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Abstract: Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed
information regarding the establishment of ECM symbioses. We investigated the morphological and
transcriptional changes that occur during the establishment of the Pinus massoniana–Suillus bovinus
ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds
and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity.
At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi,
the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in
P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction,
and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogram-
ming of pathways involved in genetic information processing in P. massoniana, particularly at the
Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and
was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-
CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings
outline the mechanism involved in the P. massoniana–S. bovinus ECM. Further studies are needed to
clarify the role of phenylpropanoid biosynthesis in ECM formation.

Keywords: ectomycorrhiza; morphogenesis; transcriptome; phenylpropanoid; Hartig net

1. Introduction

An ectomycorrhiza (ECM) is a mutualistic association formed by ECM fungi and tree
roots [1,2]. In this symbiotic relationship, ECM fungi improve host growth and fitness by
promoting nutrient absorption and enhancing resistance to biotic stresses (such as pests
and diseases) and abiotic stresses (such as drought and heavy metals) [3,4]. In exchange,
fungi rely on the carbohydrates provided by their plant partners for vegetative growth and
fruit body differentiation [5–7]. In addition, many ECM fungi form edible fruiting bodies
that are of high economic value [8,9].

The development of ECM is a dynamic process, requiring elaborately regulated interac-
tions between plant roots and compatible fungi. First, the host plant and fungus recognize
each other by releasing and receiving signals, which induce lateral root formation, fungal
spore germination, and mycelial branching. These changes increase the chances of ECM
fungal hyphae encountering plant roots [10–18]. Next, the mycelium attaches to the root
and starts to colonize. The mycelium stretches along the root surface and the intercellular
space, and eventually differentiates to form a mantle and Hartig net [1,19]. In general,
most ECM associations can be characterized by both mantle and Hartig net structures, and
the formation of Hartig net is defined as signs of functional ECM establishment, which is
considered functioning in nutrient exchanges between the two partners [20,21]. However,
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in some ECM associations formed between ascomycetes and broadleaf trees, the mantle
may be poorly developed or essentially non-existent [1].

ECM formation is accompanied by changes in gene expression [16,19,22–24], involv-
ing cell growth and differentiation, signaling, defense, energy production, and other
functional genes [21,22,25–40]. The expression patterns of these genes follow a complex
series of sequential steps [24,27]. Small secretory proteins induced by mycorrhizae, such
as MiSSP7 [41–43], MiSSP7.6 [44], MiSSP8 [45], and MiSSP10b [46], help fungi evade
host defenses and play an important role during the early stages of ECM formation.
Genes associated with symbiosis-induced malate synthase [47], arginine methyltrans-
ferase [33], endoglucanase (LbGH5-CBM1) [48], polygalacturonase (LbGH28A) [49], and
pectin methylesterases [21] are involved during the late stages of ECM development. A
phosphorus transporter (HcPT2) [50] and an ammonium transporter (AMT2.2) [51,52]
play important roles in maintaining the function of the ECM when functional ECM
structures—the mantle and Hartig net—are formed. These findings have greatly con-
tributed to our understanding of the molecular mechanism of ECM symbiosis. However,
these previous findings have been limited to a few specific ECM combinations, such as
Populus-Laccaria bicolor [21,41], Betula-Paxillus involutus [25,27], Eucalyptus-Pisolithus tincto-
rius/Pisolithus microcarpus [21,26], and Pinus pinaster-Hebeloma cylindrosporum [32]. Given
the huge numbers of fungi and tree species that can form ECM and the complexity of
these relationships, the establishment process of different ECM combinations is likely to be
specific [53]. Therefore, it is necessary to expand our studies to other ECM combinations
to gain a comprehensive understanding of this important symbiotic association. Another
problem is that there are little data on the molecular regulation of the ECM symbiotic pro-
cess because previous studies have mainly focused on specific stages (usually the functional
stage) of the ECM formation process.

Pinus massoniana is one of the main timbers and a pioneer afforestation tree species
in China; however, the survival and breed of this unique native tree species are highly
dependent on ECM fungi [54–57]. Our group previously reported that Suillus bovinus is the
dominant ECM fungus in P. massoniana forests. In addition, S. bovinus produces edible fruit
bodies with a high economic value [58]. As well as other species in the genus of Suillus,
S. bovinus present a high degree of host specificity towards conifers, and its distribution
coincides with the natural distribution of Pinaceae in the Northern Hemisphere [59,60].
Suillus species are also recognized as the earliest colonizers of pine seedlings which play
vital roles in conifer invasions [61,62]. Although we have a good understanding of the
function of the P. massoniana ECM, the mechanisms involved in the formation of the ECM
remain unclear, particularly at the transcriptional level. In this study, we investigated the
morphological and transcriptional characteristics of P. massoniana roots when inoculated
with S. bovinus. We clarified the stages of the formation process of this ECM association by
morphological profiling and then performed transcriptional profiling. Both transcriptional
and physiological data suggest that the phenylpropanoid biosynthesis pathway may play
important roles in ECM formation.

