Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Species for the Experiment
2.2. Parameters of Used Waters
2.3. Preparation of A. Niger Pellets
2.4. Biocoagulation of the Algae
2.5. Chemical Analysis of Elements
2.6. Analysis of the Surface Charge of the Dispersed Particles
2.7. Microscopy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megharaj, M.; Avudainayagam, S.; Naidu, R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbio. 2003, 47, 0051–0054. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S. Bioremediation of heavy metal by algae: Current and future perspective. J. Adv. Lab. Res. Biol. 2012, 3, 195–199. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 5, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Clarens, A.F.; Resurreccion, E.P.; White, M.A.; Colosi, L.M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 2010, 44, 1813–1819. [Google Scholar] [CrossRef]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef]
- Lal, A.; Banerjee, S.; Das, D. Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Sep. Purif. Technol. 2021, 272, 118320. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Z.; Danquah, M.K.; Hoadley, A.F.A. Marine microalgae flocculation and focused beam reflectance measurement. Chem. Eng. J. 2010, 162, 935–940. [Google Scholar] [CrossRef]
- Rao, P.H.; Kumar, R.R.; Raghavan, B.G.; Subramanian, V.V.; Sivasubramanian, V. Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 2011, 37, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Sengar, R.M.S.; Singh, K.K.; Singh, S. Application of phycoremediation technology in the Treatment of sewage water to reduce pollution load. Indian J. Sci. Res. 2011, 2, 33–39. [Google Scholar]
- Bwapwa, J.K.; Jaiyeola, A.T.; Chetty, R. Bioremediation of acid mine drainage using algae strains: A review. S Afr. J. Chem. Eng. 2017, 24, 62–70. [Google Scholar] [CrossRef]
- Pragya, N.; Pandey, K.K.; Sahoo, P.K. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sustain. Energy Rev. 2013, 24, 159–171. [Google Scholar] [CrossRef]
- Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Biosour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of microalgae by flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Lu, M.; Lee, E.Y.; Lee, J. Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnol. Bioprocess Eng. 2014, 19, 143–149. [Google Scholar] [CrossRef]
- Mo, W.; Soh, L.; Werber, J.R.; Elimelech, M.; Zimmerman, J.B. Application of membrane dewatering for algal biofuel. Algal Res. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Hapońska, H.; Clavero, E.; Salvado, J.; Farriol, X.; Torras, C. Pilot scale dewatering of Chlorella sorokiniana and Dunaliella tertiolecta by sedimentation followed by dynamic filtration. Algal Res. 2018, 33, 118–124. [Google Scholar] [CrossRef]
- Feiyan, Z.; Junmu, X.; Wei, D.; Na, C.; Xuya, Y.; Jun-Wei, X.; Tao, L.; Peng, Z. An effective method for harvesting of microalga: Coculture-induced self-flocculation. J. Taiwan Inst. Chem. Eng. 2019, 100, 117–126. [Google Scholar]
- De Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.A.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi the Ultimate Benchtool for Diagnostics, 4th ed.; Part α: Introductions, Lower Fungi, Basidiomycetes, Yeasts, Filamentous Ascomycetes A–B; Foundation Atlas of Clinical Fungi: Hilversum, The Netherlands, 2020. [Google Scholar]
- Šimonovicová, A.; Vojtková, H.; Nosalj, S.; Piecková, E.; Švehláková, H.; Kraková, L.; Drahovská, H.; Stalmachová, B.; Kučová, K.; Pangallo, D. Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front. Microbiol. 2021, 23, 12658010. [Google Scholar] [CrossRef]
