Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.)
Abstract
:1. Introduction
2. Plant Extracts
Plant Species | Extract | Bioactive Compounds | Relevant Reported Effects | Ref. |
---|---|---|---|---|
Achillea millefolium | Aqueous | terpenes and terpenoids (artemisia ketone, camphor, linalyl acetate and 1,8-cineole) | Antimicrobial activity, reduction of Nosema spores, improvement of honey bee survival. | [97] |
Agastache foeniculum | Ethanolic | phenolic acids and flavonoids (chlorogenic acid, isoquercitrin, quercetin, vanillin, acacetin, gallic acid, caffeic acid, p-OH cinnamic acid, resveratrol) | Reduction of Nosema spores. | [98] |
Allium sativum | Ethanolic | essential oils | Reduction of Nosema spores. | [99] |
Andrographis paniculata | Aqueous | terpenoids (andrographolide, dehydrographolide) | Reduction of Nosema spores; mitigation of gut epithelium degeneration caused by N. ceranae. | [100] |
Annona squamosa | Ethanolic | steroids, terpenes, alkaloids, flavonoids, saponins, phenolic acids | Reduction of Nosema spores. | [96] |
Aristotelia chilensis | Methanolic | phenolic acids, flavonoids (caffeic acid, apigenin and pinocembrin) | Reduction of N. ceranae spore loads, improvement of honey bee survival. | [95] |
Artemisia absinthium | Ethanolic | flavonoids (isoquercitrin, quercetin, rutin) | Antimicrobial and antioxidant activity, reduction of Nosema spore loads. | [98,101] |
Artemisia dubia | Aqueous | benzopyrones, phenolic compounds and quinic acids derivatives (coumarin, chlorogenic acid, 4,5-dicaffaeoylquinic acid) | In vitro and in vivo anti-nosemosis activity. | [102,103] |
Aster scaber | Aqueous | benzopyrones, phenolic compounds and quinic acids derivatives (coumarin, chlorogenic acid, 4,5-dicaffaeoylquinic acid) | In vitro and in vivo anti-nosemosis activity. | [102,103] |
Brassica nigra | Organic | glucosinolates (glucoerucin, glucoraphanin, sinigrin) and isothiocyanates | In vivo and in vitro reduction of N. ceranae infections, improvement of honey bee survival. | [104] |
Cryptocarya alba | Aqueous | terpenes and terpenoids (β-phellandrene, α-terpineol, eucalyptol) | Antimicrobial activity and reduction of Nosema spores. | [105] |
Cucurbita pepo | Ethanolic | Essential Oils | Reduction of Nosema spores. | [99] |
Eleutherococcus senticosus | Ethanolic | saponins and flavonoids (eleutheroside B, eleutheroside E and naringenin) | Prophylactic effect in vivo against Nosema infections does not affect Nosema spores’ viability, improvement of honey bee survival. | [106] |
Eruca sativa | Hexan | glucosinolates (glucoerucin, glucoraphanin, sinigrin) | In vivo and in vitro reduction of N. ceranae infections, improvement of honey bee survival. | [104] |
Eucalyptus globulus | Ethanolic | essential oils | Reduction of Nosema spores. | [99] |
Evernia prunastri | Ethanolic | phenolic acids and flavonoids (chlorogenic acid, vanilic acid, vanillin, rosmarinic acid, crisin, o-Cumaric acid and acacetin) | Reduction of Nosema spores. | [98] |
Humulus lupulus | Ethanolic | flavonoids (isoquercitrin, rutin, epicatechin) | Reduction of Nosema spores. | [98] |
Laurus nobilis | Ethanolic | phenolic acids and flavonoids (syringic acid, isoquercitrin, quercetin, kaempferol, rutin, epicatechin, resveratrol and monoterpenes (1,8-cineole, sabinene and linalool) | Reduction of Nosema spores. | [97,98,107,108] |
Ocimum basilicum | Ethanolic | phenylpropanoid and phenylpropene (methyl eugenol, methyl chavicol) | Reduction of Nosema spores. | [96] |