2. Materials and Methods
2.1. Plant and Fungal Materials

Seeds of P. massoniana (collected from the P. massoniana national base at Maanshan
Forest Farm, Duyun City, Guizhou Province, China) were cleaned with 0.01% Tween 20, and
then sterilized, first with 0.5% KMnO4 solution for 2 h, and finally with 0.01% Tween 20 and
0.5% carbendazim for 1 h, and then with antibiotics—200 mg/L streptomycin and 100 mg/L
gentamicin for 20 min. At the end of each of these steps, the seeds were cleaned with sterile
water three times for 5 min each time. The sterilized seeds were then placed in wet
vermiculite and incubated in 25 ◦C climate chambers with 14 h of light (150 µmol m−2s−1)
and 10 h of darkness (light 0 µmol m−2s−1) per day. Thirty-day-old P. massoniana seedlings
were used in the ECM formation trials.
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Seeds of wild-type Arabidopsis thaliana Columbia-0 (kindly provided by Prof. Fuhua
Fan) were sterilized with 75% alcohol for 1 min and with 5% NaClO solution for 10 min.
At the end of each of these steps, the seeds were cleaned with sterile water three times
for 5 min each time. Seeds were then transferred to Murashige and Skoog medium and
incubated in 25 ◦C climate chambers with 14 h of light per day (150 µmol m−2s−1) and 10 h
of darkness.

The strain S. bovinus LL-1 was isolated from a fruiting body collected in a P. massoniana
forest [52]. The mycelium of S. bovinus was subcultured and maintained on modified Melin-
Norkran’s (MMN) [63] medium at 25 ◦C in the dark. The composition of MMN medium
is 25 mg/L NaCl; 250 mg/L (NH4)2HPO4; 500 mg/L KH2PO4; 5 mg/L FeCl3; 50 mg/L
CaCl2; 150 mg/L MgSO4·7H2O; 100 mg/L VB1; 10 g/L glucose; 1.00 g/L casamino acids;
5.00 g/L malt; and 10 g/L agar.

2.2. In Vitro Mycorrhizal Formation between P. massoniana and S. bovinus

To investigate the morphological features of the pre-symbiotic phase (before physical
contact has been made between the host and the fungus), we carried out two trials to test
the effects of volatile organic compounds (VOCs) and exudates released by S. bovinus on
P. massoniana growth.

(a) VOC effects: 30 mL of basal medium (DCR) (composed of 400 mg/L NH4NO3;
556 mg/L Ca(NO3)2·4H2O; 370 mg/L MgSO4·7H2O; 85 mg/L CaCl2·2H2O; 170 mg/L
KH2PO4; 6.2 mg/L H3BO3; 22.3 mg/L MnSO4·H2O; 8.6 mg/L ZnSO4·7H2O; 0.25 mg/L
CuSO4·5H2O; 0.83 mg/L KI; 0.025 mg/L CoCl2·6H2O; 0.025 mg/L LiCl; 0.25 mg/L
NaMoO4·2H2O; 27.8 mg/L FeSO4·7H2O; 37.3 mg/L EDTA-2Na; 1.0 mg/L VB1; 0.5 mg/L
VB6; 0.5 mg/L nicotinic acid; 2.0 mg/L glycine; 200 mg/L myo-inositol; 10 g/L sucrose;
and 10 g/L agar) [64] was poured into 13 cm × 13 cm Petri dishes. Once the medium
had solidified, the medium in one half of each Petri dish was cut out with a scalpel, and
then 15 mL of MMN medium was poured into the empty half. Once the MMN medium
had solidified, a 2 cm × 13 cm strip of medium at the junction of the two media was cut
with a scalpel and removed to leave a 2 cm gap between the two 5 cm × 13 cm blocks
of media in each dish. The MMN medium was inoculated with an S. bovinus plug (1 cm
in diameter) and a P. massoniana seedling was transplanted onto the DCR medium (VOC
treatment). Plates that were not inoculated with S. bovinus were considered to be controls
(NVOC treatment).

(b) Exudate effects: a P. massoniana seedling was transplanted onto DCR medium
(30 mL) in 13 cm × 13 cm Petri dishes. A cellophane membrane was placed over the
roots and then covered with a thin layer of MMN medium. The MNM medium was then
inoculated with an S. bovinus plug (1 cm in diameter) (Exud treatment). Plates that were
not inoculated with S. bovinus were considered to be controls (NExud treatment).