- Nosalj, S.; Šimonovičová, A.; Vojtková, H. Enzyme production by soilborne fungal strains of Aspergillus niger isolated from different localities affected by mining. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 900, p. 012027. [Google Scholar]
- Šimonovicová, A.; Takáčová, A.; Šimkovic, I.; Nosalj, S. Experimental treatment of hazardous ash waste by microbial consortium Aspergillus niger and Chlorella sp.: Decrease of the Ni content and identification of adsorption sites by Fourier-Transform Infrared spectroscopy. Front. Microbiol. 2021, 12, 792987. [Google Scholar] [CrossRef]
- Nosalj, S.; Jesenák, K.; Šimonovičová, A.; Hudec, P. Impact of inorganic powder additives on the size and morphology of pellets of the microscopic filamentous fungus Aspergillus niger. Nova Biotechnol. Chim. 2021, 21, 819. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, Y.; Li, Y.; Wan, Y.; Liu, Y.; Lin, X.; Ruan, R. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 2012, 167, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Alrubaie, G.; Al-Shammari, R.H.H. Microalgae Chlorella vulgaris harvesting via co-pelletization with filamentous fungus. Baghdad. Sci. J. 2018, 15, 31–36. [Google Scholar]
- Li, S.; Hu, T.; Xu, Y.; Wang, J.; Chu, R.; Yin, Z.; Mo, F.; Zhu, L. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives. Renew. Sustain. Energy. Rev. 2020, 131, 110005. [Google Scholar] [CrossRef]
- Kamyab, H.; Lee, C.T.; Chelliapan, S.; Khademi, T.; Talaiekhozani, A.; Rezania, S. Role of Microalgal Biotechnology in Environmental Sustainability-A Mini Review. Chem. Eng. Trans. 2019, 72, 451–456. [Google Scholar]
- Kamyab, H.; Tin, L.C.H.; Din, M.F.M.; Ponraj, M.; Mohamad, S.E.; Sohrabi, M. Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalination Water Treat. 2014, 52, 3579–3584. [Google Scholar] [CrossRef]
- Šimonovičová, A.; Kraková, L.; Pauditšová, E.; Pangallo, D. Occurrence and diversity of cultivable autochthonous microscopic fungi in substrates of old environmental loads from mining activities in Slovakia. Ecotoxicol. Environ. Saf. 2019, 172, 194–202. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007. [Google Scholar]
- Klich, M.A. Biogeography of Aspergillus species in soil and litter. Mycologia 2002, 94, 21–27. [Google Scholar] [CrossRef]
- Šutý, Š.; Lužáková, V. Some aspects of ground calcium carbonate deposition onto pulp fibres. In Proceedings of the INPAP′97 Kierunki Rozwoju Technologii I Konstrukcji Maszyn W Papiernictwie, Sulejów, Poland, 18–19 June 1997. [Google Scholar]
- Li, Y.; Xu, Y.; Liu, L.; Li, P.; Yan, Y.; Chen, T.; Zheng, T.; Wang, H. Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass. Algal Res. 2017, 25, 402–412. [Google Scholar] [CrossRef]
- Šutý, Š.; Lužáková, V. Role of surface charge in deposition of filler particles onto pulp fibers. Colloids Surfaces. Physicochem. Eng. Asp. 1998, 139, 271–278. [Google Scholar] [CrossRef]
- Lužáková, V.; Marcinčinová, T.; Šutý, Š. Possibilities of using particle surface charge measurement in pulp and paper production. In Proceedings of the 53rd Congress of Chemical Societies, Chicago, IL, USA, 29 July–2 August 2001; pp. 3–6. [Google Scholar]
- Takáčová, A.; Smolinská, M.; Ryba, J.; Mackuľak, T.; Jokrlová, J.; Hronec, P.; Čík, G. Biodegradation of benzo[a]pyrene through the use of algae. Cent. Eur. J. Chem. 2014, 12, 1133–1143. [Google Scholar] [CrossRef]
