Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens
Abstract
:1. Introduction
2. Materials and methods
2.1. Sample Collection and Isolation
2.1.1. Sample Collection
2.1.2. Isolation of Endophytic Fungi
2.2. Endophytic Fungi Identification
2.2.1. DNA Extraction, PCR Amplification and Sequencing
2.2.2. Phylogenetic Analyses
2.3. Pre Dual Culture Assay for Antibiosis Test (Pretest)
2.4. Dual Culture Assay for Antibiosis Test (Formal Test)
2.4.1. Methods of Dual Culture Assay
2.4.2. Calculation and Analysis of Inhibition Rate
2.4.3. Statistical Analyses
3. Results
3.1. Results of Sample Collection and Isolation
3.2. Single Gene Phylogenetic Analyses
3.3. Dual Culture Assay for Antibiosis Test (Pretest)
3.4. Dual Culture Assay for Antibiosis Test (Formal Test)
3.4.1. Inhibition of 25 Endophytic Fungi on Three Pathogenic Bacteria
3.4.2. Inhibition of 40 Endophytic Fungi on Three Pathogenic Fungi
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The IUCN Red List of Threatened Species. Version 2017-3. Available online: www.Iucnredlist.org (accessed on 10 October 2022).
- Kalra, R.; Kaushik, N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem. Rev. 2017, 16, 1045–1079. [Google Scholar] [CrossRef]
- Naziz, P.S.; Das, R.; Sen, S. The scent of stress: Evidence from the unique fragrance of agarwood. Front. Plant Sci. 2019, 10, 840. [Google Scholar] [CrossRef] [PubMed]
- Azren, P.D.; Lee, S.Y.; Emang, D.; Mohamed, R. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: A review. J. For. Res. 2018, 30, 1–11. [Google Scholar] [CrossRef]
- Lv, F.F.; Li, S.S.; Feng, J.; Liu, P.W.; Gao, Z.H.; Yang, Y.; Xu, Y.H.; Wei, J.H. Hydrogen peroxide burst triggers accumulation of jasmonates and salicylic acid inducing sesquiterpene biosynthesis in wounded Aquilaria sinesis. J. Plant Physiol. 2019, 234–235, 167–175. [Google Scholar] [CrossRef]
- Rasool, S.; Mohamed, R. Understanding agarwood formation and its challenges. In Agarwood; Mohamed, R., Ed.; Tropical Forestry; Springer: Berlin/Heidelberg, Germany; Singapore, 2016; pp. 39–56, Chapter 3. [Google Scholar] [CrossRef]
- Cui, J.L.; Guo, S.X.; Fu, S.B.; Xiao, P.G.; Wang, M.L. Effects of inoculating fungi on agilawood formation in Aquilaria sinensis. Sci. Bull. 2013, 58, 3280–3287. [Google Scholar] [CrossRef] [Green Version]
- National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; 2015 Version; Chinese Medical Science and Technology Press: Beijing, China, 2015; Volume 1, pp. 185–186. [Google Scholar]
- Du, T.Y.; Dao, C.J.; Mapook, A.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Suwannarach, N.; Karunarathna, S.C.; Tibpromma, S. Diversity and biosynthetic activities of agarwood associated fungi. Diversity 2022, 14, 211. [Google Scholar] [CrossRef]
- Tibpromma, S.; Zhang, L.; Karunarathna, S.C.; Du, T.Y.; Wang, Y.H. Volatile constituents of endophytic fungi isolated from Aquilaria sinensis with descriptions of two new species of Nemania. Life 2021, 11, 363. [Google Scholar] [CrossRef]
- Hidayat, A.; Turjaman, M.; Faulina, S.A.; Ridwan, F.; Aryanto, A.; Najmulah, N.; Irawadi, T.T.; Iswanto, A.H. Antioxidant and antifungal activity of endophytic fungi associated with agarwood trees. J. Korean Wood Sci. Technol. 2019, 47, 459–471. [Google Scholar] [CrossRef]