To verify whether the effects of S. bovinus VOCs and exudates are host-specific, we also
set up plates to observe the effects of S. bovinus VOCs and exudates on the root growth of
the non-host A. thaliana using the same experimental procedures as those described above.

To investigate the morphological features of the symbiotic phase, a P. massoniana
seedling was transplanted onto DCR medium (30 mL) in 13 cm × 13 cm Petri dishes and
an S. bovinus plug (1 cm in diameter) was placed in direct contact with the P. massoniana
taproot (M treatment). P. massoniana taproots that were not inoculated with an S. bovinus
plug were considered to be controls (NM treatment). There were 20 replicates of each
treatment. The bottom of each Petri dish was wrapped with tinfoil to cover the root growth
area before placing the Petri dish vertically in a climate chamber at 25 ◦C with 14 h of light
(light 120 µmol m−2s−1) and 10 h of darkness (light 0 µmol m−2s−1) per day.

2.3. Morphological Observations

Morphological observations at the pre-symbiosis phase were recorded by scanning
Petri dishes (Epson Perfection V330 Photo) every 7 days. Root length and branch mea-
surements were obtained using the ImageJ SmartRoot plug-in. However, because it was
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difficult to observe the number of Arabidopsis root branches in the Petri dish, the number of
root branches was only recorded on the day of harvest at 28 days post-inoculation (dpi).

To characterize the morphology at the symbiosis stage, five seedlings were randomly
selected for observation every 7 days from inoculation with S. bovinus until ECM formation.
First, the contact between hyphae and roots was examined under a stereomicroscope
(M205FA, Leica Microsystems, Wetzlar, Germany). Second, transversal cross-sections of
at least 20 independent root segments were cleared (5% KOH solution, 90 ◦C for 2 h) to
make them transparent, acidified (1% HCl solution w/v, 10 min at room temperature), and
then stained with 0.03% chlorazol black (90 ◦C for 20 min). The stained sections were then
mounted in glycerol and observed under a light microscope (DM3000, Leica Microsystems,
Wetzlar, Germany).

2.4. RNA Extraction, Sequencing and Analysis

Given that the exudate-induced effects were host-specific, whereas the VOC-induced
effects were not, plants treated with exudates were selected as materials for transcription
analysis at the pre-symbiotic stage. Transcriptome profiling was conducted on P. massoniana
roots treated with S. bovinus exudates for 14 days and on P. massoniana roots 7 dpi (inoc-
ulated M7, uninoculated NM7) and 28 dpi (inoculated M28, uninoculated NM28) with
S. bovinus. For each treatment, four biological replicates were collected. The samples were
frozen in liquid nitrogen and stored at −80 ◦C until RNA extraction.

Total RNA was extracted using an RNAprep Pure Plant Kit (TIANGEN, Beijing,
China). Samples were first subjected to quality control using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) and then sent to Novogene (Beijing, China)
for sequencing on the Illumina HiSeqTM2000 platform.

Raw data obtained by sequencing included a small number of reads with a sequencing
adapter or that were of low sequencing quality. To ensure the quality and reliability of
data analysis, the original data were filtered as follows to remove: (1) reads containing an
adapter; (2) reads containing N (N indicates that base information cannot be determined);
(3) low-quality reads (a Qphred score of ≤20 bases for more than 50% of the total read length).

2.5. Determination of Differentially Expressed Genes and Enrichment Analysis

Differentially expressed genes (DEGs) were analyzed with DESeq2 [65], and genes with
an absolute log2-fold change value of ≥1 and an adjusted p-value of <0.05 were deemed
to be differentially expressed. Gene Ontology (GO) enrichment analysis was performed
based on the GOseq method [66], and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis was performed using KOBAS (2.0) [67].

RNA-seq data for all samples are available at the Sequence Read Archive of the Na-
tional Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/sra, accessed
on 24 October 2022) under accession number PRJNA886481.

2.6. Effect of Acibenzolar Acid on Mycorrhizal Development

Hydroxycinnamoyl-CoA shikimate/quinate transferase (HCT) plays an important role
in lignin synthesis; however, acibenzolar acid has an inhibitory effect on this enzyme [68].
We analyzed the effect of acibenzolar acid on HCT activity and mycorrhizal development
in P. massoniana.

