Neotropical Studies on Hymenochaetaceae: Unveiling the Diversity and Endemicity of Phellinotus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Analyses
2.2. Distribution
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Molecular Phylogenetic Analyses
Species | Geographic Origin | Collection Reference | Substrate | GenBank Accession Number | Reference | |||
---|---|---|---|---|---|---|---|---|
nLSU | nITS | TEF1-α | RPB2 | |||||
Arambarria cognata | Uruguay/Canelones | CGP473 | Dodonaea viscosa | KY907687 | KY907683 | KY907675 | - | [39] |
A. cognata | Uruguay/Canelones | CGP474 | Dodonaea viscosa | KY907692 | KY907682 | KY907676 | - | [39] |
Fomitiporella austroasiana | China/Hainan | Dai 16244 | On fallen angiosperm trunk | MG657320 | MG657328 | - | - | [5] |
F. austroasiana | China/Hainan | Dai 16168 | On fallen angiosperm trunk | MG657321 | MG657329 | - | - | [5] |
F. caryophylli | India | CBS 448.76 | Shorea robusta | AY059021 | AY558611 | - | - | [40] |
F. chinensis | China/Shaanxi | Cui 11230 | Quercus sp. | KY693759 | KX181309 | KY693958 | KY693910 | [41] |
F. inermis | USA/Pennsylvania | JV 1009/56 | Ilex mucronata | KX181347 | KX181306 | - | - | [4] |
F. subinermis | China/Hunan | Dai 15114 | On root of angiosperm tree | KX181344 | KX181308 | - | - | [4] |
F. umbrinella | Brazil/Santa Catarina | FLOR 51648 | - | MK802941 | MK802943 | - | - | [3] |
F. umbrinella | Brazil/Santa Catarina | FLOR 51649 | - | MK802942 | MK802944 | - | - | [3] |
F. vietnamensis | Vietnam/Lam Dong | Dai 18382 | On angiosperm tree | MG657327 | MG657333 | - | - | [5] |
Fulvifomes elaeodendri | South Africa | CMW47825 | Elaeodendron croceum | MH599134 | MH599094 | MT108964 | - | [42] |
F. squamosus | Peru/Piura | USM 258361 | Acacia macracantha | MF479266 | MF479267 | - | - | [31] |
Inocutis dryophilus | USA | DLL2012-001 | Quercus alba | KU139255 | KU139186 | - | KU139317 | [43] |
I. jamaicensis | USA/Arizona | RLG15819 | Quercus arizonica | KY907703 | KY907684 | - | - | [44] |
Inonotus griseus | China | Dai 13436 | - | KX832925 | KX674583 | KY693959 | KX364919 | [45] |
Phellinotus magnoporatus | Peru/Piura | USM 250523 | Ocotea aurantiodora | MZ964981 | MZ954859 | OK000625 | - | This study |
P. neoaridus | Brazil/Pernambuco | URM 80362 | Caesalpinia sp. | KM211286 | KM211294 | - | - | [1] |
P. neoaridus | Brazil/Bahia | HUEFS 122186 | Cenostigma pyramidale | MZ964976 | - | - | - | This study |
P. neoaridus | Brazil/Pernambuco | URM 77673 | - | - | MZ954857 | - | - | This study |
P. neoaridus | Brazil/Bahia | URM 83203 | - | MZ964977 | MZ954858 | - | - | This study |
P. neoaridus | Brazil/Alagoas | URM 80579 | Caesalpinia sp. | MZ964978 | - | - | - | This study |
P. piptadeniae | Brazil/Pernambuco | URM 80766 | Mimosa sp. | KM211285 | KM211293 | - | - | [1] |
P. piptadeniae | Brazil/Pernambuco | URM 80360 | Mimosa sp. | KM211284 | KM211292 | - | - | [1] |
P. piptadeniae | Brazil/Pernambuco | URM 80322 | Mimosa sp. | KM211282 | KM211290 | - | - | [1] |
P. piptadeniae | Brazil/Pernambuco | URM 80345 | Senegalia sp. | KM211283 | KM211291 | - | - | [1] |
P. piptadeniae | Brazil/Pernambuco | URM 80768 | Piptadenia sp. | KM211281 | KM211289 | - | - | [1] |
P. piptadeniae | Brazil/Santa Catarina | FLOR 51451 | Piptadenia gonoacantha | MZ964964 | MZ954839 | - | - | This study |
P. piptadeniae | Uruguay/Treinta y Tres | MVHC 5756 | Calliandra tweediei | MZ964968 | MZ954842 | - | - | This study |