Origanum vulgare | Ethanolic | phenolic acids, flavonoids (isoquercitrin, rosmarinic acid, apigenin, vitexin 2-o-ramnoside, sinapic acid, resveratrol) and essential Oils | Reduction of Nosema spores. | [98,109] |
Plantago lanceolata | Aqueous | flavonoids, alkaloids, terpenoids, phenolic compounds (caffeic acid derivatives), fatty acids, polysaccharides | Antimicrobial, antioxidant and cytotoxic activity; reduction of Nosema spores; improvement of honey bee survival. | [97] |
Psidium guajava | Ethanolic | terpenes (limonene, β-Pinene, α-Pinene, caryophyllene) | Reduction of Nosema spores. | [96] |
Rosmarinus officinalis | Aqueous | phenolic acid, terpenes and terpeinods (rosmarinic acid, caffeic acid, ursolic acid, betulinic acid, carnosic acid and carnosol, camphor, 1,8-cineole, α-pinene, borneol, camphene, β-pinene and limonene) | Antimicrobial and antioxidant activity, reduction of Nosema spores; improvement of honey bee survival. | [97] |
Rosmarinus officinalis | Hydroalcoholic | essential oils | Reduction of Nosema spores. | [109] |
Rumex acetosella | Aqueous | phenolic compounds and inorganic salt derivates (tannic acid, binoxalate of potassium, and nitrogenous matter) | Reduction of Nosema spores and improvement of honey bee survival. | [97] |
Salvia officinalis | Aqueous | terpenes and terpenoids (cis-thujone, camphor, cineole, humulene, trans-thujone, camphene, pinene, limonene, bornyl acetate and linalool) | Antimicrobial and antioxidant activity, reduction of Nosema spores, improvement of honey bee survival. | [97] |
Syzygium jambos | Ethanolic | phenolic compounds, anthraquinones, and steroids | Reduction of Nosema spores. | [96] |
Thymus vulgaris | Ethanolic | essential oils | Reduction of Nosema spores. | [99] |
Thymus vulgaris | Aqueous | terpenes and terpenoids (geraniol, linalool, gamma-terpineol, carvacrol, thymol and trans-thujan-4-ol/terpinen-4-ol, p-cymene, γ-terpinene and thymol) | Antimicrobial and antioxidant activity, reduction of Nosema spores, improvement of honey bee survival. | [97] |
Ugni molinae | Methanolic | phenolic acids (caffeic acid) | Reduction of N. ceranae spores and improvement of honey bee survival. | [95] |
Urtica dioica | Ethanolic | essential oils | Reduction of Nosema spores. | [99] |
Vaccinium myrtillus | Ethanolic | phenolic acids and flavonoids (chlorogenic acid, syringic acid, ferulic acid, isoquercitrin, quercetin, myricetin, naringenin, kaempferol) | Reduction of Nosema spores. | [98] |
3. RNA Interference
4. Beneficial Microbes
Source | Microbial Cultures | Relevant Reported Effects | Ref. |
---|---|---|---|
Honey bee gastrointestinal tract | Lactobacillus johnsonii AJ5 L. johnsonii CRL1647 | Oral administration of the metabolites produced by L. johnsonii (mainly organic acids) supplemented in syrup reduced the intensity of the disease. | [179,180] |
L. johnsonii CRL1647 | Reduction of Nosema spores. | [181] | |
Lactobacillus kunkeei * | [182] | ||
Lactobacillus salivarius * A3iob | [183] | ||
Lactobacillus plantarum * | The dysbiosis induced by Nosema spp. was lessened by the probiotic L. plantarum. | [170] | |
Bacillus subtilis subsp. Subtilis Mori2 | Reduction of Nosema incidence. | [184] | |
Honey samples | B. subtilis | Surfactin S2, a cyclic lipopeptide produced by B. subtilis C4 exhibited statistically significant anti-Nosema activity. | [185] |
Bacillus sp. (PC2) | Improvement of honey bee survival. | [175] | |