Acibenzolar acid (CAS: 35272-27-6; Dr. Ehrensorfer GmbH, Augsburg, Germany)
dissolved in ethanol and filtered through a 0.22 µm diameter aperture was added to the
DCR medium at concentrations of 0, 100, 300, or 500 µM. After four weeks of colonization,
mycorrhizal development was examined according to the method described above. The
ImageJ platform was used to measure the Hartig net depth and area (the area of fungal
hyphae between cells). Five micrographs were measured for each treatment and three
measurements were recorded per micrograph.

http://www.ncbi.nlm.nih.gov/sra
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The HCT activity of P. massoniana roots was analyzed using an HCT ELISA detection
kit (JingMei, JiangSu, China; www.jsjmsw.com, accessed on 17 October 2022) according to
the manufacturer’s instructions.

2.7. Statistical Analysis

Apart from the DEG analysis data, data were analyzed using SPSS 25.0 software
(IBM® SPSS® Statistics). The effects of VOCs and exudates on root growth (root length and
number of root branches) were analyzed using one-way analysis of variance (ANOVA).
A Student’s t-test was used to determine significant differences between means. ANOVA
of P. massoniana HCT activity under different treatments, the Hartig net depth, and area
were analyzed by performing a Duncan’s test. The principal component analysis (PCA) of
the DEGs was performed using the OmicShare tools (https://www.omicshare.com/tools,
accessed on 29 October 2022).

3. Results
3.1. Pre-Symbiotic Interactions between P. massoniana and S. bovinus

VOCs and exudates released by S. bovinus significantly promoted the root length and
number of root branches of P. massoniana from the 14th day of treatment compared with
control treatments (Figure 1). In addition, VOCs and exudates significantly increased the
biomass of pine seedlings by 29.37% and 15.07%, respectively, compared with the NVOC
and NExud control treatments (Figure 1a,c).
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Figure 1. Effects of volatile organic compounds (VOCs) and exudates released by Suillus bovinus
on the growth of Pinus massoniana. (a) Number of root branches, root length, and fresh weight of
P. massoniana seedlings treated with VOCs and without VOCs (NVOC), n = 15; (b) P. massoniana
seedlings subjected to VOC (28 d) and NVOC (28 d) treatments, scale bars = 2 cm; (c) root branches,
root length, and fresh weight of P. massoniana seedlings subjected to the exudate (Exud) (28 d) and
non-exudate (NExud) (28 d) treatments, n = 20; (d) P. massoniana seedlings subjected to Exud (28 d)
and NExud (28 d) treatments, scale bars = 2 and 3 cm. ** p < 0.01; * p < 0.05. Bars represent mean
values ± the SE. Different letters above bars indicate significant differences between treatments.

However, S. bovinus VOCs and exudates had the opposite effects on A. thaliana growth.
Although S. bovinus VOCs promoted A. thaliana root branching, they inhibited the elonga-
tion of the taproot (Figure 2a,b), and S. bovinus exudates inhibited both the shoot and root
growth of A. thaliana (Figure 2c,d).
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Effects of S. bovinus exudates on: (c) A. thaliana root branch number, n = 20; (d) A. thaliana plants,
scale bars = 2 and 3 cm. Bars represent mean values ± the SE. Different letters above bars indicate
significant differences between treatments.

3.2. Symbiotic Interactions between P. massoniana Roots and S. bovinus over Time

At 7 dpi, the mycelium of S. bovinus had proliferated on the surface of P. massoniana
roots and started to invade the intercellular space (the invasion stage) (Figure 3a,b). By
14 dpi, more hyphae had aggregated around the root surface and grown into inter-radical
spaces (Figure 3c,d). By 21 dpi, hyphae had covered the root surface to form a mantle-like
structure (Figure 3e), and hyphae had penetrated the root intercellularly to form a Hartig
net structure (a Hartig net was considered to have formed when hyphae had invaded
the root system and completely wrapped one to two layers of cortical cells, Figure 3f). A
functional mycorrhiza had established by 28 dpi, at which point the Hartig net and mantle
(a mantle was considered to have formed when more than four layers of hyphae were
tightly wrapped around a root; Figure 3i) were fully developed, and the root tips showed
dichotomous branching and were swollen in shape (mantle and Hartig net formation stage)
(Figure 3g,h).
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Figure 3. The ectomycorrhizal (ECM) formation process between P. massoniana and S. bovinus. (a,b) At
7 days post-inoculation (dpi): scale bars = 5 mm and 500 µm, respectively. The white arrow indicates
hyphae wrapped around the root system; black arrows indicate the intercellular mycelium. (c,d) At
14 dpi: scale bars = 1 mm and 100 µm, respectively. The white arrow indicates hyphae wrapped
around the root system; black arrows indicate the developing Hartig net. (e,f) At 21 dpi:
scale bars = 1 mm and 50 µm, respectively. The white arrow in (e) indicates hyphae wrapped around
the root system. The white arrow in (f) indicates the developing mantle and black arrows indicate the
Hartig net. (g–i) At 28 dpi: scale bars = 1 mm, 500 µm, and 50 µm, respectively. (g) Dichotomous
branching hypha, (h) swollen hypha. (i) Cross-section of the root: the white arrow indicates the
mantle and black arrows indicate the Hartig net.