P. piptadeniae | Uruguay/Treinta y Tres | MVHC 5754 | Calliandra tweediei | MZ964967 | MZ954843 | - | - | This study |
P. piptadeniae | Brazil/Santa Catarina | FLOR 63105 | Piptadenia gonoacantha | MZ964971 | MZ954847 | OK000617 | - | This study |
P. piptadeniae | Brazil/Santa Catarina | FLOR 63111 | Piptadenia gonoacantha | MZ964969 | MZ954845 | OK000618 | - | This study |
P. piptadeniae | Brazil/Rio de Janeiro | FLOR 62129 | - | MZ964965 | MZ954840 | - | - | This study |
P. piptadeniae | Uruguay/Treinta y Tres | MVHC 5561 | Calliandra tweediei | KT266877 | MZ954844 | - | - | This study |
P. piptadeniae | Brazil/Sao Paulo | FLOR 63627 | Piptadenia gonoacantha | KP412282 | KP412305 | - | - | Genbank database |
P. piptadeniae | Uruguay/Treinta y Tres | MVHC 5562 | Calliandra tweediei | KT266878 | KT266876 | - | - | Genbank database |
P. piptadeniae | Brazil/Santa Catarina | FLOR 63101 | Piptadenia gonoacantha | MZ964970 | MZ954846 | OK000619 | - | This study |
P. piptadeniae | Brazil/Rio de Janeiro | FLOR 62132 | - | MZ964966 | MZ954841 | - | - | This study |
P. piptadeniae | Brazil/Santa Catarina | FLOR 39572 | Piptadenia gonoacantha | - | MZ954848 | - | - | This study |
P. teixeirae | Brazil/Sergipe | URM 80403 | Piptadenia sp. | - | MZ954849 | - | - | This study |
P. teixeirae | Argentina/Corrientes | CTES 515266 | - | - | MZ954851 | - | - | This study |
P. teixeirae | Brazil/Pernambuco | URM 80636 | Pityrocarpa moniliformis | - | MZ954850 | - | - | This study |
P. teixeirae | Brazil/Pernambuco | URM 80889 | Pityrocarpa moniliformis | - | MZ954852 | - | - | This study |
P. teixeirae | Peru/Piura | USM 250528 | Pithecollobium excelsum | MZ964972 | MZ954853 | - | - | This study |
P. teixeirae | Peru/Piura | USM 258366 | Libidibia glabrata | MZ964973 | MZ954856 | - | - | This study |
P. teixeirae | Peru/Piura | USM 258362 | Libidibia glabrata | MZ964975 | MZ954854 | OK000621 | OK000626 | This study |
P. teixeirae | Peru/Piura | USM 278225 | Libidibia glabrata | MZ964974 | MZ954855 | OK000622 | OK000627 | This study |
P. xerophyticus | Argentina/Cordoba | CORD 3551 | Prosopis sp. | MZ964979 | - | OK000624 | OK000629 | This study |
P. xerophyticus | Argentina/Cordoba | CORD 3552 | Prosopis sp. | MZ964980 | - | OK000623 | OK000628 | This study |
Phylloporia crataegi | China | Dai 18133 | Crataegus sp. | MH165865 | MH151191 | MH167431 | MH161224 | [46] |
P. pectinata | Australia | Voucher 113 | - | MH165867 | MH151181 | MH167421 | MH161213 | [46] |
P. pseudopectinata | China | Cui 13749 | Angiosperm | KX242356 | MF410323 | MH167429 | MH161222 | [47] |
P. rattanicola | China | Dai 18232 | On dead rattan | MG738806 | MH151170 | MH167414 | MH161205 | [48] |
Rajchenbergia mangrovei | France/Guadeloupe | JV 1612/25-J | Conocarpus erectus | MG657331 | MG657325 | - | - | [3] |
R. pertenuis | Brazil/Alagoas | PPT 111 (URM 91181) | On dead wood | MG806100 | MG806101 | - | - | [3] |
R. tenuissima | China | Dai 12245 | Angiosperm | KC999902 | KC456242 | - | - | [3] |
Sanghuangporus vaninii | USA | DMR-95-1-T | Populus tremuloides | KU139258 | KU139198 | KU139380 | KU139318 | [43] |
Tropicoporus drechsleri | Argentina/Chaco | CTES 570140 | Patagonula americana | MG242444 | MG242439 | OK000620 | - | [32] |
3. Results
Taxonomy
4. Discussion
4.1. Taxonomic Status of Phellinotus badius, P. resinaceus and P. scaber
4.2. Morphological, Host and Geographic Distribution Patterns in Species of Phellinotus
4.3. Classification System Status in the ‘Phellinotus Clade’
