Sensitivity Testing of Natural Antifungal Agents on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diseased Leaf Collection and Isolation Procedures and Natural Antifungal Agents
2.2. Morphological and Molecular Characterisation
2.3. Pathogenicity Assays
2.4. Antimicrobial Activity of Natural Antifungal Agents on Mycelial Growth
3. Results
3.1. Isolation and Identification of Strain XFT3-1 from Kiwifruit Leaves
3.2. Pathogenicity
3.3. Fungicide Sensitivity of Strain XFT3-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Wang, M.; Yang, G.; Zhang, L.; Zhou, J. Fruit quality assessment of twelve introduced kiwifruit varieties planted in China. In V International Symposium on Kiwifruit; ISHS: Hunan, China, 2002; Volume 610, pp. 61–68. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P. Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chem. 2019, 271, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, I.; Fukuda, T.; Oota, T. Genotypic differences in chlorophyll, lutein, and β-carotene contents in the fruits of Actinidia species. J. Agric. Food Chem. 2005, 53, 6403–6407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, J.; Gao, N.; Gong, E.S.; Xin, G.; Liu, C.; Li, B. Assessment of the phytochemical profile and antioxidant activities of eight kiwi berry (Actinidia arguta (Siebold & Zuccarini) Miquel) varieties in China. Food Sci. Nutr. 2021, 9, 5616–5625. [Google Scholar]
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, ascorbate and the antioxidant potential of kiwiberry vs. common kiwifruit: The effect of cultivar and tissue type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Latocha, P. The nutritional and health benefits of kiwiberry (Actinidia arguta)—A review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.T.; Sun, X.Y.; Zhao, J.M.; You, Y.L.; Lei, Y.S.; Gao, G.T.; Zhan, J.C. Nutrient Compositions and Antioxidant Capacity of Kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chem. 2017, 218, 294. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hou, H.; Zhou, Z.; Tu, H.; Yuan, H. Identification and detection of Botryosphaeria dothidea from kiwifruit (Actinidia chinensis) in china. Plants 2021, 10, 401. [Google Scholar] [CrossRef]
- Li, L.; Pan, H.; Liu, W.; Chen, M.Y.; Zhong, C.H. First report of Alternaria alternata causing postharvest rot of kiwifruit in china. Plant Dis. 2017, 101, 1046. [Google Scholar] [CrossRef]
- Liu, H.; Pang, L.; Lu, X.; Wang, R.C.; Zhou, Q. First Report of Phomopsis longicolla Associated with Postharvest Fruit Rot of Kiwifruit in China. Plant Dis. 2020, 104, 579. [Google Scholar] [CrossRef]
- Pereira, C.; Costa, P.; Pinheiro, L.; Balco, V.M.; Almeida, A. Kiwifruit bacterial canker: An integrative view focused on biocontrol strategies. Planta 2021, 253, 1–20. [Google Scholar] [CrossRef]
- He, J.; Wu, D.; Zhang, Q.; Chen, H.; Li, H.; Han, Q.; Lai, X.; Wang, H.; Wu, Y.; Yuan, J.; et al. Efficacy and mechanism of cinnamon essential oil on inhibition of Colletotrichum acutatum isolated from ‘hongyang’ kiwifruit. Front. Microbiol. 2018, 9, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestra, G.M.; Mazzaglia, A.; Rossetti, A. Outbreak of Bacterial Blossom Blight Caused by Pseudomonas viridiflava on Actinidia chinensis Kiwifruit Plants in Italy. Plant Dis. 2008, 92, 1707. [Google Scholar] [CrossRef] [PubMed]