- French, C.S. The chlorophylls in vivo and in vitro. In Die CO2-Assimilation/The Assimilation of Carbon Dioxide; Handbuch der Pflanzenphisiologie/Encyclopedia of Plant Physiology; Pirson, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1960; Volume 5, p. 525. [Google Scholar]
- Slomkowski, S.; Alemán, J.V.; Gilbert, R.G.; Hess, M.; Horie, K.; Jones, R.G.; Kubisa, P.; Meisel, I.; Mormann, W.; Penczek, S.; et al. Terminology of polymers and polymerization processes in dispersed systems. Pure Appl. Chem. 2011, 83, 2229–2259. [Google Scholar] [CrossRef] [Green Version]
- Guggenheim, A.; Haller, R. Purification and properties of an α-(1 → 3) glucanohydrolase from Trichoderma harzianum. J. Dent. Res. 1972, 51, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Biosour. Technol. 2012, 114, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Metz, A.; Kossen, N.W.F. The growth of molds in the form of pellets–a literature review. Biotechnol. Bioeng. 1977, 19, 781–799. [Google Scholar] [CrossRef]
- Braun, S.; Vechtlifshitz, S.E. Mycelial morphology and metabolite production. Trends Biotechnol. 1991, 9, 63–68. [Google Scholar] [CrossRef]
- Grimm, L.H.; Kelly, S.; Hengstler, J.; Gobel, A.; Krull, R.; Hempel, D.C. Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol. Bioeng. 2004, 87, 213–218. [Google Scholar] [CrossRef]
- Zmak, P.M.; Podgornik, A.; Podgornik, H.; Koloini, T. Impact of pellet size on growth and lignin peroxidase activity of Phanerochaete chrysosporium. World J. Microbiol. Biotechnol. 2006, 22, 1243–1249. [Google Scholar] [CrossRef]
- Krull, R.; Cordes, C.; Horn, H.; Kampen, I.; Kwade, A.; Neu, T.R.; Nortemann, B. Morphology of filamentous fungi: Linking cellular Biology to process engineering using Aspergillus niger. Biosys. Eng. 2010, 121, 1–21. [Google Scholar]
- Gultom, S.O.; Hu, B. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 2013, 6, 5921–5939. [Google Scholar] [CrossRef] [Green Version]
- Pahl, S.L.; Lee, A.K.; Kalaitzidis, T.; Ashman, P.J.; Sathe, S.; Lewis, D.M. Harvesting, thickening and dewatering microalgae biomass. Algal Biofuel Energy 2013, 5, 165–185. [Google Scholar]
- Vandamme, A.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, C.; Alam, M.A.; Zhao, X.Q.; Zhang, X.Y.; Guo, S.L.; Ho, S.H.; Chang, J.S.; Bai, F.W. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Biosour. Technol. 2015, 184, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Matter, I.A.; Bui, V.K.H.; Jung, M.; Seo, J.Y.; Kim, Y.; Lee, Y.; Oh, Y. Harvesting of microalgae S. obliquus using chitosan-alginate dual flocculation system. App. Sci. 2019, 9, 1–27. [Google Scholar]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 2nd ed.; IWA Publishing: London, UK, 2006. [Google Scholar]
- Salim, S.; Kosterink, N.R.; Tchetkoua Wacka, N.D.; Vermue, M.H.; Wijffels, R.H. Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J. Biotechnol. 2014, 174, 34–38. [Google Scholar] [CrossRef]
- Sanyano, N.; Chetpattananondh, P.; Chongkhong, S. Coagulation–flocculation of marine Chlorella sp. for biodiesel production. Biosour. Technol. 2013, 147, 471–476. [Google Scholar] [CrossRef]
- Muradov, N.; Taha, M.; Miranda, A.F.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.S.; Mouradov, A. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnol. Biofuels 2015, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- McKendry, P. Energy production from biomass (part 3): Gasification technologies. Biosour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Melis, A. Green alga hydrogen production: Progress, challenges and 3 prospects. Int. J. Hydrogen Energy 2002, 27, 1217–1228. [Google Scholar] [CrossRef]