1. Basidiomata with resinous substances in the pileal surface and the context ..................................................................Phellinotus resinaceus |
1′. Basidiomata without resinous substances in the pileal surface and the context..............................................................................................2 |
2. Hymenophore yellow to olive brown, flat to concave ..............................................................................................................Phellinotus scaber |
2′. Hymenophore brown, flat to convex.....................................................................................................................................................................3 |
3. Tubes distinctly stratified......................................................................................................................................................Phellinotus piptadeniae |
3′. Tubes indistinctly stratified.....................................................................................................................................................................................4 |
4. Pores 1–2 per mm .............................................................................................................................................................Phellinotus magnoporatus |
4′. Pores >3 per mm.......................................................................................................................................................................................................5 |
5. Pores 3–4 per mm ...............................................................................................................................................................Phellinotus xerophyticus |
5′. Pores 4–6 per mm.....................................................................................................................................................................................................6 |
6. The pileal surface cracked, species distributed in the Caribbean region, North and Central America .............................Phellinotus badius |
6′. The pileal surface rimose, species distributed in South America...................................................................................................................... 7 |
7. Pileal surface black, the contex with a mycelial core and dark lines, species distributed in the Caatinga biome of northeast Brazil ....................................................................................................................................................................................................... Phellinotus neoaridus |
7′. Pileal surface dark grayish brown, the contex with dark lines, species distributed in the SDTFs of South America ......................................................................................................................................................................................................... Phellinotus teixeirae |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drechsler-Santos, E.R.; Robledo, G.L.; Lima-Júnior, N.C.; Malosso, E.; Reck, M.A.; Gibertoni, T.B.; Cavalcanti, M.A.Q.; Rajchenberg, M. Phellinotus, a new neotropical genus in the Hymenochaetaceae (Basidiomycota, Hymenochaetales). Phytotaxa 2016, 261, 218–239. [Google Scholar] [CrossRef]
