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Abstract: The multidrug-resistant species belonging to the Scedosporium genus are well recognized
as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as
human pathogens in both immunocompetent and immunocompromised individuals. It is well recog-
nized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular
molecules, including enzymes and secondary metabolites, as part of their basic physiology in order
to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium
species are key weapons for successful colonization, nutrition and maintenance in both host and
environmental sites. These biologically active released molecules have central relevance on fungal
survival when colonizing ecological places contaminated with hydrocarbons, as well as during
human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides
escaping from the cellular and humoral host immune responses. Based on these relevant premises, the
present review compiled the published data reporting the main secreted molecules by Scedosporium
species, which operate important physiopathological events associated with pathogenesis, diagnosis,
antimicrobial activity and bioremediation of polluted environments.

Keywords: Scedosporium; Lomentospora; emergent fungi; extracellular molecules; enzymes; secondary
metabolites

1. Introduction: An Overview on the Scedosporium Genus

The Scedosporium genus is constituted of saprophytic filamentous fungi frequently isolated
from human impacted environments, such as sewers, polluted waters, sediments, decaying veg-
etation, agricultural soils, hydrocarbon-contaminated soils, gardens, urban parks, playgrounds
and hospital areas, compared to habitats with low human activity [1–6]. The Scedosporium
genus is composed of the following species: Scedosporium angustum, Scedosporium apiospermum,
Scedosporium aurantiacum, Scedosporium boydii, Scedosporium cereisporum, Scedosporium dehoogii,
Scedosporium desertorum, Scedosporium ellipsoideum, Scedosporium fusoideum and
Scedosporium minutisporum [7]. Lomentospora prolificans, formerly Scedosporium prolificans, was
renamed due to its phylogenetic distance from the Scedosporium genus, as judged by both
molecular and genetic parameters [8]. However, L. prolificans has been historically studied
together with Scedosporium species; so, in this context, we decided to refer to scedosporiosis as
the infection caused by both fungal genera in order to facilitate and to simplify the information.

Scedosporium species are emerging, opportunistic pathogens able to cause localized
infections in immunocompetent individuals and disseminated infections in immunocom-
promised individuals [2]. Over the last few years, the number of cases of scedosporiosis
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has increased considerably, which may reflect, at least in part, an improvement in the
diagnosis of its etiologic agents. For instance, the incidence of Scedosporium infection in
a tertiary care cancer center in Texas (USA) per 100,000 patient–inpatient days increased
from 0.82 cases between 1993 and 1998 to 1.33 cases from 1999 to 2005 [9]. Reviewing the
literature, several publications have reported that the cases of disseminated scedosporio-
sis typically occurred in individuals undergoing hematopoietic stem cell transplantation
(HSCT) and solid organ transplantation (SOT). In this context, the number of infections
caused by these fungi accounted for approximately 25% of all non-Aspergillus mold in-
fections in SOT recipients [10] and 29% of those in HSCT recipients, in which 75% of the
infections in HSCT recipients and 61% of the infections in SOT recipients occurred within
6 months after transplantation [11]. The infection was disseminated in 69% and 46% of
HSCT and SOT recipients with scedosporiosis, respectively [11]. Furthermore, the mortality
rates in patients with disseminated L. prolificans infections are higher, up to 87.5% [12]. A
study conducted by Heng and co-workers [13] revealed that scedosporiosis in hematology
patients exerts a substantial impact on hospital resource consumption, length of stay and
patient mortality, with the total costs (U$ 26,500.00 per patient) driven by ward stay and
antifungal drug costs.

Scedosporium species also show a marked neurotropism and a high propensity to
cause central nervous system (CNS) infections [2,14]. In human immunodeficiency virus
(HIV)-positive patients colonized by Scedosporium spp., invasive scedosporiosis was proven
in 54.5% of patients, with a mortality rate of 75%. In patients with CNS manifestations the
mortality rate increases to 100% [15]. In an analysis of 99 cases of CNS infection caused
by the Scedosporium genus, a similar percentage of mortality in immunocompetent and
immunocompromised patients was reported (76% and 74%, respectively) [16]. Interestingly,
CNS infection was preceded by near drowning or trauma in immunocompetent patients.
Regarding the CNS infection in immunocompromised individuals, it was described as
rapidly progressive disseminated lesions at various degrees of evolution [16]. Moreover,
Scedosporium species rank second among the filamentous fungi most frequently isolated
from cystic fibrosis patients, constituting a great risk factor for invasive infections for lung
transplanted patients [17–19].

Infections caused by Scedosporium species are extremely difficult to treat because of
the low susceptibility profile to all classes of antifungal drugs available for clinical use
(e.g., azoles, echinocandins and polyenes). For L. prolificans, the scenario worsens since
this species is pan-antifungal resistant [20]. At the moment, the treatment indicated for
scedosporiosis is voriconazole together with surgical debridement when possible [21].
However, even when the recommendation is followed, the mortality rate is higher than
65% [20]. Thus, the relevance of Scedosporium/Lomentospora in the clinical scenario is obvi-
ously alarming due to both multiple antifungal-resistance and high morbimortality profiles.

Scedosporiosis usually starts with the inhalation or traumatic inoculation of coni-
dial cells, which then germinate into hyphae that promote host cell/tissue invasion
(Figure 1) [20,22]. The mycelial biomass formed by Scedosporium/Lomentospora species
during the infection process resembles a typical biofilm structure, formed by a robust mass
of hyphae surrounded by an extracellular polymeric matrix (Figure 2) [23–29]. The ability
to form biofilms is essential for microbial cells to cope with environmental stress, host
immunological responses and antimicrobial drugs [30]. The Scedosporium and Lomentospora
biofilms are 2- to 1024-times more resistant to azoles (e.g., voriconazole), echinocandins (e.g.,
caspofungin) and polyenes (e.g., amphotericin B) than that observed in planktonic conidial
cells. The increase in the resistance profile to antifungal drugs observed in biofilms is
mainly due to the presence of the extracellular matrix, efflux pumps and the highly adapted
response to oxidative stress [24,26,27,29]. The successful colonization by Scedosporium and
Lomentospora species is partially due to the secretion of extracellular molecules that partici-
pate in nutrient acquisition, competition with other microorganisms, germination of conidia
into hyphae and invasion of host cells and tissues, among other essential events [20,22].
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Figure 1. Histopathological sections evidencing Scedosporium fungal particles in human tissue.
Left image: periodic acid-Schiff stain evidencing thin irregular, septate hyphae of S. boydii (black arrow)
on a background of necrotic detritus and neutrophils in eviscerated ocular tissue (kindly donated by
Dr. Virginia Vanzzini-Zago and Dr. Abelardo Rodrıguez-Reyes at Hospital Asociacion para Evitar la
Ceguera en Mexico and Dr. Sonia Corredor-Casas at Instituto Mexicano de Oftalmologıa IAP Queretaro,
Mexico). Right image: hematoxylin and eosin stain showing many hyphae of Scedosporium in the dermis
of a skin biopsy (kindly provided by Dr. Stacy Beal, Assistant Professor, University of Florida, College
of Medicine, Department of Pathology, Immunology and Laboratory Medicine, Gainesville, FL, USA).
Original magnification of the images is 400×.