3.3. Root Transcriptional Analysis during Symbiotic Interactions between P. massoniana and
S. bovinus
3.3.1. Quality Analysis

Transcriptome sequencing analysis of all P. massoniana root samples resulted in mean
raw reads of 40,419,484 and 35,330,493 for the Exud and NExud treatments, respectively;
70,190,257 and 68,570,981 for the M7 and NM7 treatments, respectively; and 41,427,706 and
35,802,254 for the M28 and NM28 treatments, respectively. By removing reads with adapters
and low-quality reads from raw reads, mean clean reads of 38,892,360 and 34,386,741 were
obtained for the Exud and NExud treatments, 68,939,003 and 67,174,335 for M7 and NM7
treatments, respectively, and 40,267,781 and 34,747,055 for the M28 and NM28 treatments,
respectively. The Q20 and Q30 of all samples were above 97% and 92%, respectively, and
the GC content was also at a normal level (Table S1).

3.3.2. Analysis of DEGs

In total, across the three colonization time points there were 35,297 DEGs due to
S. bovinus colonization. The lowest number of DEGs was detected during the pre-symbiotic
phase, when the plant and fungus were separated physically by a cellophane membrane.
There were nearly equal numbers of upregulated and downregulated genes at this time
point (Figure 4a). The largest number of DEGs was found at the invasion stage (7 dpi),
followed by the Hartig net and mantle formation stage (28 dpi). In addition, 11 DEGs
were co-expressed at the pre-symbiotic stage and the invasion stage, while at the symbiosis
stage, 34 DEGs were co-expressed at the invasion and the Hartig net and mantle formation
stage (Figure 4b). PCA showed that DEGs in samples from inoculated and non-inoculated
treatments at the three stages of symbiosis were significantly separated (Figure 4c).
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Figure 4. Number of differentially expressed genes (DEGs). (a) Pie charts showing the number of
significantly upregulated and downregulated DEGs at each timepoint (p < 0.05); (b) Venn diagram
showing the number of DEGs that are common to more than one timepoint and the number of genes
that are unique to individual timepoints; (c) principle component analysis (PCA) of DEGs detected in
the Exud vs. NExud treatment, 7 dpi with S. bovinus (M7) vs. the uninoculated (NM7) treatment, and
28 dpi with S. bovinus (M28) vs. the uninoculated (NM28) treatment.

3.3.3. Enrichment Analysis of DEGs

GO was used to functionally classify DEGs during P. massoniana–S. bovinus ECM for-
mation. Here, we focused on the enrichment of DEGs in the biological process category. We
found 693 DEGs at the pre-symbiotic stage, 2493 at 7 dpi, and 6636 at 28 dpi (Figure 5a). At
the pre-symbiotic stage, the top two terms were “cellular protein modification process” and
“carbohydrate metabolic process”; at 7 dpi, the top two terms were “oxidation–reduction
process” and “multi-organism process”; and at 28 dpi, the top two terms were “biosynthetic
process” and “transport”. In addition, we found that DEGs associated with cell walls were
significantly enriched during all three stages.