- Pildain, M.B.; Reinoso Cendoya, R.; Ortiz-Santana, B.; Becerra, J.; Rajchenberg, M. A discussion on the genus Fomitiporella (Hymenochaetaceae, Hymenochaetales) and first record of F. americana from southern South America. MycoKeys 2018, 38, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Salvador-Montoya, C.A.; Popoff, O.F.; Góes-Neto, A.; Drechsler-Santos, E.R. Global phylogenetic and morphological reassessment of Fomitiporella s.l. (Hymenochaetales, Basidiomycota): Taxonomic delimitation of Fomitiporella s.s. and segregation of Rajchenbergia, gen. nov. Plant Syst. Evol. 2020, 306, 1–27. [Google Scholar] [CrossRef]
- Ji, X.H.; Vlasák, J.; Zhou, L.W.; Wu, F.; Dai, Y.C. Phylogeny and diversity of Fomitiporella (Hymenochaetales, Basidiomycota). Mycologia 2017, 109, 308–322. [Google Scholar] [CrossRef]
- Ji, X.H.; Vlasák, J.; Tian, X.M.; Dai, Y.C. Three new species of Fomitiporella (Hymenochaetales, Basidiomycota) based on the evidence from morphology and DNA sequence data. MycoKeys 2018, 30, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Salvador-Montoya, C.A.; Robledo, G.L.; Cardoso, D.; Borba-Silva, M.A.; Fernandes, M.; Drechsler-Santos, E.R. Phellinus piptadeniae (Hymenochaetales: Hymenochaetaceae): Taxonomy and host range of a species with disjunct distribution in South American seasonally dry forests. Plant Syst. Evol. 2015, 301, 1887–1896. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.G.; Salvador-Montoya, C.A.; Costa-Rezende, D.H.; Guterres, D.C.; Fernandes, M.; Olkoski, D.; Klabunde, G.H.F.; Drechsler-Santos, E.R. Studies on the biogeography of Phellinotus piptadeniae (Hymenochaetales, Basidiomycota): Expanding the knowledge on its distribution and clarifying hosts relationships. Fungal Ecol. 2020, 45, 100912. [Google Scholar] [CrossRef]
- Robledo, G.L.; Urcelay, C.; Domínguez, L.; Rajchenberg, M. Taxonomy, ecology and biogeography of polypores (Basidiomycetes) from Argentinian Polylepis woodlands. Can. J. Bot. 2006, 84, 1561–1572. [Google Scholar] [CrossRef]
- Munsell Color Company. Munsell Soil Color Charts; Munsell Color Co.: Baltimore, MD, USA, 1975. [Google Scholar]
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Eyre Methuen: London, UK, 1978; pp. 1–252. [Google Scholar]
- Ryvarden, L. Genera of Polypores. Nomenclature and Taxonomy; Synopsis Fungorum; Fungiflora: Oslo, Norway, 1991; pp. 1–363. [Google Scholar]
- Largent, L.; Johnson, D.; Watling, R. How to Identify Mushrooms to Genus III. Microscopic Features, 2nd ed.; Mad River Press: Eureka, CA, USA, 1977; pp. 1–148. [Google Scholar]
- Ferreira-Lopes, V.F.; Robledo, G.L.; Reck, M.A.; Neto, A.G.; Drechsler-Santos, E.R. Phylloporia spathulata sensu stricto and two new South American stipitate species of Phylloporia (Hymenochaetaceae). Phytotaxa 2016, 257, 133–148. [Google Scholar] [CrossRef]
- Särkinen, T.; Iganci, J.R.V.; Linares-Palomino, R.; Simon, M.F.; Prado, D.E. Forgotten forests—Issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecol. 2011, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Dryflor; Banda-R, K.; Delgado-Salinas, A.; Dexter, K.G.; Linares-Palomino, R.; Oliveira-Filho, A.; Prado, D.; Pullan, M.; Quintana, C.; Riina, R.; et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 2016, 353, 1383–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrone, J.J. Biogeographical regionalisation of the neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, G.E.; Sutton, T.; Blazek, R.; Holl, S.; Dassau, O.; Morely, B.; Mitchell, T.; Luthman, L. Quantum GIS Software—Version 3.0.3 ‘Girona’. 2012. Available online: http://download.osgeo.org/qgis (accessed on 14 October 2021).