Honey bee larvae | Parasaccharibacterapium | Improvement of honey bee survival. | [175,186] |
Honey bee hive | Multiple strains: Bifidobacterium asteroides DSM 20431 Bifidobacterium coryneforme C155 Bifidobacterium indicum C449 L. kunkeei * Dan39 L. plantarum * Dan91 L. johnsonii Dan92 | Reduction of Nosema spores. | [187] |
Commercial probiotic | Protexin® (Enterococcus faecium) | Reduction of N. ceranae incidence increased the population of adult bees and increased honey production. | [116,176] |
Bactocell® (Pediococcus acidilactici) Levucell SB® (Saccharomyces boulardii) | Improvement of honey bee survival. | [175] | |
EM® probiotic for bees: Multiple species of LAB and photosynthetic bacteria. | Reduction of Nosema spores increased strength of colonies. | [177] | |
APIFLORA (Biowet, Poland) lyophilized selected L actobacillus strains (Maria Curie-Skłodowska University in Lublin and University of Life Sciences in Lublin, Poland) | Antagonistic effect toward N. ceranae and increased bee survival. | Available at: https://biowet.pl/en/produkty/apiflora-2/ accessed on 9 March 2022 | |
VETAFARM: Lactobacillus acidophilus Lactobacillus delbruekii sub.bulgaricus L. plantarum * L. rhamnosus B. bifidum Enterococcus faecium | Reduction of N. ceranae incidence increased the population of adult bees and increased honey production. | [176] | |
P. acidilactici (Lallemand SAS Blagnac, France | Regulate genes involved in honey bee development (vitellogenin), immunity (serine protease 40, defensin) and possibly prevent infection by the parasite N. ceranae. | [178] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.C.; Corradi, N.; Byrnes, E.J., III; Torres-Martinez, S.; Dietrich, F.S.; Keeling, P.J.; Heitman, J. Microsporidia Evolved from Ancestral Sexual Fungi. Curr. Biol. 2008, 18, 1675–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradi, N.; Keeling, P.J. Microsporidia: A Journey through Radical Taxonomical Revisions. Fungal Biol. Rev. 2009, 23, 1–8. [Google Scholar] [CrossRef]
- Tokarev, Y.S.; Huang, W.-F.; Solter, L.F.; Malysh, J.M.; Becnel, J.J.; Vossbrinck, C.R. A Formal Redefinition of the Genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and Reassignment of Species Based on Molecular Phylogenetics. J. Invertebr. Pathol. 2020, 169, 107279. [Google Scholar] [CrossRef]
- Invernizzi, C.; Abud, C.; Tomasco, I.H.; Harriet, J.; Ramallo, G.; Campá, J.; Katz, H.; Gardiol, G.; Mendoza, Y. Presence of Nosema Ceranae in Honeybees (Apis Mellifera) in Uruguay. J. Invertebr. Pathol. 2009, 101, 150–153. [Google Scholar] [CrossRef]
- Goblirsch, M. Nosema Ceranae Disease of the Honey Bee (Apis Mellifera). Apidologie 2018, 49, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P. Widespread Dispersal of the Microsporidian Nosema Ceranae, an Emergent Pathogen of the Western Honey Bee, Apis Mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Emsen, B.; Guzman-Novoa, E.; Hamiduzzaman, M.M.; Eccles, L.; Lacey, B.; Ruiz-Pérez, R.A.; Nasr, M. Higher Prevalence and Levels of Nosema Ceranae than Nosema Apis Infections in Canadian Honey Bee Colonies. Parasitol. Res. 2016, 115, 175–181. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Botías, C.; Bailón, E.G.; Martínez-Salvador, A.; Prieto, L.; Meana, A.; Higes, M. Microsporidia Infecting Apis Mellifera: Coexistence or Competition. Is Nosema Ceranae Replacing Nosema Apis? Environ. Microbiol. 2012, 14, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, R.; Bartolomé, C.; Chejanovsky, N.; Le Conte, Y.; Dalmon, A.; Dussaubat, C.; García-Palencia, P.; Meana, A.; Pinto, M.A.; Soroker, V. Nosema Ceranae in Apis Mellifera: A 12 Years Postdetection Perspective. Environ. Microbiol. 2018, 20, 1302–1329. [Google Scholar] [CrossRef] [Green Version]