The previously published reviews about Scedosporium species have addressed the
pathogenesis mechanisms, immunology, treatment options, epidemiology, taxonomy
and/or use of those species for bioremediation [6,20,22]; however, these works have never
focused only on the different roles that extracellularly secreted molecules can play. In this
context, herein we examine the available information about the extracellularly released
molecules by Scedosporium species, including polysaccharides, non-peptide small-molecule
metabolites, non-ribosomal peptides and (glyco)protein-nature molecules (Figure 3), as
well as their potential roles in environmental colonization, successful host infection, nu-
trition, diagnosis and stress response. In addition, we reported for the first time on the
effects of Scedosporium secretions on Tenebrio molitor larvae used herein as an in vivo model
of infection.
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Figure 2. Distinct morphologies of Scedosporium evidenced by scanning electron microscopy. The
images demonstrate the conidia (yellow arrow), germinated conidia (pink arrow) and hyphae
(blue arrow) of S. apiospermum on glass substrate. Note in the micrographs (A–C) the mycelia formed
by S. apiospermum on glass surface. (D,E) Interaction of S. apiospermum with A549 epithelial cells with
conidia, germinated conidia and the filamentous network of hyphae cells on top of A549 cells.
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Figure 3. Overview of the different classes of molecules secreted/released by environmental and/or
clinical strains of Scedosporium species.

2. Secretion: An Essential Biological Process in the Fungal Cell Cycle

The production of extracellular molecules is a universal process with fundamental im-
portance in many aspects of the cellular physiology of all living cells, particularly fungi [31].
Throughout evolution, fungi have adapted their secretion machinery in order to perform a
great number of specialized functions during different stages of the infectious process, al-
lowing these microorganisms to cause illness [32,33]. The extracellularly released molecules
play critical roles related to virulence and act at different stages of interaction, allowing
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fungal survival, multiplication and dissemination inside the infected host [33,34]. More-
over, it is known that secreted molecules can modulate the host immune response, helping
the fungal cells to escape from the antimicrobial properties of antibodies, complementing
proteins and antimicrobial peptides produced by the infected host [35]. For instance, the
galactosaminogalactans secreted by mycelial cells of Aspergillus fumigatus are responsible
for promoting fungal growth and survival inside the host due to their ability to trigger a
Th2 immunosuppressive response [36]. Secreted/released molecules by fungi do not only
interact with components and cells of the host immune system but can also induce different
degrees of cytotoxicity on mammalian cells, being capable of activating distinct death path-
ways [37,38]. Some studies have shown that the exposure of host cells to fungal secretions
is by itself sufficient to cause host cell death [39]. Schindler and Segal [40] showed that
Candida albicans secreted metabolites directly affect the host cell cytoskeleton, inducing a
rearrangement in actin filaments, which caused a decrease of 63% in the phagocytic activity
of murine macrophages, resulting in the activation of apoptosis in these cells. Our research
group showed that molecules secreted by mycelia of a clinical strain of S. apiospermum
caused a significant loss of viability (CC50 = 0.24 µg/µL) in the confluent monolayer of
pulmonary epithelial cells (A549 non-small-cell lung cancer cell line), inducing irreversible
damage that begins with the rounding of the epithelial cells followed by their detachment
from the plastic substrate (Figure 4) [35].

In a proteomic analysis performed before genomic sequencing of S. apiospermum,
proteins involved in metabolic pathways (malate dehydrogenase, phosphomannomutase,
triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, phosphoglycerate mutase,
mannitol-1-phosphate 5-dehydrogenase, aldose-1-epimerase, sterol metabolism-related pro-
tein), protein degradation/nutrition (aspartyl protease, haloacid dehalogenase-superfamily
hydrolase), nucleotide metabolism (nucleoside diphosphate kinase), RNA processing (Ran-
specific GTPase-activating protein 1), translation machinery (initiation factor 5a), mor-
phogenesis (glucanase), transport (major facilitator superfamily multidrug transporter,
Forkhead associated domain involved in signaling events and ABC-type transport system
region), protection against stress (peroxiredoxin, heat shock protein, translationally con-
trolled tumor protein, manganese superoxide dismutase), movement (cofilin, profilin and
tropomyosin) and the allergen Asp f13-like protein were identified in S. apiospermum secre-
tome [35]. In this regard, Figure 5 reveals the richness of polypeptides/proteins secreted
by Scedosporium. Moreover, some of the secreted proteins were recognized by antibodies
present in the serum obtained from a scedosporiosis patient, validating the role of secreted
proteins during human infection [35]. The proteomic analysis of secreted molecules is
currently being redone in our lab since the genome sequencing of S. apiospermum has
become available [40,41]. It should be noted that the actual secretome analysis accounts for
more than 120 distinct proteins (unpublished data), which drastically contrasts with the
25 previously identified proteins [35].

The larvae of the Tenebrio molitor beetle is currently being used as an in vivo model for stud-
ies on fungal infections, together with other invertebrate models such as Drosophila melanogaster,
Galleria mellonella and Caenorhabditis elegans, due to the ease of manipulation and maintenance
and low price, and as a valuable alternative to animal models [42]. In order to add more data
about the effect of Scedosporium secreted molecules in the host, herein we present unpublished
data about the cytotoxic effects of secreted proteins by three different strains of S. apiospermum
in an in vivo model of T. molitor larvae; the experimental methodology is detailed in Figure 6.
Proteins obtained from the strains after 7 days of mycelial culture were able to interfere with
the viability of T. molitor in a typically dose-dependent manner (Figure 6B,C). These results
demonstrate that Scedosporium secreted virulence factors are per se able to cause significant
damage in the invertebrate host model.
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Figure 4. Light microscopy (A–E) and scanning electron microscopy (SEM) (F,G) images representing
the monolayer of A549 epithelial cells before (A,C,F) and after (B,D,E,G) incubation with secreted
molecules from S. apiospermum mycelial cells. Note the morphological changes in A549 cells, such as
the release of the monolayer (B,G) and the presence of bubbles (arrowheads in D,E) on the epithelial
cell surface. (Adapted from Silva et al., 2012 [35]).
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of S. apiospermum (strains (A–C)) were inoculated in Sabouraud media and incubated for 7 days at
37 ◦C in constant agitation (120 rpm). Subsequently, supernatants obtained from 7-day cultures of
different strains (A–C) were filtered in order to withdraw the remaining cells, concentrated 50 times
utilizing a 10-kDa Amicon membrane, and the protein concentration was determined through the
methodology developed by Lowry and co-workers [43]. Finally, T. molitor larvae (10 per group) were
inoculated with cell-free supernatant containing either (B) 50 µg or (C) 100 µg of proteins, and the
larvae survival was checked daily for 7 days. The survival data were plotted using the Kaplan-Meier
method using GraphPad Prism 8.

