Enhancing the Recovery of Bioactive Compounds of Soybean Fermented with Rhizopus oligosporus Using Supercritical CO2: Antioxidant, Anti-Inflammatory, and Oxidative Proprieties of the Resulting Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Substrate Treatment
2.3. Fermented Soybean
2.4. Soxhlet Extraction
2.5. Supercritical Extraction
2.6. Determination of the Fatty Acid Profile
2.7. Determination of the Total Phenolic Content
2.8. Measurement of the DPPH Radical Scavenging Activity
2.9. High-Performance Liquid Cromatography of the Phenol Contents (HPLC)
2.10. Evaluation of the Anti-Inflammatory Activity
2.11. Determination of the Oxidative Stability
2.12. Statistical Analysis
3. Results and Discussion
3.1. Soxhlet Extraction
3.2. Extraction by Compressed Solvents
3.3. Fatty Acid Profile
3.4. Total Phenolic Content (TPC)
3.5. Antioxidant Potential
3.6. High-Performance Liquid Cromatography of the Phenol Contents (HPLC)
3.7. Evaluation of the Anti-Inflammatory Activity In Vitro
3.8. Oxidative Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conab. National Supply Company. Acompanhamento da Safra Brasileira; Conab. National Supply Company: Brasília, Brazil, 2022; Volume 8. Available online: https://www.conab.gov.br/ (accessed on 12 January 2021).
- USDA. World Agricultural Production; U.S. Department of Agriculture: Washington, DC, USA, 2020. Available online: https://www.usda.gov/ (accessed on 12 January 2021).
- Alvarez, M.V.; Cabred, S.; Ramirez, C.L.; Fanovich, M.A. Valorization of an Agroindustrial Soybean Residue by Supercritical Fluid Extraction of Phytochemical Compounds. J. Supercrit. Fluids 2019, 143, 90–96. [Google Scholar] [CrossRef]
- Grajeda-iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Panya, A.; Figueroa-espinoza, M.C. Antioxidant Activity of Protocatechuates Evaluated by DPPH, ORAC, and CAT Methods. Food Chem. 2016, 194, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, L.; Xu, X.; Wen, C.; Ma, Y.; Yu, C.; Du, M. One-Step Coextraction Method for Flavouring Soybean Oil with the Dried Stipe of Lentinus Edodes (Berk) Sing by Supercritical CO2 Fluid Extraction. LWT Food Sci. Technol. 2020, 120, 108853. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Chen, G.; Yu, J.; Yang, L. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Kayano, S.I.; Matsumura, Y.; Kitagawa, Y.; Kobayashi, M.; Nagayama, A.; Kawabata, N.; Kikuzaki, H.; Kitada, Y. Isoflavone c-glycosides isolated from the Root of Kudzu (Pueraria lobata) and their estrogenic activities. Food Chem. 2012, 134, 282–287. [Google Scholar] [CrossRef]
- Do Prado, F.G.; Miyaoka, M.F.; de Melo Pereira, G.V.; Pagnoncelli, M.G.B.; Prado, M.R.M.; Bonatto, S.J.R.; Spier, M.R.; Soccol, C.R. Fungal-Mediated Biotransformation of Soybean Supplemented with Different Cereal Grains into a Functional Compound with Antioxidant, Anti- Inflammatory and Antitumoral Activities. Biointerface Res. Appl. Chem. 2021, 11, 8018–8033. [Google Scholar]