- Suwannapong, G.; Yemor, T.; Boonpakdee, C.; Benbow, M.E. Nosema Ceranae, a New Parasite in Thai Honeybees. J. Invertebr. Pathol. 2011, 106, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Tapaszti, Z.; Forgách, P.; Kővágó, C.; Békési, L.; Bakonyi, T.; Rusvai, M. First Detection and Dominance of Nosema Ceranae in Hungarian Honeybee Colonies. Acta Vet. Hung. 2009, 57, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.J.; Al-Ghamdi, A.; Nuru, A.; Khan, K.A.; Alattal, Y. Geographical Distribution and Molecular Detection of Nosema Ceranae from Indigenous Honey Bees of Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Chupia, V.; Pikulkaew, S.; Krutmuang, P.; Mekchay, S.; Patchanee, P. Molecular Epidemiology and Geographical Distribution of Nosema Ceranae in Honeybees, Northern Thailand. Asian Pac. J. Trop. Dis. 2016, 6, 27–31. [Google Scholar] [CrossRef]
- Chen, Y.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema Ceranae Is a Long-Present and Wide-Spread Microsporidian Infection of the European Honey Bee (Apis Mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.J.; Lucas, H.M.; Webster, T.C.; Sagili, R.R. Colony Level Prevalence and Intensity of Nosema Ceranae in Honey Bees (Apis Mellifera L.). PLoS ONE 2016, 11, e0163522. [Google Scholar] [CrossRef] [Green Version]
- Fries, I.; Feng, F.; da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema Ceranae n. Sp.(Microspora, Nosematidae), Morphological and Molecular Characterization of a Microsporidian Parasite of the Asian Honey Bee Apis Cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356–365. [Google Scholar] [CrossRef]
- Manual, O.T. Manual for Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 2.2. 4; Office International des Epizooties: Paris, France, 2008. [Google Scholar]
- Fries, I. Nosema Ceranae in European Honey Bees (Apis Mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef] [PubMed]
- Paris, L.; El Alaoui, H.; Delbac, F.; Diogon, M. Effects of the Gut Parasite Nosema Ceranae on Honey Bee Physiology and Behavior. Curr. Opin. Insect Sci. 2018, 26, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fries, I. Nosema Apis—a Parasite in the Honey Bee Colony. Bee World 1993, 74, 5–19. [Google Scholar] [CrossRef]
- Wang, D.-I.; Mofller, F. The Division of Labor and Queen Attendance Behavior of Nosema-Infected Worker Honey Bees. J. Econ. Entomol. 1970, 63, 1539–1541. [Google Scholar] [CrossRef]
- Woyciechowski, M.; Moroń, D. Life Expectancy and Onset of Foraging in the Honeybee (Apis Mellifera). Insectes Soc. 2009, 56, 193–201. [Google Scholar] [CrossRef]
- Dosselli, R.; Grassl, J.; Carson, A.; Simmons, L.W.; Baer, B. Flight Behaviour of Honey Bee (Apis Mellifera) Workers Is Altered by Initial Infections of the Fungal Parasite Nosema Apis. Sci. Rep. 2016, 6, 36649. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; Martín-Hernández, R.; Meana, A. Nosema Ceranae in Europe: An Emergent Type C Nosemosis. Apidologie 2010, 41, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; Martín, R.; Meana, A. Nosema Ceranae, a New Microsporidian Parasite in Honeybees in Europe. J. Invertebr. Pathol. 2006, 92, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Higes, M.; Martín-Hernández, R.; Botías, C.; Bailón, E.G.; González-Porto, A.V.; Barrios, L.; Del Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; Palencia, P.G. How Natural Infection by Nosema Ceranae Causes Honeybee Colony Collapse. Environ. Microbiol. 2008, 10, 2659–2669. [Google Scholar] [CrossRef]