- González, A.J.; Rodicio, M.R.; Mendoza, M.C. Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish region. Appl. Environ. Microbiol. 2003, 69, 2936–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsuan, H.M.; Salleh, B.; Zakaria, L. Molecular Identification of Fusarium Species in Gibberella fujikuroi Species Complex from Rice, Sugarcane and Maize from Peninsular Malaysia. Int. J. Mol. Sci. 2011, 12, 6722–6732. [Google Scholar] [CrossRef]
- Carter, L.L.A.; Leslie, J.F.; Webster, R.K. Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology 2008, 98, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Matić, S.; Spadaro, D.; Prelle, A.; Gullino, M.L.; Garibaldi, A. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice. Int. J. Food Microbiol. 2013, 166, 515–523. [Google Scholar] [CrossRef]
- Cruz, A.; Marín, P.; González-Jaén, M.T.; Aguilar, K.G.I.; Cumagun, C.J.R. Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines. J. Sci. Food Agric. 2013, 93, 3032–3039. [Google Scholar] [CrossRef]
- Cen, Y.K.; Lin, J.G.; Wang, Y.L.; Wang, J.Y.; Liu, Z.Q.; Zheng, Y.G. The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Front. Bioeng. Biotechnol. 2020, 8, 232. [Google Scholar] [CrossRef]
- Studt, L.; Wiemann, P.; Kleigrewe, K.; Humpf, H.U.; Tudzynski, B. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl. Environ. Microbiol. 2012, 78, 4468–4480. [Google Scholar] [CrossRef] [Green Version]
- Uthandi, S.; Karthikeyan, S.; Sabarinathan, K.G. Gibberellic acid production by Fusarium fujikuroi SG2. J. Sci. Ind. Res. 2010, 69, 211–214. [Google Scholar]
- Piombo, E.; Rosati, M.; Sanna, M.; Mezzalama, M.; Lodovica, G.M.; Spadaro, D. Sequencing of non-virulent strains of Fusarium fujikuroi reveals genes putatively involved in bakanae disease of rice. Fungal Genet. Biol. 2021, 156, 103622. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.N.; Xiao, D.; Hu, X.X.; Chen, H.Y.; Lin, Y.F.; Qing, Z.; Chen, B.S.; Wen, R. First report of leaf spot on lasia spinosa caused by Fusarium fujikuroi in china. Plant Dis. 2020, 104, 2525. [Google Scholar] [CrossRef] [Green Version]
- Duan, C.X.; Wang, B.B.; Sun, F.F.; Yang, Z.H.; Zhu, Z.D.; Wang, X.M. Occurrence of Maize Ear Rot Caused by Fusarium fujikuroi in China. Plant Dis. 2020, 104, 587. [Google Scholar] [CrossRef]
- Li, H.H.; Tang, W.; Liu, K.; Zhang, L.; Tang, X.F.; Miao, M.; Liu, Y.S. First Report of Fusarium fujikuroi Causing Brown Leaf Spot on Kiwifruit. Plant Dis. 2020, 104, 1560–1561. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Sarver, B.A.J.; Balajee, S.A.; Schroers, H.J.; Summerbell, R.C.; Robert, V.A.R.G.; Crous, P.W.; Zhang, N.; et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J. Clin. Microbiol. 2010, 48, 3708–3718. [Google Scholar] [CrossRef] [Green Version]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Sci-ence Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Araujo, L.; Pinto, F.A.M.F.; De Andrade, C.C.L.; Gomes, L.B.; Mituti, T.; Duarte, V. Pseudocercospora actinidiae causes sooty spot disease on kiwifruit in santa catarina, brazil. Australas. Plant Dis. Notes 2021, 16, 1–4. [Google Scholar] [CrossRef]