- Gong, L.; Guo, S. Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afri. J. Biotechnol. 2009, 8, 731–736. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Z.X.; Wang, C.H.; Wu, C.M.; Guo, P.; Wei, J.H. Chemical constituents and pharmacological activity of agarwood and Aquilaria plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef] [Green Version]
- Du, T.Y.; Karunarathna, S.C.; Hyde, K.D.; Mapook, A.; Wariss, H.M.; Aluthwattha, S.T.; Wang, Y.H.; Mortimer, P.E.; Xu, J.C.; Tibpromma, S. The endophytic fungi of Aquilaria sinensis from southern China. Fungal Biotec 2022, 2, 1–15. [Google Scholar] [CrossRef]
- Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J.L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols, a Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Du, T.Y.; Hyde, K.D.; Mapook, A.; Mortimer, P.E.; Xu, J.C.; Karunarathna, S.C.; Tibpromma, S. Morphology and phylogenetic analyses reveal Montagnula puerensis sp. nov. (Didymosphaeriaceae, Pleosporales) from southwest China. Phytotaxa 2021, 514, 001–025. [Google Scholar] [CrossRef]
- Ko, T.W.K.; Stephenson, S.L.; Bahkali, A.H.; Hyde, K.D. From morphology to molecular biology: Can we use sequence data to identify fungal endophytes? Fungal Divers. 2011, 50, 113–120. [Google Scholar] [CrossRef]
- Guo, L.D.; Huang, G.R.; Wang, Y.; He, W.H.; Zheng, W.H.; Hyde, K.D. Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol. Res. 2003, 107, 680–688. [Google Scholar] [CrossRef]
- Guo, L.D.; Hyde, K.D.; Liew, E.C.Y. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol. Phylogenet. Evol. 2001, 20, 1–13. [Google Scholar] [CrossRef]
- Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.; Promputtha, I.; Doilom, M.; Yang, J.; Tang, A.M.C.; Karunarathna, S.C. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018, 33, 25. [Google Scholar] [CrossRef] [Green Version]
- Tibpromma, S.; Karunarathna, S.C.; Bhat, J.D.; Suwannarach, N.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Xu, J.; Mortimer, P.E. Using culture-dependent and molecular techniques to identify endophytic fungi associated with tea leaves (Camellia spp.) in Yunnan Province, China. Diversity 2022, 14, 287. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7, improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Glez-Peña, D.; Gómez-Blanco, D.; Reboiro-Jato, M.; Fdez-Riverola, F.; Posada, D. ALTER, program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 2010, 38, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8, a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE); IEEE Computer Society: New Orleans, LA, USA, 2010; pp. 1–8. [Google Scholar]
- Rambaut, A. 2012—FigTree version 1.4; University of Edinburgh: Edinburgh, Scotland, 2012. [Google Scholar]
- Rahman, M.A.; Begum, M.F.; Alam, M.F. Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology 2009, 37, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Bonn, W.G.; van der Zwet, T. Distribution and economic importance of fire blight. In Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora; Vanneste, J.L., Ed.; CAB International: Wallingford, CT, USA, 2000; pp. 37–53. [Google Scholar] [CrossRef]