- Paxton, R.J. Does Infection by Nosema Ceranae Cause “Colony Collapse Disorder” in Honey Bees (Apis Mellifera)? J. Apic. Res. 2010, 49, 80–84. [Google Scholar] [CrossRef]
- Botías, C.; Martín-Hernández, R.; Barrios, L.; Meana, A.; Higes, M. Nosema Spp. Infection and Its Negative Effects on Honey Bees (Apis Mellifera Iberiensis) at the Colony Level. Vet. Res. 2013, 44, 25. [Google Scholar] [CrossRef] [Green Version]
- Goblirsch, M.; Huang, Z.Y.; Spivak, M. Physiological and Behavioral Changes in Honey Bees (Apis Mellifera) Induced by Nosema Ceranae Infection. PLoS ONE 2013, 8, e58165. [Google Scholar] [CrossRef] [PubMed]
- Aufauvre, J.; Misme-Aucouturier, B.; Viguès, B.; Texier, C.; Delbac, F.; Blot, N. Transcriptome Analyses of the Honeybee Response to Nosema Ceranae and Insecticides. PLoS ONE 2014, 9, e91686. [Google Scholar] [CrossRef] [PubMed]
- Basualdo, M.; Barragán, S.; Antúnez, K. Bee Bread Increases Honeybee Haemolymph Protein and Promote Better Survival despite of Causing Higher N Osema Ceranae Abundance in Honeybees. Environ. Microbiol. Rep. 2014, 6, 396–400. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Cook, S.C. Chronic Nosema Ceranae Infection Inflicts Comprehensive and Persistent Immunosuppression and Accelerated Lipid Loss in Host Apis Mellifera Honey Bees. Int. J. Parasitol. 2018, 48, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Mayack, C.; Natsopoulou, M.; McMahon, D.P. Nosema Ceranae Alters a Highly Conserved Hormonal Stress Pathway in Honeybees. Insect Mol. Biol. 2015, 24, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Mayack, C.; Naug, D. Energetic Stress in the Honeybee Apis Mellifera from Nosema Ceranae Infection. J. Invertebr. Pathol. 2009, 100, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Aliferis, K.A.; Copley, T.; Jabaji, S. Gas Chromatography–Mass Spectrometry Metabolite Profiling of Worker Honey Bee (Apis Mellifera L.) Hemolymph for the Study of Nosema Ceranae Infection. J. Insect Physiol. 2012, 58, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Vidau, C.; Panek, J.; Texier, C.; Biron, D.G.; Belzunces, L.P.; Le Gall, M.; Broussard, C.; Delbac, F.; El Alaoui, H. Differential Proteomic Analysis of Midguts from Nosema Ceranae-Infected Honeybees Reveals Manipulation of Key Host Functions. J. Invertebr. Pathol. 2014, 121, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Dussaubat, C.; Brunet, J.-L.; Higes, M.; Colbourne, J.K.; Lopez, J.; Choi, J.-H.; Martin-Hernandez, R.; Botias, C.; Cousin, M.; McDonnell, C. Gut Pathology and Responses to the Microsporidium Nosema Ceranae in the Honey Bee Apis Mellifera. PLoS ONE 2012, 7, e37017. [Google Scholar] [CrossRef] [Green Version]
- Panek, J.; Paris, L.; Roriz, D.; Mone, A.; Dubuffet, A.; Delbac, F.; Diogon, M.; El Alaoui, H. Impact of the Microsporidian Nosema Ceranae on the Gut Epithelium Renewal of the Honeybee, Apis Mellifera. J. Invertebr. Pathol. 2018, 159, 121–128. [Google Scholar] [CrossRef]
- Antúnez, K.; Martín-Hernández, R.; Prieto, L.; Meana, A.; Zunino, P.; Higes, M. Immune Suppression in the Honey Bee (Apis Mellifera) Following Infection by Nosema Ceranae (Microsporidia). Environ. Microbiol. 2009, 11, 2284–2290. [Google Scholar] [CrossRef]