These DEGs were further analyzed using KEGG to fully explore their functions. At
the pre-symbiotic stage, most DEGs were mapped to the biosynthesis of other secondary
metabolites, carbohydrate and lipid metabolism, signal transduction, and the immune
system, e.g., phenylpropanoid biosynthesis (78; ko00940), glycolysis/gluconeogenesis (55;
ko00010), plant hormone signal transduction (45; ko04075), the Toll-like receptor signal-
ing pathway (43; ko04620), and alpha-linolenic acid metabolism (34; ko00592), and the
number of upregulated and downregulated DEGs was similar (Figure 5b). At 7 days of
symbiosis, a number of DEGs were mapped to the biosynthesis of secondary metabo-
lites, genetic information processing, amino acids, and carbohydrate metabolism, e.g.,
phenylpropanoid biosynthesis (92), ribosome biogenesis in eukaryotes (55; ko03008), va-
line, leucine, and isoleucine degradation (52; ko00280), pentose and glucuronate inter-
conversions (51; ko00040) and glyoxylate and dicarboxylate metabolism (50; ko00630),
and most of these DEGs were upregulated (Figure 5c). At 28 days of symbiosis, func-
tional ECM had formed. Most DEGs were involved in the biosynthesis of other secondary
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metabolites, genetic information processing, and glycan biosynthesis and metabolism, e.g.,
phenylpropanoid biosynthesis (111), RNA transport (94; ko03013), ribosome biogenesis
in eukaryotes (62), N-glycan biosynthesis (29; ko00510) and basal transcription factors
(24; ko03022), and most of these DEGs were upregulated (Figure 5d). Phenylpropanoid
biosynthesis was a common pathway in ECM development processes in P. massoniana and
S. bovinus (Figure 5b–d). Furthermore, the pathway with the most DEGs at each stage
was the phenylpropanoid biosynthesis pathway. The number of DEGs associated with the
phenylpropanoid biosynthesis pathway increased over time and their expression patterns
differed at different stages of symbiosis. The phenylpropanoid biosynthesis pathway exhib-
ited a mixture of both positive and negative gene regulation during the pre-symbiotic stage.
In the invasion and functional stages, most genes involved were generally upregulated.
Moreover, as the ECM formation process progressed, the number of upregulated DEGs in
this pathway gradually increased, while the number of downregulated DEGs decreased.
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Figure 5. Enrichment of DEGs. (a) Enriched Gene Ontology biological processes. (b–d) Kyoto
Encyclopedia of Genes and Genome enrichment for Exud vs. NExud, M7 vs. NM7, and M28
vs. NM28. The numbers shown on the red and black bars indicate the number of upregulated
and downregulated DEGs, respectively. The phenylpropanoid biosynthesis pathway (circled) was
common to all three symbiosis stages.

3.3.4. Genes Involved in the Phenylpropanoid Biosynthesis Pathway
throughout Colonization

In this study, phenylpropanoid biosynthesis was found to be a common pathway and
to have the largest number of DEGs that were shared at different stages of the symbiotic pro-
cess during the formation of the ECM between P. massoniana and S. bovinus. We focused our
attention on the lignin synthesis process of this pathway. The genes encoding phenylalanine
ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD), which are involved in
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lignin synthesis, were significantly expressed during all three phases of ECM formation.
We also found that genes involved in PAL synthesis had similar expression patterns to
those of genes encoding CAD during the pre-symbiotic and mantle and Hartig net forma-
tion stages. Prior to physical contact, PAL genes (Cluster-21925.46012, Cluster-21925.78638,
Cluster-21925.44510, Cluster-21925.71279) and the CAD gene (Cluster-21925.8529) were
downregulated as a result of the S. bovinus exudate treatment (Figure 6a). However, at the
Hartig net and mantle formation stage, PAL (Cluster-21925.21162) and CAD genes (Cluster-
9078.0) were upregulated (Figure 6c). At the invasion stage, the expression patterns of the
genes encoding PAL were mixed and the CAD gene was upregulated (Cluster-20437.23132,
Cluster-20437.24246, Cluster-20437.24240, Cluster-20437.24241) (Figure 6b). Furthermore,
the genes encoding HCT were not significantly expressed during the pre-symbiotic stage;
however, at the symbiotic stage, they were generally upregulated; coumarate 3-hydroxylase
(C3H) also showed the same expression pattern (Figure 6, Table S2).
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An enzyme highlighted in yellow indicates that both upregulated and downregulated genes encode
the enzyme. An enzyme that is not highlighted in yellow indicates that no genes encoding the enzyme
were annotated. Enzymes: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase;
4CL, 4-coumarate:CoA ligase; HCT, hydroxycinnamoyl-CoA shikimate/quinate transferase; C3H,
coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoA-O-methyltransferase; CCR, cinnamoyl CoA
reductase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid O-methyltransferase; CAD, cinnamyl
alcohol dehydrogenase.

