Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lichen Sampling
2.2. Incubation
2.3. Treatments
2.4. Chlorophyll a Fluorescence
2.5. Statistical Analyses
3. Results
3.1. Effects of Different Long-Term Water Regimes and Their Interaction with N Pollution
3.2. Effects of Prior N Exposure on the Ability of Cladonia to Deal with Increased N Availability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schimel, D.S. Drylands in the earth system. Science 2010, 327, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Korner, C. Biosphere responses to CO2 enrichment. Ecol. Appl. 2000, 10, 1590–1619. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L., II; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Ecology: Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission; Joint Research Centre. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management; Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., von Maltitz, G., Eds.; Publications Office: Luxembourg, 2018. [Google Scholar]
- Maestre, F.T.; Salguero-Gómez, R.; Quero, J.L. It is getting hotter in here: Determining and projecting the impacts of global environmental change on drylands. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3062–3075. [Google Scholar] [CrossRef] [Green Version]
- Ferrenberg, S.; Reed, S.C.; Belnap, J.; Schlesinger, W.H. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl. Acad. Sci. USA 2015, 112, 12116–12121. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600. [Google Scholar] [CrossRef] [Green Version]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Whitford, W.G. Ecology of Desert Systems; Whitford, W.G., Ed.; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107057999. [Google Scholar]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Chave, J. The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett. 2013, 16, 4–16. [Google Scholar] [CrossRef]
- Allen, C.D. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 2007, 10, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Hueso, R.; Manrique, E. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environ. Pollut. 2011, 159, 449–457. [Google Scholar] [CrossRef]
- Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; et al. Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Glob. Chang. Biol. 2006, 12, 470–476. [Google Scholar] [CrossRef]
- Valentin, C.; D’Herbès, J.M.; Poesen, J. Soil and water components of banded vegetation patterns. Catena 1999, 37, 1–24. [Google Scholar] [CrossRef]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 3-540-4107/5-9. [Google Scholar]
- Eldridge, D.J.; Greene, R.S.B. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of australia. Aust. J. Soil Res. 1994, 32, 389–415. [Google Scholar] [CrossRef]
- Munzi, S.; Cruz, C.; Branquinho, C.; Cai, G.; Faleri, C.; Parrotta, L.; Bini, L.; Gagliardi, A.; Leith, I.D.; Sheppard, L.J. More tolerant than expected: Taking into account the ability of Cladonia portentosa to cope with increased nitrogen availability in environmental policy. Ecol. Indic. 2020, 119, 106817. [Google Scholar] [CrossRef]
- Matos, P.; Pinho, P.; Aragón, G.; Martínez, I.; Nunes, A.; Soares, A.M.V.M.; Branquinho, C. Lichen traits responding to aridity. J. Ecol. 2015, 103, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Tuba, Z.; Csintalan, Z.; Proctor, M.C.F. Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present-day CO2 concentrat. New Phytol. 1996, 133, 353–361. [Google Scholar] [CrossRef]
- Lange, O.L.; Green, T.G.A.; Ziegler, H. Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 1988, 75, 494–501. [Google Scholar] [CrossRef]
- Scheidegger, C.; Frey, B.; Schroeter, B. Cellular water uptake, translocation and PSII activation during rehydration of desiccated. In Bibliotheca Lichenologica: Vol. 67. New Species and Novel Aspects in Ecology and Physiology of Lichens; Kappen, L., Ed.; Cramer: Stuttgart, Germany, 1997; pp. 105–117. [Google Scholar]
- Green, T.G.; Meyer, A.; Buedel, B.; Zellner, H.; Lange, O.L. Diel patterns of CO2-exchange for six lichens from a temperate rain forest in New Zealand. Symbiosis 1995, 18, 251–273. [Google Scholar]
- Jonsson, A.V.; Moen, J.; Palmqvist, K. Predicting lichen hydration using biophysical models. Oecologia 2008, 156, 259–273. [Google Scholar] [CrossRef]