- Roberts, K.E.; Hughes, W.O. Immunosenescence and Resistance to Parasite Infection in the Honey Bee, Apis Mellifera. J. Invertebr. Pathol. 2014, 121, 1–6. [Google Scholar] [CrossRef]
- Higes, M.; Meana, A.; Bartolomé, C.; Botías, C.; Martín-Hernández, R. Nosema Ceranae (Microsporidia), a Controversial 21st Century Honey Bee Pathogen. Environ. Microbiol. Rep. 2013, 5, 17–29. [Google Scholar] [CrossRef]
- Kurze, C.; Le Conte, Y.; Dussaubat, C.; Erler, S.; Kryger, P.; Lewkowski, O.; Müller, T.; Widder, M.; Moritz, R.F. Nosema Tolerant Honeybees (Apis Mellifera) Escape Parasitic Manipulation of Apoptosis. PLoS ONE 2015, 10, e0140174. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, R.; Higes, M.; Sagastume, S.; Juarranz, Á.; Dias-Almeida, J.; Budge, G.E.; Meana, A.; Boonham, N. Microsporidia Infection Impacts the Host Cell’s Cycle and Reduces Host Cell Apoptosis. PLoS ONE 2017, 12, e0170183. [Google Scholar] [CrossRef] [PubMed]
- Gage, S.L.; Kramer, C.; Calle, S.; Carroll, M.; Heien, M.; DeGrandi-Hoffman, G. Nosema Ceranae Parasitism Impacts Olfactory Learning and Memory and Neurochemistry in Honey Bees (Apis Mellifera). J. Exp. Biol. 2018, 221, jeb161489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; He, J.; Yu, T.; Chen, Y.; Huang, W.-F.; Huang, J.; Zhao, Y.; Nie, H.; Su, S. Transcriptional and Physiological Responses of Hypopharyngeal Glands in Honeybees (Apis Mellifera L.) Infected by Nosema Ceranae. Apidologie 2019, 50, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; McMahon, D.P.; Lim, K.S.; Pull, C.D.; Clark, S.J.; Paxton, R.J.; Osborne, J.L. So near and yet so Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE 2014, 9, e103989. [Google Scholar]
- Dussaubat, C.; Maisonnasse, A.; Crauser, D.; Beslay, D.; Costagliola, G.; Soubeyrand, S.; Kretzchmar, A.; Le Conte, Y. Flight Behavior and Pheromone Changes Associated to Nosema Ceranae Infection of Honey Bee Workers (Apis Mellifera) in Field Conditions. J. Invertebr. Pathol. 2013, 113, 42–51. [Google Scholar] [CrossRef]
- Fries, I. Infectivity and Multiplication of Nosema Apis Z. in the Ventriculus of the Honey Bee. Apidologie 1988, 19, 319–328. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, D.; Raes, H.; Sabbe, G.; De Rycke, P.; Jacobs, F. Early Development of Nosema Apis (Microspora: Nosematidae) in the Midgut Epithelium of the Honeybee (Apis Mellifera). J. Invertebr. Pathol. 1994, 63, 74–81. [Google Scholar] [CrossRef]
- Becnel, J.J.; Andreadis, T.G. Microsporidia in Insects. In The Microsporidia and Microsporidiosis; American Society for Microbiology: Washington, DC, USA, 1999; pp. 447–501. [Google Scholar]
- Higes, M.; García-Palencia, P.; Martín-Hernández, R.; Meana, A. Experimental Infection of Apis Mellifera Honeybees with Nosema Ceranae (Microsporidia). J. Invertebr. Pathol. 2007, 94, 211–217. [Google Scholar] [CrossRef]
- Graystock, P.; Goulson, D.; Hughes, W.O. Parasites in Bloom: Flowers Aid Dispersal and Transmission of Pollinator Parasites within and between Bee Species. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151371. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.L. The Honey Bee Parasite Nosema Ceranae: Transmissible via Food Exchange? PLoS ONE 2012, 7, e43319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-F.; Solter, L.F. Comparative Development and Tissue Tropism of Nosema Apis and Nosema Ceranae. J. Invertebr. Pathol. 2013, 113, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Sulborska, A.; Horecka, B.; Cebrat, M.; Kowalczyk, M.; Skrzypek, T.H.; Kazimierczak, W.; Trytek, M.; Borsuk, G. Microsporidia Nosema Spp.–Obligate Bee Parasites Are Transmitted by Air. Sci. Rep. 2019, 9, 14376. [Google Scholar] [CrossRef]