3.4. Effect of Inhibiting HCT Activity on ECM Morphogenesis

HCT enzyme activity was significantly inhibited by the presence of 300 µM acibenzolar
acid (Figure S1), and the development of Hartig nets was further promoted. Following
the 300 µM acibenzolar acid treatment, hyphae penetrated the intercellular spaces of the
third layer of cortical cells (Figure 7c,d), layers 1–2 at 100 µM (Figure 7b), and layers 2–3 at
500 µM (Figure 7e,f). In contrast, in the absence of acibenzolar acid, mycelia only encased
the first layer of cortical cells, and most of the mycelia spread intercellularly between
epidermal cells to form a labyrinthine structure (Figure 7a). A significantly deeper Hartig
net developed following the 300 µM treatment (70.4 ± 4.43 µm; p < 0.05), compared with the
500 µM (26.33 ± 1.86 µm), 100 µM (25.49 ± 1.16 µm) or 0 µM (23.08 ± 3.12 µm) acibenzolar
acid treatments (Figure 8a). The presence of acibenzolar acid also affected the Hartig net
area intercellular spaces (500 µM > 100 µM > 300 µM > 0 µM); however, these data were
not statistically significant (Figure 8b).
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Figure 7. Effects of acibenzolar acid treatment on ECM development. Transverse cross-sections of a
P. massoniana lateral root colonized by S. bovinus: (a) without the addition of acibenzolar acid; (b) in
the presence of 100 µM acibenzolar acid; (c,d) 300 µM acibenzolar acid; and (e,f) 500 µM acibenzolar
acid. Scale bars = 50 µm. Black arrows and ellipses indicate Hartig nets, white arrows indicate the
mantle. Abbreviations: CC, cortical cells; EC, epidermal cells.
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4. Discussion

An ECM association between P. massoniana and S. bovinus is typical in forests of south
China. In this study, we focused on the morphological and transcriptional changes that
occurred over time during the formation of this ECM symbiotic association. Our findings
showed that during the formation of the ECM between P. massoniana and S. bovinus, the
symbiotic morphogenesis was coordinated with root transcriptional adjustments.

The establishment of a mycorrhizal association between P. massoniana and S. bovinus
can be divided into two stages: the pre-symbiotic stage (signal recognition before physical
contact) and the symbiosis stage. Studies have shown that before physical contact, mycor-
rhizal fungi can affect host root development by releasing signaling molecules (including
VOCs and exudates) to promote, for example, root elongation and branching [13–15,69–71],
so as to increase the contact opportunities between fungi and host roots [1]. We also
found that both VOCs and exudates released by S. bovinus stimulated P. massoniana growth
and root branching. However, the exudate-induced effects showed host plant specificity,
whereas VOC-induced effects did not. Previous studies have also reported that ECM fungal
volatiles can promote A. thaliana root growth [13,15,69–71]. Compared with exudates, VOCs
have long-distance diffusion features. We speculate that ECM fungi stimulate plant root
growth from a long distance, and when ECM fungi and plant roots come within a certain
distance of each other, exudate-induced effects further help ECM fungi to discriminate
potential host plants from non-host plants.

Fungi and hosts enter the symbiotic stage after successful mutual recognition. The
mycelium gathered around the root surface develops into a mantle, and the intraradical
mycelium invades the intercellular space among cortical cells to form a Hartig net [1,72,73].
In this study, we found that at 7 dpi, mycelium began to invade the intercellular space
among root cortical cells, and by 28 dpi, the mantle and Hartig net had developed and
matured. The time required for ECM formation differs in different studies, ranging from
four days to two weeks, or up to one month [26,74–78]. These differences may be due to the
species of ECM fungus involved and the host specificity. Differences in the time required for
ECM formation have also been observed between strains, even when they are forming an
ECM with the same host. Yu (2007) [78] observed that different strains of Cortinarius sp. and
Picea koraiensis formed ECM at different rates, ranging from 21 days to more than one month.
Moreover, the experimental system and culture environment may also affect the time
needed for mycorrhizal formation. Opinions about the development sequence of the Hartig
net and mantle also vary. Some studies have reported that the Hartig net forms before
the mantle [53,79–81], while others have suggested the opposite [26,69,74,82,83]. These
different conclusions may be due to the specificities of the ECM formation process between
distinct ECM fungal species and host plant combinations (particularly gymnosperms and
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angiosperms). In this study, the Hartig net and mantle developed synchronously during
the ECM formation between P. massoniana and S. bovinus; however, the Hartig net formed
earlier than the mantle.