3. Secretion of Specific Molecules by Scedosporium: Ecological, Physiological and
Pathological Perspectives
3.1. Extracellular Vesicles: A Biological Carrier of Active Molecules

Despite the large number of studies on the detection and characterization of extracel-
lular molecules in fungi, the secretion pathways in these microorganisms are particularly
complex and not yet well understood, being largely even unknown [44]. In general, the
secretion of molecules to the extracellular milieu by eukaryotic organisms can occur via
conventional or unconventional/alternative pathways [45]. In the conventional pathway,
proteins that will be secreted have an N-terminus-linked signal peptide to be incorporated
into transport vesicles within the endoplasmic reticulum (ER) lumen and then directed to
the cell surface through Golgi apparatus [46]. Proteins secreted in alternative routes lack
the N-terminus-linked signal peptide and can reach the cell surface by multiple mecha-
nisms, most of them by vesicles [46]. In fungal cells, molecules to be secreted must go
through the entire thickness of the fungal cell wall, which provides additional complexity
to the secretion process [47]. In recent years, the number of studies on the mechanisms
developed by fungal cells to promote molecular transport through the cell wall has greatly
increased. Nowadays, there are three non-exclusive hypotheses about how vesicles cross the
fungal cell wall. First, enzymes could remodel the cell wall creating passages for vesicles
through this physical barrier. Second, the existence of small pores in the cell wall suggests
that these holes can also be used in vesicular transport. Another hypothesis would be
mechanical pressure through cell wall pores [44,48,49]. Rodrigues and coworkers [50] de-
scribed for the first time that fungi produce extracellular vesicles in vitro and in vivo, which
are secreted through the cell wall, revealing that vesicular secretion is a key mechanism
of extracellular delivery. So far, the extracellular vesicles have been described and charac-
terized in several fungal species, such as: (i) yeasts of Cryptococcus neoformans, C. albicans,
Candida parapsilosis, Histoplasma capsulatum, Malassezia sympodialis, Paracoccidioides brasiliensis,
Saccharomyces cerevisiae and Sporothrix schenckii, (ii) protoplasts of A. fumigatus, (iii) conidia of
Aspergillus flavus, (iv) hyphae of Alternaria infectoria, Trichophyton interdigitale, Trichoderma reesei,
Rhizopus delemar and Fusarium oxysporum f. sp. vasinfectum [49–60]. The importance of
producing vesicles by pathogenic fungi has been constantly proven. It is known that extra-
cellular vesicles act as virulence pockets that deliver a concentrated load of fungal products
directly to host cells and tissues (Rodrigues et al. 2008). For instance, extracellular vesi-
cles produced by C. neoformans carry capsular components such as glucuronoxylomannan
(GXM) and glucuronoxylomannangalactan (GXMGal), which are antigenic polysaccharides,
as well as other virulence-associated components such as enzymes (e.g., urease, laccase and
acid phosphatase), heat shock and antioxidant proteins, lipids and nucleic acids (DNA and
RNAs) [61,62]. It has been reported that the vesicle components are recognized by serum
antibodies from patients with cryptococcosis, histoplasmosis, paracoccidioidomycosis and
candidiasis [51,53,61,63]. Moreover, the vesicular content is capable of inducing the production
of several cytokines, such as tumor necrosis factor alpha (TNF-α), transforming growth factor
beta (TGF-β) and interleukin-10 (IL-10), as well as activating nitric oxide (NO) production in
murine macrophages in a typical dose-dependent manner [64].

In S. apiospermum, our research group observed the presence of extracellular vesicles
through transmission electron microscopy images [35]. That report added S. apiospermum to
the list of human pathogenic fungi capable of secreting extracellular vesicles, being the first
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filamentous fungal pathogen to join this list [35]. The secreted vesicles were detected leaving
the fungal cells and entering the extracellular space in different parts of the cell wall, including
the areas closest to the plasma membrane and in direct contact with the extracellular medium,
in both conidial and mycelial forms of S. apiospermum (Figure 7). Moreover, the secretion of
vesicles by S. apiospermum was also observed during the interaction of fungal particles with
A549 lung epithelial cells (Figure 8) [65].
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(A) TEM images demonstrated the presence of vesicles within a membrane invagination in
S. minutisporum hyphae. The black circle evidences the invagination. Bar: 1 µm. (B,C) TEM mi-
crographs showing vesicle bodies in the extracellular milieu of S. apiospermum hyphae. Arrows
evidence the vesicular bodies. cw, cell wall. Bar: 250 nm. (D) TEM image of S. apiospermum conidia.
The black circle evidences the membrane invagination, and the arrow evidences the vesicular bodies.
Cw, cell wall. Bar: 1 µm.
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Figure 8. Scanning electron microscopy (SEM) demonstrating the presence of vesicles on the tip of
the germinated conidia of S. apiospermum during interaction with A549 epithelial cells. Transmission
electron microscopy (TEM) evidences (black arrow) a vesicle secreted by S. apiospermum in the
presence of A549 epithelial cells.
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3.2. Hydrolytic Enzymes

Hydrolytic enzymes are fundamental in multiple processes of fungal life cycle and
pathogenesis, including cell morphogenesis, nutrition, stress response, adhesion, invasion
of cells/tissues and escape from immune system attack [66,67]. Scedosporium species
are able to secret a wide range of enzymes, including proteolytic enzymes (e.g., serine,
metallo, cysteine and aspartyl peptidases), lipases (e.g., esterase), DNAse, phosphatases
(e.g., phytase) and many others (Figure 9). In this way, in this section we will explore the
known hydrolytic enzymes secreted by Scedosporium species.
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Figure 9. Examples of hydrolytic enzymes produced by S. apiospermum. The positive hydrolytic
activity of caseinase, DNAse, esterase, phytase and aspartyl protease was determined through the
detection of degradation halos around the fungal colony using distinct growth media containing
specific substrates.