- Löwenberg-Neto, P. Neotropical region: A shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa 2014, 3802, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid isolation procedure for small quantities of fresh tissue. Phytochem. Bull. Bot. Soc. Am. 1987, 19, 11–15. [Google Scholar]
- Góes-Neto, A.; Loguercio-Leite, C.; Guerrero, R.T. DNA extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: Performance of SDS and CTAB-based methods. Biotemas 2005, 18, 19–32. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D., Snisky, J., White, T., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Moncalvo, J.M.; Lutzoni, F.M.; Rehner, S.A.; Johnson, J.; Vilgalys, R. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst. Biol. 2000, 49, 278–305. [Google Scholar] [CrossRef] [Green Version]
- Dentinger, B.T.M.; Margaritescu, S.; Moncalvo, J.M. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol. Ecol. Resour. 2010, 10, 628–633. [Google Scholar] [CrossRef]
- Wendland, J.; Kothe, E. Isolation of TEF1 encoding translation elongation factor EF1α from the homobasidiomycete Schizophyllum commune. Mycol. Res. 1997, 101, 798–802. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Frøslev, T.G.; Matheny, P.B.; Hibbett, D.S. Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): A comparison of RPB1, RPB2, and ITS phylogenies. Mol. Phylogenet. Evol. 2005, 37, 602–618. [Google Scholar] [CrossRef]
- Matheny, P.B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Matheny, P.B. PCR primers to amplify and sequence RPB2 (RNA polymerase II second largest subunit) in the Basidiomycota (Fungi). J. Clin. Microbiol. 2006, 2, 1–4. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Rajchenberg, M.; Pildain, M.B.; Cajas Madriaga, D.; de Errasti, A.; Riquelme, C.; Becerra, J. New Poroid Hymenochaetaceae (Basidiomycota, Hymenochaetales) from Chile. Mycol. Prog. 2019, 18, 865–877. [Google Scholar] [CrossRef]
- Salvador-Montoya, C.A.; Popoff, O.F.; Reck, M.A.; Drechsler-Santos, E.R. Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, Basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst. Evol. 2018, 304, 445–459. [Google Scholar] [CrossRef]
- Salvador-Montoya, C.A.; Costa-Rezende, D.H.; Ferreira-Lopes, V.; Borba-Silva, M.A.; Popoff, O.F. Tropicoporus drechsleri (Hymenochaetales, Basidiomycota), a new species in the “Inonotus linteus” complex from northern Argentina. Phytotaxa 2018, 338, 75–89. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Ranwez, V.; Harispe, S.; Delsuc, F.; Douzery, E.J.P. MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE 2011, 6, e22594. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajchenberg, M.; Pildain, M.B.; Bianchinotti, V. The phylogenetic position of poroid Hymenochaetaceae (Hymenochaetales, Basidiomycota) from Patagonia, Argentina. Mycologia 2015, 107, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Fischer, M. Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 2002, 94, 998–1016. [Google Scholar] [CrossRef]
- Zhou, L.W. Notes on the taxonomic positions of some Hymenochaetaceae (Basidiomycota) species with colored basidiospores. Phytotaxa 2014, 177, 183–187. [Google Scholar] [CrossRef]
- Tchoumi, J.M.T.; Coetzee, M.P.A.; Rajchenberg, M.; Roux, J. Poroid Hymenochaetaceae associated with trees showing wood-rot symptoms in the Garden Route National Park of South Africa. Mycologia 2020, 112, 722–741. [Google Scholar] [CrossRef]
- Brazee, N.J. Phylogenetic Relationships among Species of Phellinus sensu stricto, cause of white trunk rot of hardwoods, from Northern North America. Forests 2015, 6, 4191–4211. [Google Scholar] [CrossRef] [Green Version]
- Pildain, M.B.; Pérez, G.A.; Robledo, G.; Pappano, D.B.; Rajchenberg, M. Arambarria the pathogen involved in canker rot of Eucalyptus, native trees wood rots and grapevine diseases in the Southern Hemisphere. For. Pathol. 2017, 47, e12397. [Google Scholar] [CrossRef]
- Ren, G.J.; Dai, Y.C. Inonotus castanopsidis sp. nov. (Hymenochaetaceae, Basidiomycota) from southwestern China. Phytotaxa 2018, 338, 117–124. [Google Scholar] [CrossRef]
- Zhou, L.W.; Yu-Cheng Dai, Y.C. Phylogeny and taxonomy of Phylloporia (Hymenochaetales): New species and a worldwide key to the genus. Mycologia 2012, 104, 211–222. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Xing, J.; Cui, B. Three new species of Phylloporia (Hymenochaetales) with dimitic hyphal systems from tropical China. Mycologia 2017, 109, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ren, G.J.; Wang, L.; Oliveira-Filho, J.R.C.; Gibertoni, T.B.; Dai, Y.C. An updated phylogeny and diversity of Phylloporia (Hymenochaetales): Eight new species and keys to species of the genus. Mycol. Prog. 2019, 18, 615–639. [Google Scholar] [CrossRef]
- Stamatakis, A. RaxML Version 8: A tool phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer, Version 1.6. 2014. Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 24 November 2021).