- Sanja, Đ.; Nikoli, B.; Lukovi, N.; Jovanovi, J.; Stefanovi, A. The Impact of High-Power Ultrasound and Microwave on the Phenolic Acid pro Fi Le and Antioxidant Activity of the Extract from Yellow Soybean Seeds. Ind. Crop. Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Alessandra, P.; Maria, L.; Andressa, K.; Antonio, E. Supercritical CO2 Oil Extraction from Bauhinia Forficata Link Subsp. Pruinosa Leaves: Composition, Antioxidant Activity and Mathematical Modeling. J. Supercrit. Fluids 2019, 153, 104588. [Google Scholar] [CrossRef]
- Attard, T.M.; Bainier, C.; Reinaud, M.; Lanot, A.; Mcqueen-mason, S.J.; Hunt, A.J. Utilisation of Supercritical Fluids for the Effective Extraction of Waxes and Cannabidiol (CBD) from Hemp Wastes. Ind. Crop. Prod. 2018, 112, 38–46. [Google Scholar] [CrossRef]
- Ahmed, M.; Pavli, B.; Vladi, J.; Stanojkovi, T.; Žižak, Ž.; Zekovi, Z. Antioxidative and Cytotoxic Activity of Essential Oils and Extracts of Satureja montana L., Coriandrum sativum L. and Ocimum basilicum L. Obtained by Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 128, 128–137. [Google Scholar] [CrossRef]
- Soltani, S.; Mazloumi, S.H. Chemical Engineering Research and Design A New Empirical Model to Correlate Solute Solubility in Supercritical Carbon Dioxide in Presence of Co-Solvent. Chem. Eng. Res. Des. 2017, 125, 79–87. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Shulgin, I. Entrainer Effect in Supercritical Mixtures. Fluid Phase Equilib. 2001, 180, 345–359. [Google Scholar] [CrossRef]
- Santos, Ê.R.M.; Oliveira, H.N.M.; Oliveira, E.J.; Azevedo, S.H.G.; Jesus, A.A.; Medeiros, A.M.; Dariva, C.; Sousa, E.M.B.D. Supercritical Fluid Extraction of Rumex acetosa L. Roots: Yield, Composition, Kinetics, Bioactive Evaluation and Comparison with Conventional Techniques. J. Supercrit. Fluids 2017, 122, 1–9. [Google Scholar] [CrossRef]
- AOCS, D.F. Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS 1998, 5, 2–93. [Google Scholar]
- Correa, M.; Mesomo, M.C.; Eduardo, K.; Reyes, Y.; Lúcio, M. Extraction of Inflorescences of Musa paradisiaca L. Using Supercritical CO2 and Compressed Propane. J. Supercrit. Fluids 2016, 113, 128–135. [Google Scholar] [CrossRef]
- Swain, T.; Hills, W.E. Determinação de Fenólicos Totais. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Respostas Perceptivas E. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Strominger, L.; Leloir, F.; Reissig, L. A Modified Colorimetric Method for the Estimatuon of N-Acetylamino Sugars. J. Biol. Chem. 1955, 2, 959–966. [Google Scholar]
- Tango, J.S.; Carvalho, C.R.L.; Soares, N.B. Physical and Chemical Characterization of Avocado Fruits Aiming Its Potencial for Oil Extraction. Rev. Bras. Frutic. 2004, 26, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Pighinelli, A.L.M.T.; Park, K.J.; Rauen, A.M.; Oliveira, R.A. Optimization of Sunflower Grain Pressing and Its Characterization. Rev. Bras. Eng. Agríc. Ambient. 2009, 13, 63–67. [Google Scholar] [CrossRef]