3.2.1. Peptidases

Peptidases (or proteolytic enzymes) are degradative enzymes that catalyze the cleav-
age of peptide bonds in macromolecular proteins and oligomeric peptides. Peptidases are
the single class of enzymes that occupy a pivotal position with respect to their applications
in both physiological and commercial fields [68]. They are responsible for the complex
processes involved in the normal physiology (e.g., nutrition, growth, differentiation) of the
cell as well as in abnormal pathophysiological conditions (e.g., degradation of key host
molecules like surface receptors and proteinaceous humoral response molecules, includ-
ing antibodies, antimicrobial peptides and complement proteins) [66]. For instance, the
secreted aspartic peptidases (Saps) produced by C. albicans and several non-albicans Candida
species have essential roles in the hyphal formation and invasion of tissues through the
degradation of collagen, fibronectin, laminin and mucin [32,69,70], whereas the secreted
allergens Asp f5 (a matrix metallopeptidase) and Asp f13 (serine peptidase) by A. fumigatus
are important for the recruitment of inflammatory cells and remodeling of the airways’
local immune response [71].
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The first proteolytic enzyme described in Scedosporium spp. was a 33-kDa serine
peptidase secreted by S. apiospermum, which presented optimum hydrolytic activity at
pH 9.0 and temperatures between 37 to 50 ◦C, able to degrade human fibrinogen. The
activity of this secreted serine peptidase was associated with the inflammation of the lungs
of cystic fibrosis patients [72]. The production of distinct serine peptidases, belonging to the
subtilisin-like, trypsin-like and elastase-like types, was also described in S. aurantiacum [73].
Interestingly, hypoxia conditions induced the secretion of these serine-type peptidases
by S. aurantiacum; however, the main peptidases detected under these conditions were
aspartic and cysteine peptidases, which presented optimum acidic pH for their full hy-
drolytic efficiency [74]. The aspartyl-type peptidase was also detected on the secretome of
S. apiospermum, as corroborated with the use of either a specific substrate (cathepsin D) or
peptidase inhibitor (pepstatin A) [35].

Metallopeptidases secreted by S. apiospermum presented differential profiles relying on
the morphological type: mycelia were able to secrete six distinct peptidases ranging from 90 to
28 kDa, whereas conidia secreted a single peptidase of 28 kDa [75–77]. All metallopeptidases
of S. apiospermum were active at acidic pH and completely inhibited by 1,10-phenanthroline,
a classic inhibitor of metal-dependent enzymes [76,77]. These metallo-type peptidases are
involved in the cleavage of key host proteins, such as immunoglobulin G, laminin, fibronectin
and mucin [75–77], and they are also associated with the differentiation of conidial into
hyphal forms [76,78]. Corroborating this last statement, 1,10-phenanthroline was able to
completely block conidial germination, while ethylenediamine tetraacetic acid (EDTA) and
ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), two well-known
metal chelators, only partially inhibited the conidial germination [33,78].

Peptidases secreted by Scedosporium species were able to cause morphological changes
in epithelial cells, detachment of the monolayer and reduce their viability [35,79]. In
addition to planktonic cells, the production of hydrolytic enzymes has also been described
in biofilm-forming cells of Scedosporium species. Biofilms formed for 72 h by S. apiospermum,
S. minutisporum, S. aurantiacum and L. prolificans released peptidases able to hydrolyze
albumin and casein at pH values ranging from 4.0 to 9.0 [80].

3.2.2. Lipases

Lipases are a class of enzymes that catalyze the hydrolysis of triglycerides to glycerol
and free fatty acids, as well as the hydrolysis and transesterification of other esters [81].
These properties make microbial lipases relevant in several industries (e.g., food, chemical
and pharmaceutical) and also for the infectious process through the hydrolysis of host
components (e.g., plasma membrane) [81,82].

Studies about the secretion of lipases by Scedosporium species have focused on the
use of this hydrolytic enzymes in industrial and bioremediation applications (which are
better detailed in sub item 3.5). For instance, S. boydii secretes extracellular lipases able
to biodegrade a triacylglycerol named tributyrin, as well as linseed, olive and soybean
biodiesel [83,84]. Some studies have demonstrated that Scedosporium species are able to
penetrate the membrane of mammalian cell lines [85–87], which indicates the secretion of
phospholipase as observed in L. prolificans isolates from Mexican patients [88]. In addition,
72 h-biofilms of S. apiospermum, S. minutisporum, S. aurantiacum and L. prolificans produced
lipases able to hydrolyze different lipid chain sizes, such as 4-methylumbelliferylbutyrate,
4-methylumbeliferyl heptanoate and 4-methylumbeliferyl oleate [80].

3.2.3. Phosphatases

Phosphorylation is an essential step for several processes in living cells, including
cell cycle progression, central metabolism reactions, filamentation and gene transcription,
among others [89]. Phosphorylation levels are coordinated by a fine balance between
protein kinases and phosphatases in response to internal and external signals [89].

Acid and alkaline phosphatases were identified on the mycelial surface of S. apiospermum
and also in the secretome of this species as demonstrated with specific inhibitors (levamisole,
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inorganic phosphate, sodium orthovanadate, ammonium molybdate, sodium fluoride, sodium
β-glycerophosphate and sodium tartrate) and cytochemical localization [35,90]. The roles of
these phosphatases in virulence are mostly unknown for Scedosporium, but for other fungal
species these enzymes are involved in virulence traits, such as adhesion to epithelial cells and
biofilm formation [35,90–92]. It is an open and promising area for future research.

3.2.4. Detoxifying Enzymes

To colonize the host, pathogens have to face toxic oxygen and nitrogen species pro-
duced by phagocytic cells and other threats [93]. One way to cope with such stressors is
the production of antioxidant enzymes, such as catalase and superoxide dismutase (SOD).
SODs are metalloenzymes that are on the front line of defense against oxidative stress, cat-
alyzing the conversion of superoxide anion (O2•−) to H2O2 and oxygen molecules [93,94].
In fungal cells, SODs are found mainly intracellularly on both cytosol and mitochondria;
however, few SODs are extracellularly detected [93].

Studies about SOD in Scedosporium species are scarce. Initially, a cytosolic Cu,Zn-SOD
was characterized in S. apiospermum. The production of this enzyme was stimulated by iron
starvation, and it was not detected on the fungal culture filtrates with the methodology
used [94]. Subsequently, a glycosylphosphatidylinositol-anchored SOD detected on the
surface of S. apiospermum conidial cells was described; however, the secretion of this
enzyme was not evaluated [93]. Notably, a Mn-SOD was identified in the secretome of
S. apiospermum, indicating that at least one SOD can be secreted and probably has an
extracellular function [35].

Catalases act by decomposing H2O2 into molecular oxygen and water [27]. In
Scedosporium, the catalases A1, A2 and A2′ were identified in mycelial extract, and the
presence of catalase A1 in the extracellular milieu was also observed [95,96]. Due to its
antigenic nature, the authors of that study proposed the use of catalase A1 as a diagnostic
tool for Scedosporium species, which will be further detailed herein.