- Thomson, S.V. Epidemiology of fire blight. In Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora; Vanneste, J.L., Ed.; CAB International: Wallingford, UK, 2000; pp. 9–36. [Google Scholar] [CrossRef]
- Vanneste, J.L. Fire blight: The disease and its causative agent, Erwinia amylovora; CABI Publishing: Oxfordshire, UK, 2000. [Google Scholar] [CrossRef]
- Oh, C.S.; Beer, S.V. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol. Lett. 2005, 253, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Van der Zwet, T.; Orolaza-Halbrendt, N.; Zeller, W. Fire Blight: History, Biology, and Management; APS Press: St. Paul, MN, USA, 2012. [Google Scholar] [CrossRef]
- Born, Y.; Fieseler, L.; Klumpp, J.; Eugster, M.R.; Zurfluh, K.; Duffy, B.; Loessner, M.J. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage. Environ. Microbiol. 2014, 16, 2168–2180. [Google Scholar] [CrossRef]
- Piqué, N.; Miñana-Galbis, D.; Merino, S.; Tomás, J.M. Virulence factors of Erwinia amylovora: A review. Int. J. Mol. Sci. 2015, 16, 12836–12854. [Google Scholar] [CrossRef] [Green Version]
- Kharadi, R.R.; Schachterle, J.K.; Yuan, X.; Castiblanco, L.F.; Peng, J.; Slack, S.M.; Zeng, Q.; Sundin, G.W. Genetic dissection of the Erwinia amylovora disease cycle. Annu. Rev. Phyt. 2021, 59, 191–212. [Google Scholar] [CrossRef]
- Horst, R.K. Westcott’s Plant Disease Handbook, 5th ed.; Chapman & Hall: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Hwang, M.S.; Morgan, R.L.; Sarkar, S.F.; Wang, P.W.; Guttman, D.S. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. Microb. 2005, 71, 5182–5191. [Google Scholar] [CrossRef] [Green Version]
- Kennelly, M.M.; Cazorla, F.M.; de Vicente, A.; Ramos, C.; Sundin, G.W. Pseudomonas syringae diseases of fruit trees: Progress toward understanding and control. Plant Dis. 2007, 91, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, K.J. Salmonellosis in swine. Compend Contin. Educ. Pract. Vet 1991, 13, 139–146. [Google Scholar] [CrossRef]
- Rice, D.H.; Besser, T.E.; Hancock, D.D. Epidemiology andvirulence assessment of Salmonella dublin. Vet Microbiol. 1997, 56, 111–124. [Google Scholar] [CrossRef]
- Uzzau, S.; Brown, D.J.; Wallis, T.; Rubino, S.; Leori, G.; Bernard, S.; Casadesús, J.; Platt, D.J.; Olsen, J.E. Host adapted serotypes of Salmonella enterica. Epidemiol Infect 2000, 125, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Knodler, L.A.; Elfenbein, J.R. Salmonella enterica . Trends Microbiol. 2019, 27, 964–965. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.D.; Mohakud, N.K.; Panda, R.K.; Sahu, B.R.; Suar, M. Prevalence and multidrug resistance in Salmonella enterica Typhimurium: An overview in South East Asia. World J. Microb. Biot. 2021, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Twaroch, T.E.; Curin, M.; Valenta, R.; Swoboda, I. Mold allergens in respiratory allergy: From structure to therapy. Allergy Asthma Immunol. Res. 2015, 7, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, M.F.; Postigo, I.; Tomaz, C.T.; Martínez, J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environ. Int. 2016, 89–90, 71–80. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2016, 15, 3. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, P.; Ge, X.; Tian, P. Overview of Alternaria alternata Membrane Proteins. Indian J. Microbiol. 2020, 60, 269–282. [Google Scholar] [CrossRef]
