane. Produced mainly by Mucoromycota, Mucorales (Mucoraceae, Thamnididiaceae, and Choanephoraceae) and Mortierellales (Mortierellaceae), and Entomophthoromycota, Entomophthorales. | Das et al. [35] |
Fungal Source | Siderophores | References |
---|---|---|
Aspergillus sp., Penicillium oxalicum, Aureobasidium pullulans, Phanerochaete chrysosporium | Hydroxamates | Ghosh et al. [22] |
Alternaria longipes | Trihydroxamate (Hydroxycoprogen I, Hydroxyneocoprogen I) | Jalal and Helm [43] |
A. longipes | Trihydroxamate (Nb-dimethyl coprogen, Nb-dimethyl neocoprogen I and Nb-dimethyl isoneocoprogen | Jalal et al. [44] |
Candida sp. | Ferrichrome, hydroxamates | Baakza et al. [37] |
Curvularia lunata | Trihydroxamate (Neocoprogen II) | Hossain et al. [45] |
Epicoccum purpurascens (Syn. E. nigrum) | Trihydroxamate (Isoneocoprogen I or Triornicin) | Frederick et al. [46] |
E. nigrum and C. lunata | Trihydroxamate (Isotriornicin or Neocoprogen I) | Frederick et al. [46]; Chowdappa et al. [47] |
Fusarium dimerum | Dihydroxamate (Dimerum acid) | Diekmann [48] |
F. roseum | Cis-fusarinine | Emery [49] |
dimerum | Trans-Fusarinine | Diekmann [48] |
F. dimerum | Trihydroxamate (Coprogen B) | Diekmann [48] |
Gliocladium virens | Fusarinine A, Fusarinine B | Jalal et al. [50] |
Neurospora crassa | Neurosporin | Eng-Wilmot et al. [51] |
Penicillium sp. | Trihydroxamate (Coprogen) | Pidacks et al. [52] |
Penicillium sp. | N, N’N’-triacetylfusarinine C | Moore and Emery [53] |
Paracoccidioides sp. | Hydroxamates | Lesuisse et al. [54] |
Rhizopus microsporus | Carboxylates (rhizoferrin) | Drechsel et al. [31] |
Rhodothamus chamaecistus | Fusarinine C (FsC), Fusigen | Haselwandter et al. [55] |
Saccharomyces cerevisiae | Catecholate, hydroxamate, ferrioxamine, ferricrocin | Senthilnithy [56] |
Trichoderma sp. | Trihydroxamate (Pamitoylcorprogen) | Anke et al. [40] |
Trichoderma sp. | Hydroxamates, carboxylates | Baila et al. [57] |
Ustilago inflorescentiae | Dihydroxamate (Rhodotorulic acid) | Atkin and Neilands [58]; Muller et al. [59] |
S.No | Regulatory Protein Similar to GATA Factor | Organisms | References |
---|---|---|---|
1. | URBS1 | Ustilago maydis | Voisard et al. [88]; An et al. [86] |
2. | SRE | Neurospora crassa | Zhou et al. [89] |
3. | SREP | Penicillium chrysogenum | Haas et al. [90] |
4. | SREA | Aspergillus nidulans | Haas et al. [91]; Oberegger et al. [24] |
5. | GAF2p | Schizosaccharomyces pombe | Hoe et al. [92]; Pelletier et al. [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecoraro, L.; Wang, X.; Shah, D.; Song, X.; Kumar, V.; Shakoor, A.; Tripathi, K.; Ramteke, P.W.; Rani, R. Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores. J. Fungi 2022, 8, 21. https://doi.org/10.3390/jof8010021
Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, Tripathi K, Ramteke PW, Rani R. Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores. Journal of Fungi. 2022; 8(1):21. https://doi.org/10.3390/jof8010021
Chicago/Turabian StylePecoraro, Lorenzo, Xiao Wang, Dawood Shah, Xiaoxuan Song, Vishal Kumar, Abdul Shakoor, Keshawanand Tripathi, Pramod W. Ramteke, and Rupa Rani. 2022. "Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores" Journal of Fungi 8, no. 1: 21. https://doi.org/10.3390/jof8010021
APA StylePecoraro, L., Wang, X., Shah, D., Song, X., Kumar, V., Shakoor, A., Tripathi, K., Ramteke, P. W., & Rani, R. (2022). Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores. Journal of Fungi, 8(1), 21. https://doi.org/10.3390/jof8010021