- Xin, W.; Mao, W.; Lu, F.; Li, T.; Wang, J.; Duan, Y.; Zhou, M. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. Pestic. Biochem. Physiol. 2020, 162, 78–85. [Google Scholar] [CrossRef]
- Mo, F.; Hu, X.; Ding, Y.; Li, R.; Li, M. Naturally produced magnolol can significantly damage the plasma membrane of Rhizoctonia solani. Pestic. Biochem. Physiol. 2021, 178, 104942. [Google Scholar] [CrossRef]
- Laurence, M.H.; Walsh, J.L.; Shuttleworth, L.A.; Robinson, D.M.; Johansen, R.M.; Petrovic, T.; Vu, T.T.H.; Burgess, L.W.; Summerell, B.A.; Liew, E.C.Y. Six novel species of Fusarium from natural ecosystems in Australia. Fungal Divers. 2016, 77, 349–366. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Mohd, M.H.; Mohamed Nor, N.M.I.; Zakaria, L. Fusarium fujikuroi causing fusariosis of pineapple in peninsular Malaysia. Australas. Plant Dis. Notes 2016, 11, 1–6. [Google Scholar] [CrossRef]
- Maryani, N.; Sandoval-Denis, M.; Lombard, L.; Crous, P.W.; Kema, G.H.J. New endemic Fusarium species hitch-hiking with pathogenic Fusarium strains causing Panama disease in small-holder banana plots in Indonesia. Pers.-Mol. Phylogeny Evol. Fungi 2019, 43, 48–69. [Google Scholar] [CrossRef] [Green Version]
- Warrington, J.; Weston, G.C. Kiwifruits: Science and Management; Ray Richards Publisher: Auckland, New Zealand, 1990; pp. 183–204. [Google Scholar]
- Kim, M.J.; Kwon, Y.; Kwak, Y.S. First report of kiwifruit brown leaf spot caused by Fusarium tricinctum in South Korea. J. Agric. Life Sci. 2019, 53, 135–140. [Google Scholar] [CrossRef]
- Corazza, L.; Luongo, L.; Parisi, M. First report of leaf spot caused by Alternaria alternata on kiwifruit in italy. Plant Dis. 1999, 83, 487. [Google Scholar] [CrossRef] [PubMed]
- Kikuhara, K.; Nakashima, C. Sooty spot of kiwifruit caused by Pseudocercospora actinidiae deighton. J. Gen. Plant Pathol. 2008, 74, 185–187. [Google Scholar] [CrossRef]
- Zou, M.F.; Wang, Y.X.; Yan, M.F.; Zhou, Y.; Xiong, G.H.; Jiang, J.X. First Report of Leaf Spot on Kiwifruit Caused by Didymella bellidis in China. Plant Dis. 2019, 104, 287. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Zhang, A.F.; Zang, H.Y.; Gu, C.Y.; Hameed, U.; Qi, Y.J.; Xu, Y.L. First report of leaf spot caused by Nigrospora Sphaerica on kiwifruit in china. Plant Dis. 2016, 100, 2326–2327. [Google Scholar] [CrossRef]
- Masratul, H.M.; Nurul, F.I.; Nik, M.I.M.N.; Latiffah, Z. Fusarium fujikuroi associated with stem rot of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Ann. Appl. Biol. 2017, 170, 434–446. [Google Scholar] [CrossRef]
- Pinaria, A.G.; Liew, E.C.Y.; Burgess, L.W. Fusarium species associated with vanilla stem rot in Indonesia. Australas. Plant Pathol. 2010, 39, 176–183. [Google Scholar] [CrossRef]