- Santos, R.F.; Fornasari, C.H.; Bassegio, D.; Nelson, S. Optimization of Oil Extraction from High Energetic Potential Plants Performed through Drying and Solvent Extraction Methods. Afr. J. Biotechnol. 2013, 12, 6761–6765. [Google Scholar] [CrossRef] [Green Version]
- Bahrin, N.; Muhammad, N.; Abdullah, N.; Talip, B.H.A.; Jusoh, S.; Theng, S.W. Effect of Processing Temperature on Antioxidant Activity of Ficus Carica Leaves Extract. J. Sci. Technol. 2018, 10, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Tim, E.; George, S.C.; Lisk, M.; Quezada, A. Organic Compounds Trapped in Aqueous Fluid Inclusions. Org. Geochem. 1998, 29, 195–205. [Google Scholar]
- Akgün, N.A.; Bulut, H.; Kikic, I.; Solinas, D. Extraction Behavior of Lipids Obtained from Spent Coffee Grounds Using Supercritical Carbon Dioxide. Chem. Eng. Technol. 2014, 37, 1975–1981. [Google Scholar] [CrossRef]
- Ahangari, B.; Sargolzaei, J. Extraction of Lipids from Spent Coffee Grounds Using Organic Solvents and Supercritical Carbon Dioxide. J. Food Process. Preserv. 2013, 37, 1014–1021. [Google Scholar] [CrossRef]
- Jokić, S.; Svilović, S.; Zeković, Z.; Vidović, S.; Velić, D. Solubility and Kinetics of Soybean Oil and Fatty Acids in Supercritical CO2. Eur. J. Lipid Sci. Technol. 2011, 113, 644–651. [Google Scholar] [CrossRef]
- Mesomo, M.C.; de Paula, A.; Perez, E.; Ndiaye, P.M.; Corazza, M.L. Ginger (Zingiber officinale R.) Extracts Obtained Using Supercritical CO2 and Compressed Propane: Kinetics and Antioxidant Activity Evaluation. J. Supercrit. Fluids 2012, 71, 102–109. [Google Scholar] [CrossRef]
- Juchen, P.T.; Araujo, M.N.; Hamerski, F.; Corazza, M.L.; Augusto, F.; Voll, P. Extraction of Parboiled Rice Bran Oil with Supercritical CO2 and Ethanol as Co-Solvent: Kinetics and Characterization. Ind. Crop. Prod. 2019, 139, 111506. [Google Scholar] [CrossRef]
- Magnan, C.; Levin, B.E.; Luquet, S. Molecular and Cellular Endocrinology Brain Lipid Sensing and the Neural Control of Energy Balance. Mol. Cell. Endocrinol. 2015, 418, 3–8. [Google Scholar] [CrossRef]
- De Moraes, C.; De Oliveira, C.A.; Esméria, M.; Amaral, C.; Landini, G.A.; Catisti, R. Liver Metabolic Changes Induced by Conjugated Linoleic Acid in Calorie-Restricted Rats. Arch. Endocrinol. Metab. 2017, 61, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.M.; Haas, A.W.; Lor, J.; Mckee, H.S.; Cook, M.E. A Comparison of the Anti-Inflammatory Effects of Cis-9-Trans-11 Conjugated Linoleic Acid to Celecoxib in the Collagen—Induced Arthritis Model. Lipids 2017, 52, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Yuce, H.B.; Akbulut, N.; Ocakli, S.; Kayir, O. The Effect of Commercial Conjugated Linoleic Acid Products on Experimental Periodontitis and Diabetes Mellitus in Wistar Rats The Effect of Commercial Conjugated Linoleic Acid Products on Experimental Periodontitis and Diabetes Mellitus in Wistar Rats Hat. Acta Odontol. Scand. 