- Grote, E.E.; Belnap, J.; Housman, D.C.; Sparks, J.P. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change. Glob. Chang. Biol. 2010, 16, 2763–2774. [Google Scholar] [CrossRef]
- Maestre, F.T.; Bowker, M.A.; Escolar, C.; Puche, M.D.; Soliveres, S.; Maltez-Mouro, S.; García-Palacios, P.; Castillo-Monroy, A.P.; Martínez, I.; Escudero, A. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2010, 365, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Monroy, A.P.; Bowker, M.A.; Maestre, F.T.; Rodríguez-Echeverría, S.; Martinez, I.; Barraza-Zepeda, C.E.; Escolar, C. Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment. J. Veg. Sci. 2011, 22, 165–174. [Google Scholar] [CrossRef]
- Munzi, S.; Pisani, T.; Loppi, S. The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicol. Environ. Saf. 2009, 72, 2009–2012. [Google Scholar] [CrossRef]
- Munzi, S.; Paoli, L.; Fiorini, E.; Loppi, S. Physiological response of the epiphytic lichen Evernia prunastri (L.) Ach. to ecologically relevant nitrogen concentrations. Environ. Pollut. 2012, 171, 25–29. [Google Scholar] [CrossRef]
- Pinho, P.; Dias, T.; Cruz, C.; Sim Tang, Y.; Sutton, M.A.; Martins-Loução, M.-A.; Máguas, C.; Branquinho, C. Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J. Appl. Ecol. 2011, 48, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Morillas, L.; Roales, J.; Cruz, C.; Munzi, S. Resilience of epiphytic lichens to combined effects of increasing nitrogen and solar radiation. J. Fungi 2021, 7, 333. [Google Scholar] [CrossRef]
- Munzi, S.; Branquinho, C.; Cruz, C.; Loppi, S. Nitrogen tolerance in the lichen Xanthoria parietina: The sensitive side of a resistant species. Funct. Plant Biol. 2013, 40, 237–243. [Google Scholar] [CrossRef]
- Maslaňáková, I.; Biľová, I.; Goga, M.; Kuchár, M.; Bačkor, M. Differences between Sensitivity of Mycobiont and Photobiont of Cladonia sp. Lichens to Different Types of Nitrogen Exposure. Water Air Soil Pollut. 2015, 226, 243. [Google Scholar] [CrossRef]
- Veres, K.; Farkas, E.; Csintalan, Z. The bright and shaded side of duneland life: The photosynthetic response of lichens to seasonal changes is species-specific. Mycol. Prog. 2020, 19, 629–641. [Google Scholar] [CrossRef]
- Dias, T.; Malveiro, S.; Martins-Loução, M.A.; Sheppard, L.J.; Cruz, C. Linking N-driven biodiversity changes with soil N availability in a Mediterranean ecosystem. Plant Soil 2011, 341, 125–136. [Google Scholar] [CrossRef]
- EMEP. MSC-W—Co-Operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe. Available online: https://www.emep.int/mscw/index.html (accessed on 3 December 2021).
- Fenn, M.E.; Baron, J.S.; Allen, E.B.; Rueth, H.M.; Nydick, K.R.; Geiser, L.; Bowman, W.D.; Sickman, J.O.; Meixner, T.; Johnson, D.W.; et al. Ecological effects of nitrogen deposition in the western United States. BioScience 2003, 53, 404–420. [Google Scholar] [CrossRef]
- Meixner, T.; Fenn, M. Biogeochemical budgets in a mediterranean catchment with high rates of atmospheric N deposition—Importance of scale and temporal asynchrony. Biogeochemistry 2004, 70, 331–356. [Google Scholar] [CrossRef]
- Raggio, J.; Green, T.G.A.; Sancho, L.G. In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: A comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biol. 2016, 39, 113–122. [Google Scholar] [CrossRef]
- Paoli, L.; Pirintsos, S.A.; Kotzabasis, K.; Pisani, T.; Navakoudis, E.; Loppi, S. Effects of ammonia from livestock farming on lichen photosynthesis. Environ. Pollut. 2010, 158, 2258–2265. [Google Scholar] [CrossRef] [PubMed]
- Austin, A.T.; Yahdjian, L.; Stark, J.M.; Belnap, J.; Porporato, A.; Norton, U.; Ravetta, D.A.; Schaeffer, S.M. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 2004, 141, 221–235. [Google Scholar] [CrossRef]
- Morillas, L.; Portillo-Estrada, M.; Gallardo, A. Wetting and drying events determine soil N pools in two Mediterranean ecosystems. Appl. Soil Ecol. 2013, 72, 161–170. [Google Scholar] [CrossRef]
- Hooper, D.U.; Johnson, L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 1999, 46, 247–293. [Google Scholar] [CrossRef]
- Nayaka, S.; Ranjan, S.; Saxena, P.; Pathre, U.V.; Upreti, D.K.; Singh, R. Assessing the vitality of Himalayan lichens by measuring their photosynthetic performances using chlorophyll fluorescence technique. Curr. Sci. 2009, 97, 538–545. [Google Scholar]