- Miao, X.L.; Wu, Q.Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004, 110, 85–93. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Biosour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Miao, X.L.; Wu, Q.Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Biosour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.Y.; Sarkany, N.; Cui, Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009, 31, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Zhang, J.; Zhang, W.; Hu, B. A new cultivation method for microbial oil production: Cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol. Biofuels 2011, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, S.K.; Malik, A.; Vija, V.K. Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl. Energy 2014, 114, 790–797. [Google Scholar] [CrossRef]
- Wrede, D.; Taha, M.; Miranda, A.F.; Kadali, K.; Stevenson, T.; Ball, A.S.; Mouradov, A. Co-Cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE 2014, 9, e113497. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Cui, J.; Wang, G.; Liu, W.; Ke, P.; Tian, Q.; Li, X.; Tian, Y. Synthesis BiVO4 modified by CuO supported onto bentonite for molecular oxygen photocatalytic oxidative desulfurization of fuel under visible light. Fuel 2021, 209, 120066. [Google Scholar] [CrossRef]
Water Matrix | Parameters | |||||||
---|---|---|---|---|---|---|---|---|
THC (mg.L−1) | COD (mg.L−1) | DSS105 °C (mg.L−1) | DPI (mg.L−1) | pH | DDS105°C (mg.L−1) | DA (mg.L−1) | BOD5 (mg.L−1) | |
Destiled water | <0.02 | <0.02 | <0.02 | <0.02 | 6.80 | <0.02 | <0.02 | <0.02 |
Model water | <0.02 | <0.02 | <0.02 | <0.02 | 6.80 | <0.02 | 9.00 | <0.02 |
Wastewater | 29.40 | 245 | 50.00 | 0.66 | 7.70 | 440.00 | 9.14 | 100 |
Time of Biocoagulation (hours) | Specific Charge Density (meq/g) | |||||
---|---|---|---|---|---|---|
Distilled Water + Algae Biomass (g/L) | Solution of Ammonium Ions 9 Mg/L + Algae Biomass (g/L) | Solution of Ammonium Ions 9 Mg/L + Algae Biomass (g/L) + 5 g/L Pellets | ||||
* 0.5 g/L | 5 g/L | 0.5 g/L | 5 g/L | 0.5 g/L | 5 g/L | |
24 h | 0.05 | 0.02 | 0.25 | 0.32 | 0.39 | 0.13 |
48 h | 0.09 | 0.03 | 0.20 | 0.38 | 0.33 | 0.13 |
72 h | 0.05 | 0.04 | 0.21 | 0.39 | 0.18 | 0.16 |
Biomass of Chlorella sp. (g/L) and A. Niger Pellets in Ammonium Ion Solution 9 mg/L | Time of Biocoagulation (Hours) | Content of Selected Elements | |||
---|---|---|---|---|---|
Concentration of algae biomass (0.5 g/L) | C (%) | H (%) | N (%) | S (%) | |
0 | 19.46 | 2.77 | 3.20 | 0.02 | |
72 | 20.83 | 2.04 | 4.38 | 0.1 | |
Concentration of algae biomass (5 g/L) | 0 | 23.85 | 3.07 | 3.58 | 0.04 |
72 | 34.18 | 3.85 | 5.64 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takáčová, A.; Bajuszová, M.; Šimonovičová, A.; Šutý, Š.; Nosalj, S. Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel. J. Fungi 2022, 8, 1282. https://doi.org/10.3390/jof8121282
Takáčová A, Bajuszová M, Šimonovičová A, Šutý Š, Nosalj S. Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel. Journal of Fungi. 2022; 8(12):1282. https://doi.org/10.3390/jof8121282
Chicago/Turabian StyleTakáčová, Alžbeta, Miriama Bajuszová, Alexandra Šimonovičová, Štefan Šutý, and Sanja Nosalj. 2022. "Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel" Journal of Fungi 8, no. 12: 1282. https://doi.org/10.3390/jof8121282
APA StyleTakáčová, A., Bajuszová, M., Šimonovičová, A., Šutý, Š., & Nosalj, S. (2022). Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel. Journal of Fungi, 8(12), 1282. https://doi.org/10.3390/jof8121282