- Sánchez, P.; Vélez-del-Burgo, A.; Suñén, E.; Martínez, J.; Postigo, I. Fungal Allergen and Mold Allergy Diagnosis: Role and Relevance of Alternaria alternata Alt a 1 Protein Family. J. Fungi 2022, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Biocontrol Sci. Techn. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Bolívar-Anillo, H.J.; Garrido, C.; Collado, I.G. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem. Rev. 2020, 19, 721–740. [Google Scholar] [CrossRef]
- Poppe, L.; Vanhoutte, S.; Höfte, M. Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. Eur. J. Plant Pathol. 2003, 109, 963–973. [Google Scholar] [CrossRef]
- Ghooshkhaneh, N.G.; Golzarian, M.R.; Mamarabadi, M. Detection and classification of citrus green mold caused by Penicillium digitatum using multispectral imaging. J. Sci. Food Agric. 2018, 98, 3542–3550. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.; Bazioli, J.M.; de Moraes Pontes, J.G.; Fill, T.P. Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biol. UK 2019, 123, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, B.; Liu, H.; Han, J.; Zhang, Y. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 2017, 105, 27–39. [Google Scholar] [CrossRef]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.M.; Olsson, S.B.; Ravikanth, G.; Shaanker, R.U. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol. Res. 2021, 242, 126595. [Google Scholar] [CrossRef] [PubMed]
- Monggoot, S.; Popluechai, S.; Gentekaki, E.; Pripdeevech, P. Fungal endophytes: An alternative source for production of Volatile compounds from agarwood oil of Aquilaria subintegra. Microb. Ecol. 2017, 74, 54–61. [Google Scholar] [CrossRef]
- Cui, J.L.; Guo, S.X.; Xiao, P.G. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) 2011, 12, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.K.; Cuong, L.H.; Hang, T.T.N.; Luyen, N.D.; Huong, L.M. Biological characterization of fungal endophytes isolated from agarwood tree Aquilaria crassna pierre ex lecomte. Vietnam. J. Biotechnol. 2016, 14, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.J.; Gao, X.X.; Zhang, W.M.; Wang, L.; Qu, L.H. Molecular identification of endophytic fungi from Aquilaria sinensis and artificial agarwood induced by pinholes-infusion technique. Afr. J. Biotechnol. 2013, 12, 3115–3131. [Google Scholar] [CrossRef]
Original Code | Strain Name | Strain Number | ITS GenBank Accession Number | Plant Tissue | Collection Site | Collection Date |
---|---|---|---|---|---|---|
Dothideomycetes | ||||||
YNA-A40 | Alternaria sp. | ZHKUCC 22-0248 | OP445267 | Health leaves | Yunnan | November 2020 |
YNA-1B2 | Botryosphaeria sp. | ZHKUCC 22-0249 | OP450949 | Agarwood resins | Yunnan | September 2021 |
GDA-3A20 | Corynespora sp. | KUMCC 21-0302 | OL455852 | Agarwood resins | Guangdong | December 2020 |