Interestingly, a peroxiredoxin was also detected on the secretome of S. apiospermum [35].
The gene encoding a peroxiredoxin (SaPrx2) is overexpressed when S. apiospermum is in a
co-culture with phagocytic cells (THP1 and HL60), as well as upon exposure to menadione
and H2O2 [97].

3.2.5. Mechanisms to Obtain Iron

Iron is an essential micronutrient for all organisms involved in several cellular pro-
cesses; however, iron is not freely available because it is mainly under ferric state [98].
In this way, microorganisms have developed some mechanisms to obtain iron from the
environment, including the secretion of hemolysins and siderophores.

Hemolysins are molecules that cause the lysis of red blood cells by disrupting the
cell membrane, allowing iron acquisition from hemoglobin [99]. The hemolytic activity of
Scedosporium species is most unknown, but herein we demonstrated the hemolysin activity
of S. apiospermum through the presence of a halo around the fungal colony when grown
on Sabouraud medium supplemented with 7% sheep blood (Figure 10). In addition, high
hemolysis has been identified as a symptom of a patient with scedosporiosis [100].

Siderophores are small organic molecules able to scavenge iron in iron-restricted envi-
ronments and/or environments with competition for this micronutrient [98]. S. apiospermum
secreted two siderophores, dimerumic acid and Nα-methyl coprogen B, both from the hy-
droxamate type and coprogen family [98]. The production of the Nα-methyl coprogen B is
higher for clinical isolates from respiratory samples compared to environmental strains,
suggesting its use as a promising diagnostic tool, as will be detailed in Section 3.3 [98,101].
Moreover, the Nα-methyl coprogen B is essential for fungal growth and virulence, as
demonstrated by its blockage synthesis due to the disruption of the sidD gene [102].
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Figure 10. Production of hemolysin and siderophores by S. apiospermum. Left: Plate of Sabouraud
medium supplemented with 7% sheep blood presenting a 7-day growth of S. apiospermum surrounded
by a halo indicating hemolytic activity. Right: Plate of Sabouraud medium supplemented with
chrome azurol S (CAS) and iron III solution presenting a 7-day growth of S. apiospermum surrounded
by a halo indicating iron chelation.

3.3. Molecules Related to Fungal Diagnosis

Traditional diagnosis methods, such as mycological examination, can be ineffective for
Scedosporium species in some cases, such as in polymicrobial clinical samples, due to their
slower growth compared to other filamentous fungi (e.g., A. fumigatus). Another relevant
issue in this regard is the morphological similarity of Scedosporium species to other hyaline
filamentous fungal species (e.g., Aspergillus spp. and Fusarium spp.) in histopathological tis-
sue sections [2,96]. For successful patient treatment, the correct Scedosporium identification
is essential, since amphotericin B is the first line of treatment for several infections caused
by filamentous fungi and Scedosporium species are intrinsically resistant to this antifungal
agent [103]. In this context, immunological diagnosis emerged as a prominent option;
however, immunological Scedosporium diagnosis has focused for long time on the use
of polyclonal antibodies in counterimmunoelectrophoresis and immunohistological tech-
niques, for which positive results can be due to a cross-reaction with antigens from other
clinically relevant fungal species [2,104,105]. In this manner, the diagnosis of Scedosporium
species through the identification of specific extracellular and/or secreted molecules arises
as a promising research field. The peptide-polysaccharide called peptidorhamnomannan
(PRM) was the first molecule from S. apiospermum (formerly Pseudallescheria boydii) sug-
gested to be used in diagnosis [106]. PRM is composed of Rhap(1→ 3)Rhap on side chains,
which may be (1 → 3) to (1 → 6)-linked mannose units, and is found on the surface of
both conidial and mycelial cells of S. apiospermum, S. boydii, S. minutisporum, S. aurantiacum
and L. prolificans; moreover, this molecule was also detected on the extracellular milieu
of S. apiospermum growth, indicating its secretion [65,85,106–109]. PRM strongly reacts
with an antiserum obtained against the whole S. apiospermum cell utilizing enzyme-linked
immunosorbent assay (ELISA) and immunofluorescence techniques (Figure 11), but it
reacts poorly against an antiserum obtained with Sporothrix schenckii (which also produces
a PRM-like molecule), demonstrating that PRM can be used in the differential diagnosis of
Scedosporium spp. [106]. In addition to its use in diagnosis, PRM is an essential molecule
used by the fungal cells to interact with mammalian cells, such as larynx epithelial carci-
noma (HEp2) and macrophages, as well as for the induction of pro-inflammatory cytokine
production. Moreover, the use of monoclonal antibodies (mAbs) against PRM on the
surface of conidial cells decreases phagocytosis and the chemical removal of O-linked
oligosaccharides from PRM abolished pro-inflammatory cytokines [85,107,108,110]. No-
tably, the extracted PRM from the surface of L. prolificans, S. apiospermum, S. boydii and
S. aurantiacum is able to inhibit the growth and biofilm formation of Staphylococcus aureus,
Burkholderia cepacia and Escherichia coli [108], revealing its antibacterial activity.
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Figure 11. Detection of PRM produced by S. apiospermum. (A) Immunofluorescence microscopy
evidencing PRM on the surface of both conidia and mycelia of S. apiospermum utilizing an anti-PRM
antibody (kindly donated by Dr. Eliana Barreto Bergter from Instituto de Microbiologia Paulo de Góes
and Universidade Federal do Rio de Janeiro). (B) Western blotting assay evidencing the presence of
soluble PRM in the supernatant of S. apiospermum mycelial cells growth using anti-PRM antibody.

Subsequently, IgM and IgG1 K-light chain mAbs were developed. These mAbs rec-
ognize a carbohydrate epitope on an unknown extracellular 120-kDa antigen present on
the S. apiospermum conidial and mycelial surface, and also present in fungal culture fil-
trates [103]. The mAbs specifically identified S. apiospermum and no other clinically relevant
fungi, such as A. fumigatus, C. albicans, C. neoformans, Fusarium solani and Rhizopus oryzae,
in immunofluorescence and double-antibody sandwich enzyme-linked-immunosorbent
assays. However, these mAbs also react with Graphium and Petriella species [103].