2016, 75, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, Y.; Park, Y. Trans -10, Cis -12 CLA Promotes Osteoblastogenesis via SMAD Mediated Mechanism in Bone Marrow Mesenchymal Stem Cells. J. Funct. Foods. 2014, 8, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, K.; Joung, T.; Bok, Y.; Duck, W.; Young, J.; Won, H.; Hun, S.; Min, Y.; Hwan, J. Soluble Phenolics and Antioxidant Properties of Soybean (Glycine max L.) Cultivars with Varying Seed Coat Colours. J. Funct. Foods. 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, K.M. Changes Occurring in Compositional Components of Black Soybeans Maintained at Room Temperature for Different Storage Periods. Food Chem. 2012, 131, 161–169. [Google Scholar] [CrossRef]
- Tian, Y.; He, X.; Liu, S.; Dong, J. Comparative Analysis of Lipid Profile and in Vitro Cytotoxic Activity of Fermented and Unfermented Soybean Extracted by Supercritical CO2 Extraction. J. Funct. Foods. 2017, 34, 369–378. [Google Scholar] [CrossRef]
- Squeo, G.; Caponio, F.; Paradiso, V.M.; Summo, C.; Pasqualone, A.; Khmelinskii, I.; Sikorska, E. Evaluation of Total Phenolic Content in Virgin Olive Oil Using Fluorescence Excitation–Emission Spectroscopy Coupled with Chemometrics. J. Sci. Food Agric. 2019, 99, 2513–2520. [Google Scholar] [CrossRef]
- Veber, J.; Petrini, L.A.; Andrade, L.B.; Siviero, J. Determinação dos Compostos Fenólicos e da Capacidade Antioxidante de Extratos Aquosos e Etanólicos de Jambolão (Syzygium cumini L.). Rev. Bras. Plantas Med. 2015, 17, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.C.; et al. Nicotinamide N-Methyltransferase Knockdown Protects against Diet-Induced Obesity. Nature 2014, 508, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.Y.; Jang, G.Y.; Lee, Y.; Li, M.; Ji, Y.M.; Yoon, N.; Lee, S.H.; Kim, K.M.; Lee, J.; Jeong, H.S. Free and Bound Form Bioactive Compound Profiles in Germinated Black Soybean (Glycine max L.). Food Sci. Biotechnol. 2016, 25, 1551–1559. [Google Scholar] [CrossRef]
- Santos, V.A.Q.; Nascimento, C.G.; Schmidt, C.A.P.; Mantovani, D.; Dekker, R.F.H.; da Cunha, M.A.A. Solid-State Fermentation of Soybean Okara: Isoflavones Biotransformation, Antioxidant Activity and Enhancement of Nutritional Quality. LWT 2018, 92, 509–515. [Google Scholar] [CrossRef]
- Girish, K.S.; Kemparaju, K. The Magic Glue Hyaluronan and Its Eraser Hyaluronidase: A Biological Overview. Life Sci. 2007, 80, 1921–1943. [Google Scholar] [CrossRef] [PubMed]
- Double-blind, R.; Trial, C.; Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the Pure Flavonoids Epicatechin and Quercetin Affects Some Biomarkers of Endothelial Dysfunction and Inflammation in (Pre) Hypertensive Adults: A. J. Nutr. 2015, 145, 1459–1463. [Google Scholar] [CrossRef]
- Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an Anti-Inflammatory Agent. Inflamm. Res. 2003, 52, 341–346. [Google Scholar] [CrossRef]
- Rampazzo, V. Avaliação da Degradação Térmica de Óleos Vegetais Por Termogravimetria, Cromatografia Gasosa e Espectroscopia de Infravermelho Médio; Federal University of Paraná: Curitiba, Brazil, 2015. [Google Scholar]