GDA-3A5 | Curvularia sp. | KUMCC 21-0287 | OL455828 | Agarwood resins | Guangdong | December 2020 |
GDA-3A9 | Curvularia sp. | KUMCC 21-0291 | OL455842 | Agarwood resins | Guangdong | December 2020 |
GDA-1A7 | Lasiodiplodia sp. | KUMCC 21-0224 | OL548888 | Agarwood resins | Guangdong | December 2020 |
GDA-2A9 | Lasiodiplodia sp. | KUMCC 21-0252 | OL455795 | Agarwood resins | Guangdong | December 2020 |
GDA-2B1 | Lasiodiplodia sp. | KUMCC 21-0254 | OL455797 | Agarwood resins | Guangdong | December 2020 |
GDA-3C2 | Lasiodiplodia sp. | KUMCC 21-0324 | OL548897 | Agarwood resins | Guangdong | December 2020 |
YNA-1C2 | Lasiodiplodia sp. | ZHKUCC 22-0251 | OP450951 | Agarwood resins | Yunnan | September 2021 |
YNA-D3 | Lasiodiplodia sp. | ZHKUCC 22-0270 | OP445276 | Health branches | Yunnan | November 2020 |
YNA-1C3 | Neofusicoccum sp. | ZHKUCC 22-0252 | OP450952 | Agarwood resins | Yunnan | September 2021 |
GDA-5A7 | Paracamarosporium sp. | ZHKUCC 22-0247 | OP439521 | Health branches | Guangdong | December 2020 |
GDA-4C2 | Pseudopithomyces sp. | ZHKUCC 22-0246 | OP439520 | Health branches | Guangdong | December 2020 |
Eurotiomycetes | ||||||
YNA-A18 | Aspergillus sp. | ZHKUCC 22-0258 | OP445263 | Health leaves | Yunnan | November 2020 |
YNA-A41 | Aspergillus sp. | ZHKUCC 22-0262 | OP445268 | Health leaves | Yunnan | November 2020 |
Saccharomycetes | ||||||
GDA-1B3 | Trichosporon sp. | KUMCC 21-0230 | OL455772 | Agarwood resins | Guangdong | December 2020 |
Sordariomycetes | ||||||
GDA-2A3 | Annulohypoxylon sp. | KUMCC 21-0246 | OL455788 | Agarwood resins | Guangdong | December 2020 |
YNA-A22 | Colletotrichum sp. | ZHKUCC 22-0260 | OP445265 | Health leaves | Yunnan | November 2020 |
YNA-A42 | Colletotrichum sp. | ZHKUCC 22-0263 | OP445269 | Health leaves | Yunnan | November 2020 |
YNA-A55 | Colletotrichum sp. | ZHKUCC 22-0264 | OP445270 | Health leaves | Yunnan | November 2020 |
YNA-A60 | Colletotrichum sp. | ZHKUCC 22-0265 | OP445271 | Health leaves | Yunnan | November 2020 |
GDA-3A11 | Daldinia sp. | KUMCC 21-0293 | OL455844 | Agarwood resins | Guangdong | December 2020 |
YNA-A21 | Daldinia sp. | ZHKUCC 22-0259 | OP445264 | Health leaves | Yunnan | November 2020 |
GDA-2A1 | Diaporthe sp. | KUMCC 21-0244 | OL455786 | Agarwood resins | Guangdong | December 2020 |
GDA-2A2 | Diaporthe sp. | KUMCC 21-0245 | OL455787 | Agarwood resins | Guangdong | December 2020 |
GDA-2C2 | Diaporthe sp. | KUMCC 21-0271 | OL455832 | Agarwood resins | Guangdong | December 2020 |
YNA-A29 | Diaporthe sp. | ZHKUCC 22-0261 | OP445266 | Health leaves | Yunnan | November 2020 |
YNA-C4 | Diaporthe sp. | ZHKUCC 22-0269 | OP445275 | Health leaves | Yunnan | November 2020 |
GDA-1A2 | Fusarium sp. | KUMCC 21-0219 | OL548884 | Agarwood resins | Guangdong | December 2020 |
GDA-2A8 | Fusarium sp. | KUMCC 21-0251 | OL455794 | Agarwood resins | Guangdong | December 2020 |
GDA-2B7 | Fusarium sp. | KUMCC 21-0260 | OL455811 | Agarwood resins | Guangdong | December 2020 |
GDA-2C9 | Fusarium sp. | KUMCC 21-0278 | OL455819 | Agarwood resins | Guangdong | December 2020 |
GDA-2F9 | Fusarium sp. | ZHKUCC 22-0244 | OP439518 | Agarwood resins | Guangdong | December 2020 |