In addition to diagnosis through the identification of cell surface components that
can be secreted, another alternative approach to diagnosis is the detection of specific
metabolites secreted by microorganisms during the infection course [101]. For instance,
siderophores and pseudacyclins were suggested as good options for the identification of
Scedosporium species on clinical samples [98,101,111]. As mentioned before, siderophores
are secreted in environments with iron competition or scarce concentration, such as in
cystic fibrosis (CF) sputum [98,101]. The siderophore Nα-methyl coprogen B was identified
as specifically secreted by Scedosporium species among CF-related microorganisms and,
consequently, a marker of Scedosporium colonization [101]. For this reason, its use has been
suggested for Scedosporium diagnosis in CF patients. Utilizing high performance liquid
chromatography, this siderophore was only identified in S. apiospermum supernatant, and
not on Aspergillus spp. and Exophiala dermatiditis. In addition, the siderophore was only
detected in sputum from CF patients colonized by Scedosporium spp. [101]. Likewise, five
cyclic peptides with an unknown role in metabolism, named as pseudacyclins A-E, are
produced exclusively by Scedosporium species and have been patented (International Publi-
cation Number: WO 2009/149675 A3) to be used as a diagnostic tool for the Scedosporium
genus [111,112].

Enzymes are also molecules suggested for use in Scedosporium species diagnosis.
As mentioned before, detoxification enzymes, such as catalase and SOD, are produced
during all infection courses by microorganisms in order to face the reactive oxygen species
produced by host phagocytic cells [96]. The catalase A1, a tetrameric protein of 460 kDa, is
an enzyme present both in mycelium and in the culture supernatant, which is recognized
by the serum of CF patients with scedosporiosis, but not with A. fumigates, through an
ELISA assay [96,113].
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The detection of 1,3-β-D-glucan is a traditional methodology in the diagnosis of
invasive fungal infection [114]. This molecule is found in the fungal cell wall and is also
secreted, which makes possible its detection in the blood of patients with invasive fungal
infections [115]. The detection of 1,3-β-D-glucan has been reported in cases of brain abscess
and invasive diseases caused by Scedosporium/Lomentospora species [115–118].

3.4. Secondary Metabolites

In fungi, secondary metabolites are derived from central metabolic pathways, being
the acyl-CoAs the initial mole-cules for synthesis [119]. In contrast, non-ribosomal peptides
(NRPs) are synthesized by NRP synthases initiating in amino acids [119,120]. An analysis
of NPR synthases’ gene clusters in S. apiospermum identified nine putative NRPS clusters
involved in the synthesis of epidithiodioxopiperazines, siderophores, cyclopeptides or other
still uncharacterized specialized metabolites [121]. Secondary metabolites play essential
roles in cell development and interaction with other organisms [119]. For example, some of
the most relevant secondary metabolites are the β-lactam antibiotics, such as penicillins
and cephalosporins, produced by fungi belonging to the Penicillium, Cephalosporium and
Aspergillus genera, as well as by bacteria of the genera Streptomyces, Nocardia, Flavobacterium
and Lysobacter [120,121].

Secondary metabolites secreted by Scedosporium species have many biological activities,
such as antitumor, antimicrobial, insecticidal and antidiabetics (Table 1). The tyroscherin
produced by Scedosporium spp. Presented an in vitro selective antitumor activity against
insulin-like growth factors-dependent cell lines, such as the human breast cancer cell
lines MCF-7 and T47D, with half maximal inhibitory concentration (IC50) of 9.7 ng/mL
and 32 ng/mL, respectively [122]. The molecules ovacilin and boydone B produced by
S. boydii present antitumor activity against the lung cancer cell line A549 with an IC50 of
4.1 and 41.3 µM, respectively [123]. The 3,3′-cyclohexylidenebis(1H-indole) is a secondary
metabolite produced by S. boydii, which had its activity tested against a greater number
of cancer cells: human lung cancer cell lines (A549 and GLC82), human nasopharyngeal
carcinoma cell lines (CNE1, CNE2, HONE1 and SUNE1) and human hepatoma carcinoma
cell lines (BEL7402 and SMMC7721), with IC50 values ranging from 18.69 to 27.53 µM [124].
Secondary metabolites produced by Scedosporium also have antidiabetic activity. The
quinadoline A and the scequinadoline D, E and J promote triglyceride accumulation in
3T3-L1 preadipocytes cells, through induction of adipogenesis [125].

The worldwide emergence of fungal and bacterial resistant strains to antimicrobial drugs
has highlighted the current low arsenal of antimicrobials to deal with some types of micro-
bial infections [126,127]. For example, infections caused by resistant Klebsiella pneumoniae
strains, as well as azole-resistant Aspergillus and Candida species, are associated with sig-
nificant morbidity and mortality due to the lack of optimal treatment [126,128]. An esti-
mate made in 204 countries showed that in 2019 the number of deaths associated with
antimicrobial resistance was 4.95 million [129]. In this context, research into new antimi-
crobial compounds has intensified in recent decades, and secondary metabolites produced
by fungal and bacterial cells are emerging as promising candidates, since microbial cells
secrete bioactive compounds able to inhibit other microorganisms during the competition
for nutrients [130]. Several secondary metabolites produced by Scedosporium species with
antimicrobial activity have been identified; among them are compounds with antibacterial
activity (Table 1; Figure 12). In this context, the Scedosporium metabolites gliotoxin, dehy-
droxybisdethiobis(methylthio)gliotoxin, bisdethiobis(methylthio)gliotoxin, fumitremorgin C,
12,13-dihydroxyfumitremorgin and boydone A had antibacterial activity against S. aureus,
including methicillin-resistant strains [130–132]. The Scedosporium secondary metabolites also
have antifungal and antiviral activities. The named “inhibitory compound” produced by
S. boydii has a fungistatic activity against Alternaria brassicicola, reducing the disease incidence
of black leaf spot of spoon cabbage [133]. Moreover, the secondary metabolites tyroscherin
and N-methyltyroscherin were effective against C. albicans, C. neoformans, A. fumigatus and
Trichophyton rubrum [134,135]. The secondary metabolites scequinadoline D and scedapin C dis-
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played anti-hepatitis C virus activity with an effective concentration of 110.35 and 128.60 µM,
respectively [136]. Moreover, some secondary metabolites (e.g., diketopiperazines pseudoboy-
done C, cyclo-(Phe-Phe), cyclopiamide E, 24,25-dehydro-10,11-dihydro-20-hydro-xyaflavinin
and aflavinine) secreted by S. boydii had insecticidal activity against a major agricultural
pest insect, Spodoptera frugiperda [137]. Other biological functionalities described for sec-
ondary metabolites secreted by Scedosporium spp are: inhibitor of acyl-CoA (e.g., AS-183),
stimulator (e.g., pseurotin A) or inhibitor (e.g., (-)-ovalicin) of osteoclastogenesis; in addi-
tion to several other molecules that as yet have some undefined biological activity (Table 1;
Figure 12) [123,124,137–151].
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Table 1. List of secondary metabolites identified in Scedosporium species and their potential
biological activity.