- Mishler, B.D.; Oliver, M.J. Putting Physcomitrella Patens on the Tree of Life: The Evolution and Ecology of Mosses. In Annual Plant Reviews; Wiley: Hoboken, NJ, USA, 2018; pp. 1–15. [Google Scholar]
- Coe, K.K.; Belnap, J.; Sparks, J.P. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 2012, 93, 1626–1636. [Google Scholar] [CrossRef]
- Maphangwa, K.W.; Musil, C.F.; Raitt, L.; Zedda, L. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. Oecologia 2012, 169, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Lange, O.L.; Schulze, E.-D.; Koch, W. Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste: II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 1970, 159, 38–62. [Google Scholar] [CrossRef]
- Kappen, L.; Smith, C.W. Heat tolerance of two Cladonia species and Campylopus praemorsus in a hot steam vent area of Hawaii. Oecologia 1980, 47, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.J.; Velten, J.; Wood, A.J. Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol. 2000, 151, 73–84. [Google Scholar] [CrossRef]
- Schonbeck, M.; Bewley, J. Response of the moss Tortula ruralis to desiccation treatments. I. Effects of minimum water content and rates of dehydration and rehydration. Can. J. Bot. 2011, 59, 2698–2706. [Google Scholar] [CrossRef]
- Schonbeck, M.; Bewley, J. Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can. J. Bot. 2011, 59, 2707–2712. [Google Scholar] [CrossRef]
- Stark, L.R.; Nichols, L., II; Bonine, M.L. Do the Sexes of the Desert Moss Syntrichia caninervis Differ in Desiccation Tolerance? A Leaf Regeneration Assay. Int. J. Plant Sci. 2005, 166, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.H.; Stark, L.R.; Zimpfer, J.F.; Mcletchie, N.D.; Smith, S.D. Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ. 2005, 28, 939–947. [Google Scholar] [CrossRef]
- Kranner, I.; Beckett, R.; Hochman, A.; Nash, T.H., III. Desiccation-tolerance in lichens: A review. Bryologist 2008, 111, 576–593. [Google Scholar] [CrossRef]
- Weissman, L.; Garty, J.; Hochman, A. Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl. Environ. Microbiol. 2005, 71, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Mayaba, N.; Beckett, R.P. The effect of desiccation on the activities of antioxidant enzymes in lichens from habitats of contrasting water status. Symbiosis 2001, 31, 113–121. [Google Scholar]
- Lange, O.L.; Green, T.G.A. Diel and seasonal courses of ambient carbon dioxide concentration and their effect on productivity of the epilithic lichen Lecanora muralis in a temperate, suburban habitat. Lichenologist 2008, 40, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hui, R.; Zhang, P.; Song, N. Divergent responses of moss- and lichen-dominated biocrusts to warming and increased drought in arid desert regions. Agric. For. Meteorol. 2021, 303, 108387. [Google Scholar] [CrossRef]
- Tucker, C.L.; Ferrenberg, S.; Reed, S.C. Climatic Sensitivity of Dryland Soil CO2 Fluxes Differs Dramatically with Biological Soil Crust Successional State. Ecosystems 2019, 22, 15–32. [Google Scholar] [CrossRef]
- Larson, D.W. Environmental stress and Umbilicaria lichens: The effect of high temperature pretreatments. Oecologia 1982, 55, 102–107. [Google Scholar] [CrossRef]
- Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions. Glob. Chang. Biol. 2008, 14, 670–686. [Google Scholar] [CrossRef]
- Ladrón de Guevara, M.; Gozalo, B.; Raggio, J.; Lafuente, A.; Prieto, M.; Maestre, F.T. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: Insights from an 8 yr experiment. New Phytol. 2018, 220, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, M.; Crittenden, P.D. Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytol. 1998, 140, 519–530. [Google Scholar] [CrossRef]
- Palmqvist, K.; Dahlman, L.; Valladares, F.; Tehler, A.; Sancho, L.G.; Mattsson, J.-E. CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 2002, 133, 295–306. [Google Scholar] [CrossRef]