GDA-3C4 | Fusarium sp. | KUMCC 21-0326 | OL548899 | Agarwood resins | Guangdong | December 2020 |
YNA-2C10 | Fusarium sp. | ZHKUCC 22-0253 | OP450965 | Agarwood resins | Yunnan | September 2021 |
YNA-2C3 | Fusarium sp. | ZHKUCC 22-0254 | OP450953 | Agarwood resins | Yunnan | September 2021 |
YNA-2C6 | Fusarium sp. | ZHKUCC 22-0256 | OP450955 | Agarwood resins | Yunnan | September 2021 |
YNA-A1 | Neopestalotiopsis sp. | ZHKUCC 22-0257 | OP445262 | Health leaves | Yunnan | November 2020 |
GDA-2B6 | Nigrospora sp. | KUMCC 21-0259 | OL455810 | Agarwood resins | Guangdong | December 2020 |
GDA-4C1 | Nigrospora sp. | ZHKUCC 22-0245 | OP439519 | Health branches | Guangdong | December 2020 |
YNA-2C4 | Nigrospora sp. | ZHKUCC 22-0255 | OP450954 | Agarwood resins | Yunnan | September 2021 |
YNA-A61 | Nigrospora sp. | ZHKUCC 22-0266 | OP445272 | Health leaves | Yunnan | November 2020 |
YNA-A67 | Nigrospora sp. | ZHKUCC 22-0267 | OP445270 | Health leaves | Yunnan | November 2020 |
YNA-A71 | Nigrospora sp. | ZHKUCC 22-0268 | OP445274 | Health leaves | Yunnan | November 2020 |
YNA-1C1 | Trichoderma sp. | ZHKUCC 22-0250 | OP450949 | Agarwood resins | Yunnan | September 2021 |
GDA-2B15 | Xylariaceae sp. | KUMCC 21-0268 | OL455829 | Agarwood resins | Guangdong | December 2020 |
Pathogen | New Code | Strain Name | Strain Number | Effects of Pathogens | References |
---|---|---|---|---|---|
Pathogenic bacteria | PB1 | Erwinia amylovora | CGMCC 1.7276 | Erwinia amylovora causes a destructive plant disease that endangers many host species of Rosaceae Juss. (e.g., apple, blackberry, cotoneaster, pear, pyracantha, and raspberry) | [31,32,33,34,35,36,37,38] |
PB2 | Pseudomonas syringae | CGMCC 1.3333 | Pseudomonas syringae mainly harms plant hosts, including fruit trees (such as apples, hazelnuts and plums) and some field crops (such as beets, cabbage, cucumbers, oats, peas, rice, tobacco, and tomatoes), which cause major economic losses | [39,40,41] | |
PB3 | Salmonella enterica | CGMCC 1.10603 | Salmonella enterica is a zoonotic pathogenic bacterium. It can cause acute gastroenteritis, and it causes other symptoms such as septicaemia, fever and/or abortion. The resistance of this pathogen to multiple antibiotics is a public threat to most Asian countries | [42,43,44,45,46] | |
Pathogenic fungi | PF1 | Alternaria alternata | CGMCC 3.15535 | Alternaria alternata is a pathogenic fungus, that infects important cash crops and lead to human and animal diseases. In the field of human diseases, A. alternata is considered to be one of the most important fungal allergens in the world, which are related to severe asthma and respiratory status | [47,48,49,50,51,52] |
PF2 | Botrytis cinerea | CGMCC 3.3790 | Botrytis cinerea is one of the most destructive pathogens, especially for food and fruits obtained in the field and storage room. Because the pathogen is resistant to commonly used synthetic fungicides, a number of research activities have been carried out, focusing on the development of biological control strategies for the pathogen | [53,54] | |