Species Molecule Activity References

Scedosporium spp. AS-183 Inhibitor of acyl-CoA [138]
S. ellipsoidea YM-193221 Antifungal [134]
Scedosporium spp. Tyroscherin Antitumor; Antifungal [122,135,139]
Scedosporium spp. Dehydroxybisdethiobis(methylthio)gliotoxin Antibacterial [131]
Scedosporium spp. Bisdethiobis(methylthio)gliotoxin Antibacterial [131]
Scedosporium spp. Gliotoxin Antibacterial [131]
Scedosporium spp. 12,13-hihydroxyfumitremorgin C Antibacterial [132]
Scedosporium spp. Fumitremorgin C Antibacterial [132]
Scedosporium spp. Brevianamide F Antibacterial [132]
Scedosporium spp. (2RS,8R,10R)-YM-193221 ND [139]
S. boydii “Inhibitory substance” Antifungal [133]
S. boydii Pseudallin Antibacterial [152]
S. boydii Boydone A Antibacterial [123,130]
S. boydii Boydone B Antitumor [123]
S. boydii Botryorhodine F ND [123]
S. boydii Botryorhodine G ND [123]
S. boydii Fusidilactone A ND [123]
S. boydii (R)-(-)-mevalonolactone ND [123]
S. boydii (R)-(-)-lactic acid ND [123]
S. boydii Ovalicin Antitumor [123]
S. boydii Botryorhodine ND [123]
S. boydii N-methyltyroscherin Antifungal [135]
S. boydii Boydine A ND [140]
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Table 1. Cont.

Species Molecule Activity References

S. boydii Boydine B Antibacterial [137,140]
S. boydii Boydine C ND [140]
S. boydii Boydine D ND [140]
S. boydii Boydene A ND [140]
S. boydii Boydene B ND [140]
S. boydii Pseudaboydin A ND [137]
S. boydii Pseudaboydin B ND [137]
S. boydii (R)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-hydroxybenzofuran ND [137]
S. boydii (R)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-methoxybenzofuran ND [137]
S. boydii 3,3′-dihydroxy-5,5′-dimethyldiphenyl ether ND [137]
S. boydii 3-(3-methoxy-5-methylphenoxy)-5-methylphenol ND [137]
S. boydii (-)-Regiolone ND [137]

S. boydii 6-Chloro-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-
hydroxybenzofuran ND [141]

S. boydii 7-Chloro-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-
hydroxybenzofuran ND [141]

S. ellipsoidea Pseudellone A ND [142]
S. ellipsoidea Pseudellone B ND [142]
S. ellipsoidea Pseudellone C ND [142,145,146]
S. ellipsoidea Pseudellone D ND [145]
S. ellipsoidea (5S,6S)-dihydroxylasiodiplodin ND [145]
S. ellipsoidea Lasiodipline F ND [145]
S. ellipsoidea (5S)-hydroxylasiodiplodin ND [145]
S. boydii Pseuboydone A ND [137]
S. boydii Pseuboydone B ND [137]
S. boydii Diketopiperazines pseudoboydone C Insecticidal [137]
S. boydii Diketopiperazines pseudoboydone D ND [137]
S. boydii Haematocin ND [137]
S. boydii Phomazine B ND [137]
S. boydii Bisdethiobis(methylthio)gliotoxin ND [137]
S. boydii Cyclo-(2,20-dimethylthio-Phe-Phe) ND [137]
S. boydii Cyclo-(Phe-Phe) Insecticidal [137]
S. boydii Ditryptophenaline ND [137]
S. boydii Speradine B ND [137]
S. boydii Speradine C ND [137]
S. boydii Cyclopiamide E Insecticidal [137]
S. boydii 24,25-Dehydro-10,11-dihydro-20-hydro- xyaflavinin Insecticidal [137]
S. boydii Aflavinine Insecticidal [137]
S. boydii b-Aflatrem ND [137]
S. boydii Pyripyropene A ND [137]
S. boydii Pseudoscherine ND [137]
S. boydii 4-(1-Hydroxy-1-methylpropyl)-2-isobutyl-pyrazin-2(1H)-one ND [137]
S. boydii 4-(1-Hydroxy-1-methyl-propyl)-2-secbutylpyrazin-2(1H)-one ND [137]
S. boydii O-methyl sterigmatocystin ND [137]
S. boydii Asperfuran ND [137]
S. boydii Pseudallicin A ND [147]
S. boydii Pseudallicin B ND [147]
S. boydii Pseudallicin C ND [147]
S. boydii Pseudallicin D ND [147]
S. apiospermum Scedapin A ND [148]
S. apiospermum Scedapin B ND [148]
S. apiospermum Scedapin C Antiviral [148]
S. apiospermum Scedapin D ND [148]
S. apiospermum Scedapin E ND [148]
S. apiospermum Scequinadoline A ND [148]
S. apiospermum Scequinadoline B ND [148]
S. apiospermum Scequinadoline C ND [148]
S. apiospermum Scequinadoline D Antiviral [148]
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Table 1. Cont.

Species Molecule Activity References

S. apiospermum Scequinadoline E ND [148]
S. apiospermum Scequinadoline F ND [148]
S. apiospermum Scequinadoline G ND [148]

S. boydii Pseurotin A Stimulatory
osteoclastogenesis [143]

S. boydii (-)-Ovalicin Inhibitory
osteoclastogenesis [143]

S. boydii Chlovalicin ND [143]
S. boydii Dihydroxybergamotene ND [143]

S. boydii AM6898B Stimulatory
osteoclastogenesis [143]

S. boydii Aspergiketone ND [143]
S. boydii Pseudboindole A ND [124]
S. boydii Pseudboindole B ND [124]
S. boydii 3,3′-Cyclohexylidenebis(1H-indole) Antitumor [124]
S. boydii Indole alkaloids ND [124]
S. boydii 2-Hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione ND [149]
S. apiospermum Scetryptoquivaline A ND [125]
S. apiospermum Quinadoline A Antidiabetic [125]
S. apiospermum Scequinadoline D Antidiabetic [125]
S. apiospermum Scequinadoline E Antidiabetic [125]
S. apiospermum Scequinadoline J Antidiabetic [125]
S. apiospermum Scequinadoline I ND [125]
S. apiospermum Fumiquinazolines ND [125]

ND—not determined.