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the SC10 Workshop on Gateway Computing Environments (GCE10), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 2016, 7, 1669–1677. [Google Scholar] [CrossRef]
- Larsen, M.J.; Cobb-Poulle, L.A. Phellinus (Hymenochaetaceae). A Survey of the World Taxa; Fungiflora: Oslo, Norway, 1990; pp. 1–206. [Google Scholar]
- Larsen, M.J. Reexamination of the nomenclatural types of Polyporus rimosus Berk. and P. badius Berk. Mycotaxon 1990, 37, 353–361. [Google Scholar]
- Cunningham, G.H. Polyporaceae of New Zealand. Bull. N. Z. Dept. Sci. Industr. Res. 1965, 164, 1–304. [Google Scholar]
- Berkeley, M.J. Supplement to descriptions of exotic fungi in ‘Annals of Nat. Hist’. Ann. Mag. Nat. Hist. 1841, 7, 451–454. [Google Scholar] [CrossRef]
- Ryvarden, L. Type studies in the Polyporaceae 7. Species described by J.M. Berkeley from 1836–1843. Kew Bull. 1976, 31, 81–103. [Google Scholar] [CrossRef]
- Kotlaba, F.; Pouzar, Z. Notes on Phellinus rimosus complex (Hymenochaetaceae). Acta Bot. Croat. 1978, 37, 171–182. [Google Scholar]
- Kotlaba, F.; Pouzar, Z. Two new setae-less Phellinus species with large coloured spores (Fungi, Hymenochaetaceae). Folia Geobot. Phytotax. 1979, 14, 259–263. [Google Scholar] [CrossRef]
- Berkeley, M.J. Contributions towards a Flora of Van Diemen’s Land; from collections sent by R.W. Lawrence and Ronald Gunn, Esqrs., to Sir, W.J. Hooker. Ann. Mag. Nat. Hist. 1839, 3, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.G. Synopsis of the Genus Fomes; Mycological Writings of C.G. Lloyd: Cincinnati, OH, USA, 1915; Volume 4, pp. 209–288. [Google Scholar]
- Urcelay, C.; Rajchenberg, M.; Domínguez, L.S. Algunos Hongos xilófilos (Aphyllophorales, Tremellales) poco conocidos para la región Chaqueña. Kurtziana 1999, 27, 251–256. [Google Scholar]
- Cooke, M.C. Praecursores ad Monographia Polypororum. Grevillea 1885, 13, 80–87. [Google Scholar]
- Cooke, M.C. Praecursores ad Monographia Polypororum. Grevillea 1886, 14, 77–87. [Google Scholar]
- Kuntze, O. Revisio Generum Plantarum; Pars III (II) & III (III); Arthur Felix: Leipzig, Germany, 1898; pp. 1–576. [Google Scholar]
- Patouillard, N. Essai Taxonomique sur les Familles et les Genres des Hyménomycètes; Imprimerie et lithographie L. Declume: Lons-le-Saunier, France, 1900; pp. 1–184. [Google Scholar]
- Petch, T. Revisions of Ceylon fungi (Part IV). Ann. Roy. Bot. Gard. 1916, 6, 1–31. [Google Scholar]
- Teixeira, A.R. New combinations and new names in the Polyporaceae. Rev. Brasil. Bot. 1992, 15, 125–127. [Google Scholar]
- Zhou, L.W. Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, Basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience 2014, 55, 70–77. [Google Scholar] [CrossRef]
- Teixeira, A.R. Himenomicetos brasileiros: V. Polyporaceae-2. Bragantia 1950, 10, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Pennington, R.T.; Prado, D.E.; Pendry, C.A. Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 2000, 27, 261–273. [Google Scholar] [CrossRef]
- Linares-Palomino, R. Chapter 11: Phytogeography and Floristics of Seasonally Dry Tropical Forests in Peru. In Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation; Pennington, R.T., Ratter, J.A., Lewis, G.P., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 257–279. [Google Scholar]
- Linares-Palomino, R.; Pennington, R.T. Lista anotada de plantas leñosas en bosques estacionalmente secos del Perú: Una nueva herramienta en Internet para estudios taxonómicos, ecológicos y de biodiversidad. Arnaldoa 2007, 14, 149–152. [Google Scholar]
- Queiroz, L.P. Leguminosas da Caatinga; Universidade Estadual de Feira de Santana: Feira de Santana, Brazil, 2009; pp. 1–467. [Google Scholar]
- Tenreiro, I.G.P. Pityrocarpa moniliformis (Benth.) Luckow & R.W. Jobson. In Guia de Campo de Árvores das Caatingas; Siqueira Filho, J.A., Meiado, M.V., Rabbani, A.R.C., Siqueira, A.A., Vieira, D.C.M., Eds.; Editora Progressiva: Curitiba, Brazil, 2013; pp. 40–41. [Google Scholar]
- Morim, M.P. Pityrocarpa. In Lista de Espécies da Flora do Brasil; Jardim Botânico do Rio de Janeiro, 2015. Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB116640 (accessed on 4 November 2021).