PF3 | Penicillium digitatum | CGMCC 3.15410 | Penicillium digitatum is a main pathogenic fungus of postharvest decay of fruits belonging to Rutaceae Juss. This high host specificity leads to the loss of citrus fruits | [55,56,57] |
Original Code | Strain Name | PB1-Erwinia amylovora (CGMCC 1.7276) | PB2-Pseudomonas syringae (CGMCC 1.3333) | PB3-Salmonella enterica (CGMCC 1.10603) | PF1-Alternaria alternata (CGMCC 3.15535) | PF2-Botrytis cinerea (CGMCC 3.3790) | PF3-Penicillium digitatum (CGMCC 3.15410) |
---|---|---|---|---|---|---|---|
YNA-A40 | Alternaria sp. | – | – | – | 48.27 ± 2.76 | 64.82 ± 0.07 | 64.15 ± 1.14 |
GDA-2A3 | Annulohypoxylon sp. | 26.94 ± 1.67 | 33.33 ± 0.00 | 46.67 ± 0.22 | 70.61 ± 0.03 | 61.47 ± 1.74 | 72.96 ± 0.58 |
YNA-A18 | Aspergillus sp. | 40.64 ± 0.42 | 37.04 ± 0.27 | 36.67 ± 1.56 | 58.85 ± 0.53 | 63.71 ± 1.24 | 72.33 ± 0.03 |
YNA-A41 | Aspergillus sp. | 49.77 ± 0.42 | 48.15 ± 1.10 | 40.00 ± 0.00 | – | – | – |
YNA-1B2 | Botryosphaeria sp. | – | – | – | 57.08 ± 0.63 | 81.02 ± 0.19 | 72.33 ± 0.03 |
YNA-A22 | Colletotrichum sp. | – | – | – | 56.50 ± 2.02 | 80.46 ± 0.04 | 71.70 ± 0.02 |
YNA-A42 | Colletotrichum sp. | – | – | – | 47.09 ± 2.63 | 69.85 ± 0.90 | 65.41 ± 1.10 |
YNA-A55 | Colletotrichum sp. | – | – | – | 58.85 ± 1.25 | 81.57 ± 0.00 | 71.07 ± 0.81 |
YNA-A60 | Colletotrichum sp. | 36.07 ± 2.92 | 33.33 ± 0.00 | 30.00 ± 0.67 | 48.85 ± 1.18 | 75.43 ± 0.31 | 70.44 ± 0.72 |
GDA-3A20 | Corynespora sp. | – | – | – | 42.39 ± 2.95 | 70.97 ± 0.10 | 71.07 ± 0.01 |
GDA-3A5 | Curvularia sp. | – | – | – | 62.96 ± 0.44 | 52.54 ± 2.18 | 67.30 ± 0.13 |
GDA-3A9 | Curvularia sp. | 86.30 ± 0.00 | 74.07 ± 0.27 | 56.67 ± 0.22 | 77.07 ± 0.02 | 91.62 ± 0.02 | 75.47 ± 0.17 |
GDA-3A11 | Daldinia sp. | – | – | – | 46.50 ± 0.17 | 76.55 ± 0.00 | 72.33 ± 0.13 |
YNA-A21 | Daldinia sp. | – | – | – | 53.56 ± 0.44 | 78.22 ± 0.07 | 72.33 ± 0.03 |
GDA-2A1 | Diaporthe sp. | – | – | – | 71.19 ± 0.01 | 84.92 ± 0.13 | 79.87 ± 0.01 |
GDA-2A2 | Diaporthe sp. | – | – | – | 65.90 ± 0.03 | 79.90 ± 0.24 | 75.47 ± 0.07 |
GDA-2C2 | Diaporthe sp. | – | – | – | 49.44 ± 2.08 | 81.02 ± 0.01 | 74.21 ± 0.01 |
YNA-A29 | Diaporthe sp. | – | – | – | 50.03 ± 0.50 | 69.85 ± 0.69 | 68.55 ± 0.22 |
YNA-C4 | Diaporthe sp. | – | – | – | 63.55 ± 0.01 | 74.87 ± 0.24 | 77.99 ± 0.01 |
GDA-1A2 | Fusarium sp. | 31.51 ± 1.25 | 11.11 ± 2.47 | 46.67 ± 0.22 | 58.26 ± 1.38 | 70.41 ± 2.89 | 72.33 ± 0.06 |
GDA-2A8 | Fusarium sp. | 45.21 ± 0.00 | 44.44 ± 0.82 | 43.33 ± 0.22 | 55.91 ± 1.93 | 63.71 ± 3.11 | 64.78 ± 0.22 |
GDA-2B7 | Fusarium sp. | 54.34 ± 1.67 | 48.15 ± 0.27 | 36.67 ± 0.22 | – | – | – |
GDA-2C9 | Fusarium sp. | 49.77 ± 0.42 | 33.33 ± 0.00 | 46.67 ± 0.89 | – | – | – |
GDA-2F9 | Fusarium sp. | 54.34 ± 0.42 | 48.15 ± 1.10 | 46.67 ± 0.89 | – | – | – |
GDA-3C4 | Fusarium sp. | 36.07 ± 1.67 | 22.22 ± 0.82 | 33.33 ± 0.89 | 55.32 ± 2.52 | 81.57 ± 0.58 | 72.33 ± 0.01 |
YNA-2C10 | Fusarium sp. | 54.34 ± 0.42 | 55.56 ± 0.00 | 56.67 ± 0.22 | – | – | – |
YNA-2C3 | Fusarium sp. | 81.74 ± 0.42 | 44.44 ± 0.82 | 36.67 ± 0.22 | 62.38 ± 0.13 | 56.45 ± 2.38 | 56.60 ± 1.23 |
YNA-2C6 | Fusarium sp. | 49.77 ± 0.42 | 62.96 ± 1.10 | 46.67 ± 1.56 | – | – | – |