- Silva, E.d.S. Avaliação de Antioxidantes Naturais Na Estabilidade de Biodiesel de Soja; Federal University of Campina Grande: Campina Grande, Brazil, 2017. [Google Scholar]
Extraction Yield (wt%) | |||||
---|---|---|---|---|---|
Run | Solvents | T (°C) * | Polarity | Dry Sample | Wet Sample |
S1 | Hexane | 68.0 | 0.0 | 15.56 ± 4.02 c | - |
S2 | Petroleum ether | 34.61 | 0.1 | 29.05 ± 0.51 a | - |
S3 | Ethyl acetate | 77.5 | 4.3 | 32.04 ± 2.14 ab | - |
S4 | Acetone | 56.0 | 5.4 | 34.07 ± 0.68 ab | 19.76 ± 1.05 ab |
S5 | Ethanol | 78.5 | 5.2 | 44.10 ± 1.99 b | 25.48 ± 4.25 bc |
S6 | Methanol | 64.7 | 6.6 | 45.24 ± 3.70 b | 32.84 ± 3.70 c |
S7 | Water | 100.0 | 10.2 | 23.66 ± 4.32 a | 14.20 ± 2.82 a |
Run (MRM) | Solvent | P (MPa) | T (°C) | Time (min) | Extraction Yield (wt%) |
---|---|---|---|---|---|
1 | CO2 + EtOH | 15 | 40 | 75 | 30.81 |
2 | CO2 + EtOH | 15 | 80 | 75 | 27.56 |
3 | CO2 + EtOH | 25 | 40 | 75 | 30.65 |
4 | CO2 + EtOH | 25 | 80 | 75 | 42.87 |
5 | CO2 + EtOH | 20 | 60 | 75 | 29.32 |
Run | Extraction Condition | Composition (%) | ||||||
---|---|---|---|---|---|---|---|---|
Soxhlet | Palmitic (C16:0) | Stearic (C18:0) | Oleic (C18:1) | α-Linolenic (C18:3) | Linoleic (C18:2) | Gondoic (C20:1) | Tricosanoic (C23:0) | |
S1 | Hexane | 11.35 d | 4.33 b | 31.86 e | 5.47 c | 46.32 f | - | 0.67 a |
S2 | Petroleum ehter | 12.11 d | 4.49 b | 30.75 e | 5.49 c | 46.04 f | 0.51 a | 0.61 a |
S3 | Ethyl acetate | 11.53 d | 4.17 b | 30.94 e | 5.62 c | 46.52 f | 0.59 a | 0.62 a |
S4 | Acetone | 11.58 d | 4.24 b | 30.83 e | 5.59 c | 46.66 f | 0.45 a | 0.64 a |
S5 | Ethanol | 13.27 d | 4.88 b | 29.96 e | 5.23 c | 45.22 f | 0.62 a | 0.81 a |
S6 | Methanol | 12.37 d | 4.50 b | 30.21 e | 5.64 c | 46.14 f | 0.45 a | 0.69 a |
S7 | Water | 14.68 a | - | 33.41 b | - | 51.92 c | - | - |
scCO2 + EtOH | ||||||||
1 | 15 MPa:40 °C | 11.27 d | 4.57 c | 37.34 e | 4.27 b | 41.45 f | 0.51 a | 0.59 a |
2 | 15 MPa:80 °C | 11.28 d | 4.69 c | 37.24 e | 4.17 b | 41.38 f | 0.59 a | 0.64 a |
3 | 25 MPa:40 °C | 10.98 d | 4.55 c | 37.25 e | 4.26 b | 41.93 f | 0.50 a | 0.54 a |
4 | 25 MPa:80 °C | 11.31 d | 4.63 c | 37.17 e | 4.23 b | 41.42 f | 0.55 a | 0.68 a |
5 | 20 MPa:60 °C | 11.36 d | 4.71 c | 37.13 e | 4.27 b | 41.37 f | 0.56 a | 0.61 a |
Run | Extraction Condition | Total Phenolic Compounds (µg GAE g−1) | Antioxidant Activity | ||
---|---|---|---|---|---|
Soxhlet | IC50 (g g−1) | Inibition DPPH (%) | µm Trolox/g | ||
S1 | Hexane | 132.1 ± 0.02 a | 2.91 ± 0.47 a | 18.25 ± 0.99 a | * |
S2 | Petroleum ehter | 423.8 ± 0.02 b | 1.75 ± 1.65 e | 29.68 ± 0.74 b | * |
S3 | Ethyl acetate | 581.7 ± 0.11 d | 2.93 ± 0.84 a | 17.53 ± 0.20 a | 37.48 ± 0.01 a |
S4 | Acetone | 904.7 ± 0.03 e | 0.79 ± 0.27 c | 61.28 ± 0.51 f | 616.0 ± 0.01 d |
S5 | Ethanol | 962.9 ± 0.023 f | 1.57 ± 1.20 d | 38.97 ± 0.83 c | 200.44 ± 0.02 b |
S6 | Methanol | 446.0 ± 0.06 c | 1.82 ± 0.76 f | 43.12 ± 0.92 d | 303.40 ± 0.03 c |