- Linares-Palomino, R.; Aybar, D.; Morales Ruiz, E.J. Floristics of neotropical seasonally dry forests: A perspective from complete vascular plant inventories. Phytocoenologia 2015, 45, 251–267. [Google Scholar] [CrossRef]
- Braga, R. Plantas do Nordeste, Especialmente do Ceará, 5th ed.; Coleção Mossoroense Série C; Fundação Guimarães Duque: Mossoró, Brazil, 2001; pp. 1–496. [Google Scholar]
- Maia, G.N. Caatinga: Árvores e Arbustos e Suas Utilidades; São Paulo D & Z: São Paulo, Brazil, 2004; pp. 1–413. [Google Scholar]
- Santana, J.A.S.; Souto, J.S. Diversidade e estrutura fitossociológica da Caatinga na Estação Ecológica do Seridó-RN. Rev. Biol. Ciências Terra 2006, 6, 232–242. [Google Scholar]
- Rodal, M.J.N.; Martins, F.R.; Sampaio, E.V.S.B. Levantamento quantitativo das plantas lenhosas em trecho de vegetação de Caatinga em Pernambuco. Rev. Caatinga Mossoró 2008, 21, 192–205. [Google Scholar]
- Ryvarden, L. African polypres—A review. Belg. J. Bot. 1998, 131, 150–155. [Google Scholar]
- Robledo, G.L.; Renison, D. Wood-decaying polypores in the mountains of central Argentina in relation to Polylepis forest structure and altitude. Fungal Ecol. 2010, 3, 178–184. [Google Scholar] [CrossRef]
- Amalfi, M.; Yombiyeni, P.; Decock, C. Fomitiporia in sub-Saharan Africa: Morphology and multigene phylogenetic analysis support three new species from the Guineo-Congolian rainforest. Mycologia 2010, 102, 1303–1317. [Google Scholar] [CrossRef]
- Brazee, N.J.; Lindner, D.L. Unravelling the Phellinus pini s.l. complex in North America: A multilocus phylogeny and differentiation analysis of Porodaedalea. For. Pathol. 2013, 43, 451–454. [Google Scholar] [CrossRef]
- Amalfi, M.; Decock, C. Fomitiporia castilloi sp. nov. and multiple clades around F. apiahyna and F. texana in Meso- and South America evidenced by multiloci phylogenetic inferences. Mycologia 2013, 105, 873–887. [Google Scholar] [CrossRef]
- Campos-Santana, M.; Amalfi, M.; Robledo, G.; Borges da Silveira, R.M.; Decock, C. Fomitiporia neotropica, a new species from South America evidenced by multilocus phylogenetic analyses. Mycol. Prog. 2014, 13, 601–615. [Google Scholar] [CrossRef]
- Campos-Santana, M.; Amalfi, M.; Castillo, G.; Decock, C. Multilocus, DNA-based phylogenetic analyses reveal three new species lineages in the P. gabonensis–P. caribaeo-quercicola species complex, including Phellinus amazonicus sp. nov. Mycologia 2017, 108, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cui, B.K. Multi-locus phylogeny and morphology reveal five new species of Fomitiporia (Hymenochaetaceae) from China. Mycol. Progr. 2017, 16, 687–701. [Google Scholar] [CrossRef]