GDA-1A7 | Lasiodiplodia sp. | 86.30 ± 1.25 | 59.26 ± 0.27 | 46.67 ± 0.22 | 74.13 ± 0.03 | 91.07 ± 0.02 | 79.25 ± 0.17 |
GDA-2A9 | Lasiodiplodia sp. | 63.47 ± 0.42 | 55.56 ± 0.00 | 60.00 ± 0.00 | 70.61 ± 0.03 | 89.39 ± 0.01 | 78.62 ± 0.13 |
GDA-2B1 | Lasiodiplodia sp. | 77.17 ± 0.42 | 48.15 ± 1.92 | 53.33 ± 1.56 | 72.96 ± 0.17 | 93.30 ± 0.00 | 73.58 ± 0.31 |
GDA-3C2 | Lasiodiplodia sp. | 49.77 ± 0.42 | 62.96 ± 0.27 | 50.00 ± 0.67 | 65.90 ± 0.30 | 93.30 ± 0.00 | 72.96 ± 0.06 |
YNA-1C2 | Lasiodiplodia sp. | 68.04 ± 0.42 | 70.37 ± 0.27 | 56.67 ± 0.89 | 75.31 ± 0.15 | 92.18 ± 0.01 | 75.47 ± 0.17 |
YNA-D3 | Lasiodiplodia sp. | 63.47 ± 0.42 | 74.07 ± 0.27 | 63.33 ± 0.89 | 75.90 ± 0.09 | 93.30 ± 0.00 | 76.73 ±0.10 |
YNA-1C3 | Neofusicoccum sp. | 49.77 ± 0.42 | 70.37 ± 0.27 | 46.67 ± 0.22 | 71.19 ± 0.13 | 92.18 ± 0.02 | 69.18 ± 0.15 |
YNA-A1 | Neopestalotiopsis sp. | – | – | – | 48.27 ± 1.69 | 64.82 ± 1.40 | 71.07 ± 0.06 |
GDA-2B6 | Nigrospora sp. | 40.64 ± 0.42 | 29.63 ± 0.27 | 40.00 ± 0.67 | – | – | – |
GDA-4C1 | Nigrospora sp. | 68.04 ± 0.42 | 62.96 ± 0.27 | 46.67 ± 3.56 | 64.73 ± 0.06 | 71.52 ± 1.70 | 71.70 ± 0.07 |
YNA-2C4 | Nigrospora sp. | – | – | – | 65.31 ± 1.38 | 79.34 ± 0.31 | 72.33 ± 0.03 |
YNA-A61 | Nigrospora sp. | – | – | – | 52.97 ± 0.01 | 78.78 ± 0.16 | 64.78 ± 0.10 |
YNA-A67 | Nigrospora sp. | – | – | – | 47.09 ± 0.08 | 93.30 ± 0.00 | 69.81 ± 0.00 |
YNA-A71 | Nigrospora sp. | – | – | – | 61.20 ± 0.02 | 68.73 ± 2.36 | 71.70 ± 0.02 |
GDA-5A7 | Paracamarosporium sp. | – | – | – | 50.62 ± 2.57 | 59.80 ± 1.40 | 71.70 ± 0.00 |
GDA-4C2 | Pseudopithomyces sp. | 36.07 ± 5.42 | 62.96 ± 0.27 | 33.33 ± 0.89 | 51.79 ± 1.50 | 65.38 ± 0.47 | 58.49 ± 1.45 |
YNA-1C1 | Trichoderma sp. | 45.21 ± 0.00 | 62.96 ± 0.27 | 60.00 ± 0.67 | 77.07 ± 0.02 | 92.74 ± 0.04 | 75.47 ± 0.17 |
GDA-1B3 | Trichosporon sp. | – | – | – | 51.21 ± 3.20 | 46.40 ± 1.74 | 74.21 ± 0.03 |
GDA-2B15 | Xylariaceae sp. | – | – | – | 54.14 ± 1.18 | 78.78 ± 0.16 | 72.33 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.-Y.; Karunarathna, S.C.; Zhang, X.; Dai, D.-Q.; Mapook, A.; Suwannarach, N.; Xu, J.-C.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; et al. Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. J. Fungi 2022, 8, 1197. https://doi.org/10.3390/jof8111197
Du T-Y, Karunarathna SC, Zhang X, Dai D-Q, Mapook A, Suwannarach N, Xu J-C, Stephenson SL, Elgorban AM, Al-Rejaie S, et al. Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. Journal of Fungi. 2022; 8(11):1197. https://doi.org/10.3390/jof8111197
Chicago/Turabian StyleDu, Tian-Ye, Samantha C. Karunarathna, Xian Zhang, Dong-Qin Dai, Ausana Mapook, Nakarin Suwannarach, Jian-Chu Xu, Steven L. Stephenson, Abdallah M. Elgorban, Salim Al-Rejaie, and et al. 2022. "Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens" Journal of Fungi 8, no. 11: 1197. https://doi.org/10.3390/jof8111197
APA StyleDu, T. -Y., Karunarathna, S. C., Zhang, X., Dai, D. -Q., Mapook, A., Suwannarach, N., Xu, J. -C., Stephenson, S. L., Elgorban, A. M., Al-Rejaie, S., & Tibpromma, S. (2022). Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. Journal of Fungi, 8(11), 1197. https://doi.org/10.3390/jof8111197