S7 | Water | 1305.6 ± 0.03 g | 0.55 ± 0.84 b | 81.27 ± 0.77 g | 962.66 ± 0.02 e |
scCO2 + EtOH | |||||
1 | 15 MPa:40 °C | 1221.6 ± 0.075 a | 0.28 ± 0.73 c | 89.66 ± 0.74 b | 976.74 ± 0.01 d |
2 | 15 MPa:80 °C | 1158.2 ± 0.01 ab | 0.34 ± 1.25 d | 84.60 ± 0.29 a | 848.59 ± 0.02 a |
3 | 25 MPa:40 °C | 1249.0 ± 0.01 a | 0.18 ± 2.31 b | 93.62 ± 0.37 c | 903.41 ± 0.01 c |
4 | 25 MPa:80 °C | 1391.9 ± 0.09 c | 0.17 ± 0.79 a | 94.09 ± 0.32 c | 984.89 ± 0.01 e |
5 | 20 MPa:60 °C | 1058.9 ± 0.02 a | 0.34 ± 1.20 d | 89.94 ± 0.24 b | 884.89 ± 0.01 b |
Phenolic Compounds Identified (μg g−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Run (MRM) | Solvent | p (MPa) | T (°C) | Rt (min) | Gallic Acid | Rt (min) | Trans-Cinnamic Acid | Rt (min) | Genistein | Rt (min) | Daidzein |
1 | CO2+ EtOH | 15 | 40 | 3.46 | 416.3 a | 25.46 | 518.3 b | 26.06 | 593.1 a | 24.59 | 606.1 c |
2 | CO2+ EtOH | 15 | 80 | 3.42 | 449.5 b | 25.37 | 521.4 c | 25.94 | 625.3 d | 24.50 | 605.0 c |
3 | CO2+ EtOH | 25 | 40 | 3.42 | 414.5 a | 25.36 | 507.0 a | 25.94 | 596.5 b | 24.50 | 577.3 a |
4 | CO2+ EtOH | 25 | 80 | 3.42 | 457.2 c | 25.38 | 518.1 b | 25.95 | 621.7 c | 24.50 | 603.9 c |
5 | CO2+ EtOH | 20 | 60 | 3.42 | 417.7 a | 25.38 | 518.7 b | 25.95 | 597.6 b | 24.51 | 565.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Prado, F.G.; Pagnoncelli, M.G.B.; Prado, M.R.M.; Corazza, M.L.; Soccol, V.T.; de Melo Pereira, G.V.; Soccol, C.R. Enhancing the Recovery of Bioactive Compounds of Soybean Fermented with Rhizopus oligosporus Using Supercritical CO2: Antioxidant, Anti-Inflammatory, and Oxidative Proprieties of the Resulting Extract. J. Fungi 2022, 8, 1065. https://doi.org/10.3390/jof8101065
do Prado FG, Pagnoncelli MGB, Prado MRM, Corazza ML, Soccol VT, de Melo Pereira GV, Soccol CR. Enhancing the Recovery of Bioactive Compounds of Soybean Fermented with Rhizopus oligosporus Using Supercritical CO2: Antioxidant, Anti-Inflammatory, and Oxidative Proprieties of the Resulting Extract. Journal of Fungi. 2022; 8(10):1065. https://doi.org/10.3390/jof8101065
Chicago/Turabian Styledo Prado, Fernanda Guilherme, Maria Giovana Binder Pagnoncelli, Maria Rosa Machado Prado, Marcos Lucio Corazza, Vanete Thomaz Soccol, Gilberto Vinícius de Melo Pereira, and Carlos Ricardo Soccol. 2022. "Enhancing the Recovery of Bioactive Compounds of Soybean Fermented with Rhizopus oligosporus Using Supercritical CO2: Antioxidant, Anti-Inflammatory, and Oxidative Proprieties of the Resulting Extract" Journal of Fungi 8, no. 10: 1065. https://doi.org/10.3390/jof8101065
APA Styledo Prado, F. G., Pagnoncelli, M. G. B., Prado, M. R. M., Corazza, M. L., Soccol, V. T., de Melo Pereira, G. V., & Soccol, C. R. (2022). Enhancing the Recovery of Bioactive Compounds of Soybean Fermented with Rhizopus oligosporus Using Supercritical CO2: Antioxidant, Anti-Inflammatory, and Oxidative Proprieties of the Resulting Extract. Journal of Fungi, 8(10), 1065. https://doi.org/10.3390/jof8101065