- Chapin, F.S. The Mineral Nutrition of Wild Plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Palmqvist, K.; Dahlman, L. Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply. New Phytol. 2006, 171, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Munzi, S.; Cruz, C.; Maia, R.; Máguas, C.; Perestrello-Ramos, M.M.; Branquinho, C. Intra- and inter-specific variations in chitin in lichens along a N-deposition gradient. Environ. Sci. Pollut. Res. 2017, 24, 28065–28071. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, L.; Persson, J.; Näsholm, T.; Palmqvist, K. Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta 2003, 217, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Nimis, P. Urban lichen studies in Italy. I. The town of Trieste. Stud. Geobot. 1985, 5, 49–74. [Google Scholar]
- Nimis, P. Urban lichen studies in Italy. II. The town of Udine. Gortania 1986, 7, 147–172. [Google Scholar]
- Wirth, V. The influence of water relations on lichen SO2-resistance. Bibl. Lichenol. 1987, 25, 347–350. [Google Scholar]
- Giordani, P. Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ. Pollut. 2007, 146, 317–323. [Google Scholar] [CrossRef]
- Rydzak, J. Lichens as indicators of the ecological conditions of the habitat. Ann. Univ. Marie Curie-Sklodowska 1968, 23, 131–164. [Google Scholar]
- Munzi, S.; Correia, O.; Silva, P.; Lopes, N.; Freitas, C.; Branquinho, C.; Pinho, P. Lichens as ecological indicators in urban areas: Beyond the effects of pollutants. J. Appl. Ecol. 2014, 51, 1750–1757. [Google Scholar] [CrossRef] [Green Version]
- Tretiach, M.; Pavanetto, S.; Pittao, E.; di Toppi, L.S.; Piccotto, M. Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia 2012, 168, 589–599. [Google Scholar] [CrossRef]
- Dentener, F.; Kinne, S.; Bond, T.; Boucher, O.; Cofala, J.; Generoso, S.; Ginoux, P.; Gong, S.; Hoelzemann, J.J.; Ito, A.; et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 2006, 6, 4321–4344. [Google Scholar] [CrossRef] [Green Version]
- Ward, D. The Biology of Deserts; Oxford University Press: Oxford, UK, 2008; ISBN 9780199211470. [Google Scholar]
- Kleidon, A.; Fraedrich, K.; Heimann, M. A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Clim. Chang. 2000, 44, 471–493. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.; et al. Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. BioScience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Schwinning, S.; Sala, O.E.; Loik, M.E.; Ehleringer, J.R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 2004, 141, 191–193. [Google Scholar] [CrossRef]
- Potts, D.L.; Huxman, T.E.; Enquist, B.J.; Weltzin, J.F.; Williams, D.G. Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. J. Ecol. 2006, 94, 23–30. [Google Scholar] [CrossRef]
- Reed, S.C.; Coe, K.K.; Sparks, J.P.; Housman, D.C.; Zelikova, T.J.; Belnap, J. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Chang. 2012, 2, 752–755. [Google Scholar] [CrossRef]
- Escolar, C.; Maestre, F.T.; Rey, A. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Soil Biol. Biochem. 2015, 80, 9–17. [Google Scholar] [CrossRef] [Green Version]
Factor | df | F | p |
---|---|---|---|
Treatment | 2 | 11.810 | <0.0001 |
Time | 7.622 | 39.155 | <0.0001 |
Treatment × Time | 15.245 | 5.578 | <0.0001 |
Interaction Control | 4.238 | 18.835 | <0.0001 |
Interaction RW | 6.525 | 27.626 | <0.0001 |
Interaction RW+N | 3.384 | 9.713 | <0.0001 |
Factor | df | F | p |
---|---|---|---|
40 kg N h−1year−1 (N-40) | |||
Treatment | 2 | 12.293 | 0.001 |
Time | 11 | 1.385 | 0.187 |
Treatment × Time | 22 | 1.054 | 0.406 |
80 kg N h−1year−1 (N-80) | |||
Treatment | 2 | 5.566 | 0.019 |
Time | 11 | 2.309 | 0.013 |
Treatment × Time | 22 | 0.703 | 0.830 |
Scenario | Aridity | Nitrogen Deposition | Temperature | Lichen Vitality |
---|---|---|---|---|
1 | ↑ | - | - | ↓ |
2 | ↑ | ↑ | - | ↓ |
3 | ↑ | ↑ | ↑ | ↓↓ |
4 | ↑ | - | ↑ | ↓↓↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morillas, L.; Roales, J.; Cruz, C.; Munzi, S. Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes. J. Fungi 2022, 8, 333. https://doi.org/10.3390/jof8040333
Morillas L, Roales J, Cruz C, Munzi S. Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes. Journal of Fungi. 2022; 8(4):333. https://doi.org/10.3390/jof8040333
Chicago/Turabian StyleMorillas, Lourdes, Javier Roales, Cristina Cruz, and Silvana Munzi. 2022. "Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes" Journal of Fungi 8, no. 4: 333. https://doi.org/10.3390/jof8040333
APA StyleMorillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes. Journal of Fungi, 8(4), 333. https://doi.org/10.3390/jof8040333