ECM formation is a dynamic process, and all morphological changes involve coordi-
nated changes in gene expression [22,25,28–30,36]. Our data showed that most DEGs were
present at the invasion stage (7 dpi), indicating that P. massoniana seedlings underwent a
greater range of transcriptional reprogramming at the beginning of the symbiotic stage
in response to S. bovinus infection. Moreover, there were no common DEGs at the three
stages of symbiosis, suggesting that there may be a unique set of molecular mechanisms
supporting the formation of a symbiotic association between P. massoniana and S. bovinus.
Using GO enrichment analysis, we focused on those biological processes that were most
significantly enriched and found that some DEGs at each stage were significantly enriched
in categories relating to cell structure. Given that the invasion of ECM fungi can cause a
significant loosening of plant root cells [84,85], these DEGs may play an important role
in ECM symbiosis. KEGG enrichment was used to further analyze the function of DEGs.
During the pre-symbiotic stage, the main task of the host and fungus is to recognize each
other by releasing signals [16–19], which include many secondary metabolites and plant
hormones [11–13,15,76,84]. In this study, we found that during this stage a large number of
DEGs were associated with the biosynthesis of secondary metabolites and signal transduc-
tion. Successful colonization by fungi often induces the breakdown of host carbohydrate to
meet the autogenous growth needs [1]. Such a reprogramming of carbohydrate metabolism
induced by S. bovinus may be initiated prior to physical contact because a large propor-
tion of DEGs were associated with carbohydrate metabolism during the pre-symbiotic
stage. These metabolic pathway changes lay the foundation for successful colonization
and symbiosis later on. At the infection phase (7 dpi), in addition to DEGs involved in the
biosynthesis of secondary metabolites and carbohydrate metabolism, a large number of
DEGs were associated with genetic information processing and amino acid metabolism,
and most of these DEGs were upregulated. Amino acids are important sinks for carbon
assimilation [86], particularly aliphatic amino acids such as valine, leucine, and isoleucine.
Thus, genes involved in the degradation of these amino acids may provide carbon sources
for S. bovinus. Once a functional ECM was established (28 dpi), the DEGs were mainly
associated with RNA transport, ribosome biogenesis in eukaryotes, basal transcription
factors, and the cytosolic DNA-sensing pathway, which may further facilitate substance
exchanges between the two symbionts [76].

Phenylpropanoid biosynthesis was a common pathway during the development of
this ECM symbiosis. Related DEGs showed a mixture of both up-and downregulated
expression patterns at the pre-symbiotic stage; however, related DEGs were upregulated at
7 dpi and 28 dpi. Different studies have reported different findings regarding the expression
patterns of DEGs involved in this pathway. During the early stages of ECM colonization,
Weiss et al. [87] and Plett et al. [88] reported that phenylpropanoids were increased; how-
ever, Hill et al. [77] suggested that this pathway was downregulated during the invasion
phase and upregulated during the functional symbiosis phase. Some studies have shown
that the colonization of ECM could induce phenylpropanoid metabolism in hosts and
hinder the colonization process [89,90]. For example, certain metabolites produced by
this pathway can limit hyphal penetration and the formation of the Hartig net [90]. How-
ever, Behr et al. [91] found that transgenic lines with downregulated genes in the phenyl-
propanoid pathway all showed lower colonization rates compared with the wild type,
indicating that metabolite production in this pathway favors mycorrhizal formation. The
reason for these two different conclusions may be that colonization by different ECM fungi
results in different end products being produced by the host phenylpropane biosynthesis
pathway.

HCT is a rate-limiting enzyme of phenylpropanoid biosynthesis and is important for
the products synthesized by the phenylpropane biosynthesis pathway [92]. According
to our data, at both 7 and 28 dpi, the colonization of S. bovinus significantly induced the
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expression of HCT genes in P. massoniana roots. To gain more information about the func-
tion of HCT, we investigated the effects of the activity of HCT on ECM formation between
S. bovinus and P. massoniana by using a specific enzyme inhibitor: acibenzolar acid [68].
Acibenzolar acid has only weak inhibitory effects on HCT activity, and a significant in-
hibitory effect could only be found with 300 µM acibenzolar acid. The use of acibenzolar
acid had little influence on the symbiotic process but deepened the degree of mycelial
infection. Under the 300 µM treatment, the depth of the Hartig net increased significantly,
which may be because acibenzolar acid enlarges the intercellular spaces among cortical
cells, which facilitates the infection of mycelium.

5. Conclusions

We investigated the characteristics of morphological and transcriptional changes dur-
ing the establishment of the ECM symbiosis between P. massoniana and S. bovinus. ECM
formation between P. massoniana roots and S. bovinus can be divided into two stages: the
pre-symbiotic stage and the symbiotic stage (Figure 9). During the pre-symbiotic stage,
VOCs and/or exudates released by S. bovinus induced host root growth. At 7 dpi, the
mycelia invaded the intercellular space of the root cortex, and at 28 dpi, the functional ECM
established with the mantle and Hartig net fully developed. Meanwhile, the biosynthesis
of secondary metabolites, signal transduction, genetic information processing, and carbo-
hydrate and lipid metabolism in P. massoniana roots changed in response to colonization
by S. bovinus. The phenylpropanoid biosynthesis pathway was common to all three stages
during the development of this ECM symbiosis, and the activity of a key enzyme-HCT-was
related to the formation of the Hartig net. These findings highlight the need for a compre-
hensive investigation of the roles of the phenylpropanoid biosynthesis pathway in ECM
formation, and perhaps also in ECM functions.
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