3.5. Molecules Involved in Biodegradation

Filamentous fungi can usually grow in xenobiotic-contaminated environments due
to the production of extracellular enzymes (e.g., esterases) able to hydrolyze/oxidize the
toxic compounds, transforming those molecules into intermediate metabolites, which can
be further absorbed and metabolized by fungal cells [151]. In this context, Scedosporium
species have gained attention from the scientific community due to their ability to thrive
in decayed wood, manure, soils and heavily contaminated water, besides being able
to adapt to high salt concentrations and low oxygen levels [153,154]. In 1968, the abil-
ity of S. boydii (formerly Allescheria boydii) to utilize n-alkanes (C-10; C-14; C-16 and
C-18) and 1-alkenes (C-10:1; C-14:1 and C-16:1) as their only carbon source was de-
scribed [155]. Subsequently, the ability of S. boydii strains isolated from oil-soaked soil
in Canada to degrade linear aliphatic compounds was demonstrated [154]. Similarly,
S. apiospermum is capable of utilizing aromatic compounds (diaryl ester phenylbenzoate,
phenol, p-cresol, p-tolylbenzoate, 4-chlorophenylbenzoate and toluene) as the sole carbon
source [156–159]. Other molecules/compounds degraded by Scedosporium species were re-
ported: 2,3,7,8-tetrachlorodibenzeno-p-dioxin, polychlorinated biphenyl, acetaminophen,
biodiesel, esters, diesel hydrocarbons, tetrahydrofuran and azo dyes (e.g., Reactive Yellow
145 and Remazol Yellow RR) (Table 2) [84,160–167].

A genome sequencing of the S. apiospermum environmental strain identified metabolic
pathways that can potentially degrade ethylbenzene, xylene, dioxin, atrazine, styrene, naph-
thalene, fluorobenzoate, geraniol, chloroalkane, chloroalkene, benzoate, caprolactam, bu-
tanoate and aminobenzoate, among other hydrocarbons [168,169]. The proposed pathway
of p-cresol degradation starts with its oxidation leading to 4-hydroxybenzylalcohol, which is
converted into 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid. The 4-hydroxybenzoic
acid is converted into protocatechuate, which is metabolized in 3-carboxy-cis into cis-
muconate, which is converted into 3-carboxymuconolactone and 3-oxoadipate [6,156].
However, some enzymes proposed in this pathway, such as hydroquinone hydroxylase,
4-hydroxybenzoate 3-hydroxylase, hydroxyquinone 1,2 dioxygenase, protocatechuate
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3,4 dioxygenase and maleylacetate reductase, were not found in a genomic study of
S. apiospermum [168], indicating that these enzymes are classified among the hypotheti-
cal, with unknown function, or they are in the gap regions of the genome [168]. Rougeron
and co-workers also suggested that the conversion of 4-hydroxybanzoate into gentisate,
which is cleaved into maleylpyruvate, should be considered, as all genes necessary for
gentisate catabolism are organized in cluster in the Scedosporium genome [6]. The phenol
could be catabolized either by a catechol 1,2-dioxygenase or a phenol hydroxylase, leading
both pathways to a 3-oxoadipate, which can enter the tricarboxylic acid cycle [6,156]. For
phenylbenzoate, the catabolism pathway initiates with the hydrolysis of diaryl ester by
an esterase leading to phenol and benzoic acid [6,157]. The 4-chlorophenylbenzoate is
hydrolyzed into 4-chlorophenol and benzoate, whereas the p-tolylbenzoate is hydrolyzed
into p-cresol and benzoic acid [6,157].

Table 2. List of xenobiotics degraded by Scedosporium species in the literature.

Species Molecule/Compound References

S. boydii n-Alkanes [155]
S. boydii 1-Alkenes [155]
S. boydii Hydrocarbons [155,165]
S. apiospermum Phenol [156]
S. apiospermum p-Cresol [156]
S. apiospermum 4-Hydroxybenzoate [156]
S. apiospermum 4-Hydroxybenzaldehyde [156]
S. apiospermum 4-Hydroxybenzylalcohol [156]
S. apiospermum Protocatechuate [156]
S. apiospermum Phenylbenzoate [157]
S. apiospermum p-Tolylbenzoate [157]
S. apiospermum 4-Chlorophenylbenzoate [157]
S. apiospermum Toluene [158]
S. boydii Rapeseed oil [168]
S. boydii Biodiesel [83,84,168]
S. boydii Diesel oil [84,168]
S. boydii 2,3,7,8-Tetrachlorodibenzo-p-dioxin [160]
S. apiospermum Polychlorinated biphenyl [161]
S. apiospermum Polycyclic aromatic hydrocarbons [159]
S. dehoogii Acetaminophen [162]
S. boydii Diesel blend [84]
S. boydii Tetrahydrofuran [163]
S. boydii Dibutyl tin dilaurate [164]
S. boydii Di-n-butyl-oxo-stannane [164]
Scedosporium spp. Lignin [169]
S. apiospermum Olive mill wastewater [166]
S. apiospermum Reactive Yellow 145 [167]
S. apiospermum Remazol Yellow RR [167]

The fungi pathway of lignin degradation starts with its extracellular oxidative degra-
dation, which produces a mixture of aromatic monomers that are then catabolized into
the upper and lower pathways. In the upper pathways, the aromatic compounds are
catabolized into hydroxyquinol, catechol, protocatechuate, gentisic acid, hydroxyquinone,
gallic acid and pyrogallol; subsequently, these aromatic compounds suffer a ring-opening
by dioxygenases, producing degradation products that can enter the tricarboxylic acid
cycle [169]. In Scedosporium, the putative dioxygenases gentisate 1,2-dioxygenases, ho-
mogentisate 1,2-dioxygenases, hydroxyquinol 1,2-dioxygenases, catechol 1,2-dioxygenase
and protocatechuate 3,4-dioxygenase were identified through sequence homology and
bioinformatic analysis, suggesting the ability of Scedosporium to catabolize gentisic acid,
hydroxyquinol, protocatechuate and catechol [169].

A study conducted by Janda-Ulfig and co-workers [170] suggested that oil-contaminated
environments could favor the growth of Scedosporium species, since rapeseed oil and biodiesel
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oil stimulate S. boydii growth. This could explain the most frequent occurrence of Scedosporium
in urban, industrial and agricultural areas rather than in environments with low human
activity [5,168]. In this way, three patents have been deposited for the use of Scedosporium
species: (i) as composting promoters, (ii) in the bioremediation of nutrient-rich effluents and
(iii) in the bioremediation of livestock manure [6,171–174].

4. Conclusions

As summarized in the present study, the emergent and multidrug-resistant Scedosporium
species are able to secrete a vast array of distinct molecules with a wide range of biological
functions, including polysaccharides, non-peptide small-molecule metabolites, non-ribosomal
peptides and (glyco)protein-nature molecules. The secreted molecules can act for the benefit
of human kind, such as in the bioremediation of polluted environments and in the treatment
of microbial infections. However, the molecules secreted by Scedosporium species are also
essential for its pathogenesis during human infections, such as proteolytic enzymes. In this
way, studies concerning these secreted molecules can help in the development of improved
diagnosis techniques and treatment of scedosporiosis.
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