- Slippers, B.; Stenlid, J.; Wingfield, M.J. Emerging pathogens: Fungal host jumps following anthropogenic introduction. Trends Ecol. Evol. 2005, 20, 420–421. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, H.; Mao, C.; Wu, J.; Zhang, C. Activity of a SDHI fungicide penflufen and the characterization of natural-resistance in Fusarium fujikuroi. Pestic. Biochem. Physiol. 2021, 179, 104960. [Google Scholar] [CrossRef]
- Yong, H.L.; Soyeon, K.; Hyo-Won, C.; Myeong-Ji, L.; Dong, S.R.; In, S.K.; Jin, W.P.; Se-Weon, L. Fungicide Resistance of Fusarium fujikuroi Isolates Isolated in Korea. Korean J. Pestic. Sci. 2010, 14, 427–432. [Google Scholar]
- Chen, Z.; Gao, T.; Liang, S.; Liu, K.; Zhou, M.; Chen, C. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. FEMS Microbiol. Lett. 2014, 357, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Park, M.R.; Kim, Y.C.; Lee, S.W.; Choi, B.R.; Si, W.L.; Kim, I.S. Degradation of prochloraz by rice bakanae disease pathogen fusarium fujikuroi with differing sensitivity: A possible explanation for resistance mechanism. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 433–439. [Google Scholar] [CrossRef]
- Younghae, C.; Boknam, J.; Li, T.; Jungkwan, L. Identification of genes related to fungicide resistance in fusarium fujikuroi. Mycobiology 2017, 45, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Mongiano, G.; Zampieri, E.; Morcia, C.; Titone, P.; Volante, A.; Terzi, V.; Monaco, S. Application of plant-derived bioactive compounds as seed treatments to manage the rice pathogen fusarium fujikuroi. Crop Prot. 2021, 148, 105739. [Google Scholar] [CrossRef]
- Oh, T.S.; Park, Y.J.; Kim, S.M.; Shin, D.I.; Jang, M.J. Seed disinfectant effect of pleurotus ostreatus (heuktari) extract on fusarium fujikuroi nirenberg. Korea J. Org. Agric. 2016, 24, 61–71. [Google Scholar] [CrossRef]
Target Sequence | Primer | Primer Sequence (5’-3’) | Reference |
---|---|---|---|
TEF | EF1 | ATGGGTAAGGAGGACAAGAC | O’Donnell [26] |
EF2 | GGAGGTACCAGTGATCATGTT | ||
RPB2 | RPB2-5f2 | GCCGTCAACGACCCCTTCATT | O’Donnell [27] |
RPB2-7cr | GGGTGGAGTCGTACTTGAGCATGT | ||
TUB2 | Bt2a | GGTAACCAAATCGGTGCTGCTTTC | Glass and Donaldson [28] |
Bt2b | ACCCTCAGTGTAGTGACCCTTGGC |
Species Name | Culture Collection Accession Numbers | Host/Isolate Source | GenBank Accession Number | ||
---|---|---|---|---|---|
TEF | RPB2 | TUB | |||
Fusarium fujikuroi | XFT3-1 | Kiwifruit | OL774567 | OL774568 | OL774569 |
Fusarium fujikuroi | HJYB-4 | Zanthoxylum armatum | MT902140.1 | MT902141.1 | MT902139.1 |
Fusarium fujikuroi | NRRL 13566 | Yellow-eyed grass (Xyris spp.) | - | JX171570.1 | U34415.1 |
Fusarium fujikuroi | HTFLB-1 | Juglans sigillata | MN853324.1 | MT909551.1 | MT786729.1 |
Fusarium fujikuroi | BJ-1 | Bletilla striata | MH263736.1 | - | MH263737.1 |
Fusarium fujikuroi | NRRL 5538 | Yellow-eyed grass (Xyris spp.) | MN193860.1 | MN193888.1 | - |
Fusarium fujikuroi | A9s1 | Soybean | MK560310.1 | MN892319.1 | - |
Fusarium fujikuroi | MRC 2322 | - | MH582343.1 | MH582149.1 | - |
Fusarium fujikuroi | NRRL 43470 | Fusarium keratitis | DQ790494.1 | DQ790582.1 | - |