- Morera, G.; Robledo, G.; Ferreira-Lopes, V.; Urcelay, C. South American Fomitiporia (Hymenochaetaceae, Basidiomycota) ‘jump on’ exotic living trees revealed by multi-gene phylogenetic analysis. Phytotaxa 2017, 321, 277–286. [Google Scholar] [CrossRef]
Species | Pileal Surface | Pore Surface | Context | Tubes | Average (µm) | Basidiospores | ||
---|---|---|---|---|---|---|---|---|
Form | Pores/mm | Size (µm) | Q Value | |||||
P. badius | C | F | 4–5 | Dl | Is | 7.2 × 5.3 | 6–7(–8) × (4.5–)5–6 | 1.25–1.50 |
P. magnoporatus | Z | F | 1–2 | Mc | Is | 5.0 × 4.0 | (4–)4.5–5.5(–6) × (3–)4–4.5 | 1.10–1.50 |
P. neoaridus | R | F-Cv | (3–)4–5(–6) | Dl/Mc | Is | 5.8 × 4.7 | (4.5–)5.5–6.5(–7) × (3–)4–5(–6) | 1.20–1.40 |
P. piptadeniae | C/Lb | F | (3–)4–6(–7) | Dl | Ds | 5.2 × 4.0 | (4–)4.5–5.5(–6) × (3–)3.5–4.5(–5) | 1.10–1.50 |
P. resinaceus | C/Rs | F-Cv | (2–)3–4(–5) | Mc/Sr | Is | 7.1 × 5.6 | (6–)6.5–7.5(8) × (4.5–)5–6(–6.5) | 1.17–1.44 |
P. scaber | R | F-Cc | 3–4(–5) | Dl | Is | 6.3 × 4.6 | (4.5–)5.5–8(–8.5) × (3–)4–6(–6.5) | 1.09–1.86 |
P. teixeirae | R | F | (3–)4–6(–7) | Dl | Is | 5.6 × 4.2 | (4–)4.5–6.5(–7) × (3–)3.5–5.5(–6) | 1.10–1.57 |
P. xerophyticus | R | F-Cv | 3–4(–5) | Dl | Is | 6.8 × 5.3 | (6–)6.5–7(–7.5) × (4.5–)5–5.5(–6) | 1.20–1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador-Montoya, C.A.; Elias, S.G.; Popoff, O.F.; Robledo, G.L.; Urcelay, C.; Góes-Neto, A.; Martínez, S.; Drechsler-Santos, E.R. Neotropical Studies on Hymenochaetaceae: Unveiling the Diversity and Endemicity of Phellinotus. J. Fungi 2022, 8, 216. https://doi.org/10.3390/jof8030216
Salvador-Montoya CA, Elias SG, Popoff OF, Robledo GL, Urcelay C, Góes-Neto A, Martínez S, Drechsler-Santos ER. Neotropical Studies on Hymenochaetaceae: Unveiling the Diversity and Endemicity of Phellinotus. Journal of Fungi. 2022; 8(3):216. https://doi.org/10.3390/jof8030216
Chicago/Turabian StyleSalvador-Montoya, Carlos A., Samuel G. Elias, Orlando F. Popoff, Gerardo L. Robledo, Carlos Urcelay, Aristóteles Góes-Neto, Sebastián Martínez, and Elisandro R. Drechsler-Santos. 2022. "Neotropical Studies on Hymenochaetaceae: Unveiling the Diversity and Endemicity of Phellinotus" Journal of Fungi 8, no. 3: 216. https://doi.org/10.3390/jof8030216
APA StyleSalvador-Montoya, C. A., Elias, S. G., Popoff, O. F., Robledo, G. L., Urcelay, C., Góes-Neto, A., Martínez, S., & Drechsler-Santos, E. R. (2022). Neotropical Studies on Hymenochaetaceae: Unveiling the Diversity and Endemicity of Phellinotus. Journal of Fungi, 8(3), 216. https://doi.org/10.3390/jof8030216