Fusarium fujikuroi | BJY1 | Canna indica | - | MF984421.1 | MF984415.1 |
Fusarium fujikuroi | CBS 257.52 | Oryza sativa seedling | KU711678.1 | KU604257.1 | KU603885.1 |
Fusarium fujikuroi | CBS 119855 | Environmental | MW401994.1 | MW402735.1 | MW402194.1 |
Fusarium proliferatum | ITEM2287 | LT841245 | LT841252 | LT841243 | |
Fusarium proliferatum | ITEM2400 | LT841259.1 | LT841266.1 | LT841257.1 | |
Fusarium nisikadoi | 25179 | Yellow-eyed grass (Xyris spp.) | MN193879.1 | MN193907.1 | - |
Fusarium gaditjirrii | 45417 | Yellow-eyed grass (Xyris spp.) | MN193881.1 | MN193909.1 | - |
Fusarium pseudocircinatum | NRRL 22946 | Neotropical trees | MG838023.1 | MN724939.1 | MG838096.1 |
Fusarium subglutinans | NRRL 22016 | - | HM057336.1 | JX171599.1 | - |
Fusarium begoniae | NRRL 25300 | - | MN193858.1 | MN193886.1 | - |
Fusarium guttiforme | CBS 409.97 | Population Genomic | MT010999.1 | MT010967.1 | MT011048.1 |
Fusarium acutatum | NRRL 13308 | Yellow-eyed grass (Xyris spp.) | MN193855.1 | MN193883.1 | - |
Natural Antifungal Agents | Concentrations (μg/mL) | Regression Equation | EC50 (mg/L) | r | 95% Confidence Intervals |
---|---|---|---|---|---|
Osthole | 25, 50, 100, 200, 400 | Y = 1.3206 x + 2.6072 | 64.86 ± 0.18 | 0.9931 | 1.7497–56.1921 |
Cinnamaldehyde | 20, 30, 40, 50, 60 | Y = 2.23 x + 0.9631 | 64.60 ± 0.23 | 0.9936 | 1.7725–59.2310 |
Resveratrol | 12.5, 25, 50, 100, 200 | Y = 1.6667 x + 1.4861 | 128.33 ± 0.20 | 0.9928 | 2.0279–106.6450 |
Allicin | 25, 50, 100, 200, 400 | Y = 1.6466 x + 1.6437 | 109.22 ± 0.096 | 0.9949 | 1.9892–97.5529 |
Honokiol | 20, 80, 150, 300, 450 | y = 0.408 x + 4.4829 | 18.50 ± 0.20 | 0.9281 | 0.8312–6.7790 |
Citral | 25, 50, 100, 200, 400 | Y = 1.4632 x + 1.0391 | 509.25 ± 0.50 | 0.9601 | 2.4350–272.2776 |
Carvacrol | 10, 30, 600, 100, 150 | Y = 1.1128 x + 2.0262 | 470.21 ± 0.26 | 0.9743 | 2.3925–246.8687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wu, X.; Dai, Y.; Yin, X.; Zhao, Z.; Zhang, Z.; Li, W.; He, L.; Long, Y. Sensitivity Testing of Natural Antifungal Agents on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease. J. Fungi 2022, 8, 239. https://doi.org/10.3390/jof8030239
Chen T, Wu X, Dai Y, Yin X, Zhao Z, Zhang Z, Li W, He L, Long Y. Sensitivity Testing of Natural Antifungal Agents on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease. Journal of Fungi. 2022; 8(3):239. https://doi.org/10.3390/jof8030239
Chicago/Turabian StyleChen, Tingting, Xia Wu, Yunyun Dai, Xianhui Yin, Zhibo Zhao, Zhuzhu Zhang, Wenzhi Li, Linan He, and Youhua Long. 2022. "Sensitivity Testing of Natural Antifungal Agents on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease" Journal of Fungi 8, no. 3: 239. https://doi.org/10.3390/jof8030239
APA StyleChen, T., Wu, X., Dai, Y., Yin, X., Zhao, Z., Zhang, Z., Li, W., He, L., & Long, Y. (2022). Sensitivity Testing of Natural Antifungal Agents on Fusarium fujikuroi to Investigate the Potential for Sustainable Control of Kiwifruit Leaf Spot Disease. Journal of Fungi, 8(3), 239. https://doi.org/10.3390/jof8030239