- Peng, Y.; Baer-Imhoof, B.; Harvey Millar, A.; Baer, B. Consequences of Nosema Apis Infection for Male Honey Bees and Their Fertility. Sci. Rep. 2015, 5, 10565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.; Evison, S.; Baer, B.; Hughes, W. The Cost of Promiscuity: Sexual Transmission of Nosema Microsporidian Parasites in Polyandrous Honey Bees. Sci. Rep. 2015, 5, 10982. [Google Scholar] [CrossRef] [PubMed]
- Van den Heever, J.P.; Thompson, T.S.; Otto, S.J.; Curtis, J.M.; Ibrahim, A.; Pernal, S.F. The Effect of Dicyclohexylamine and Fumagillin on Nosema Ceranae-Infected Honey Bee (Apis Mellifera) Mortality in Cage Trial Assays. Apidologie 2016, 47, 663–670. [Google Scholar] [CrossRef]
- Huang, W.-F.; Solter, L.F.; Yau, P.M.; Imai, B.S. Nosema Ceranae Escapes Fumagillin Control in Honey Bees. PLoS Pathog. 2013, 9, e1003185. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Evans, J.D.; Li, W.F.; Zhao, Y.Z.; DeGrandi-Hoffman, G.; Huang, S.K.; Li, Z.G.; Hamilton, M.; Chen, Y.P. New Evidence Showing That the Destruction of Gut Bacteria by Antibiotic Treatment Could Increase the Honey Bee’s Vulnerability to Nosema Infection. PLoS ONE 2017, 12, e0187505. [Google Scholar] [CrossRef]
- Higes, M.; Nozal, M.J.; Alvaro, A.; Barrios, L.; Meana, A.; Martín-Hernández, R.; Bernal, J.L.; Bernal, J. The Stability and Effectiveness of Fumagillin in Controlling Nosema Ceranae (Microsporidia) Infection in Honey Bees (Apis Mellifera) under Laboratory and Field Conditions. Apidologie 2011, 42, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.I.; Pettis, J.S.; Smith, I.B.; Chu, P.-S. Multiclass Determination and Confirmation of Antibiotic Residues in Honey Using LC-MS/MS. J. Agric. Food Chem. 2008, 56, 1553–1559. [Google Scholar] [CrossRef]
- Van den Heever, J.P.; Thompson, T.S.; Curtis, J.M.; Pernal, S.F. Stability of Dicyclohexylamine and Fumagillin in Honey. Food Chem. 2015, 179, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU), No.37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. J. Eur. Union 2010, 15, 1–72.
- Van den Heever, J.P.; Thompson, T.S.; Curtis, J.M.; Ibrahim, A.; Pernal, S.F. Fumagillin: An Overview of Recent Scientific Advances and Their Significance for Apiculture. J. Agric. Food Chem. 2014, 62, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Van den Heever, J.P.; Thompson, T.S.; Otto, S.J.; Curtis, J.M.; Ibrahim, A.; Pernal, S.F. Evaluation of Fumagilin-B® and Other Potential Alternative Chemotherapies against Nosema Ceranae-Infected Honeybees (Apis Mellifera) in Cage Trial Assays. Apidologie 2016, 47, 617–630. [Google Scholar] [CrossRef] [Green Version]
- Burnham, A.J. Scientific Advances in Controlling Nosema Ceranae (Microsporidia) Infections in Honey Bees (Apis Mellifera). Front. Vet. Sci. 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Underwood, R.M.; Currie, R.W. Indoor Winter Fumigation with Formic Acid for Control of Acarapis Woodi (Acari: Tarsonemidae) and Nosema Disease, Nosema Sp. J. Econ. Entomol. 2009, 102, 1729–1736. [Google Scholar] [CrossRef]
- Nanetti, A.; Rodriguez-García, C.; Meana, A.; Martín-Hernández, R.; Higes, M. Effect of Oxalic Acid on Nosema Ceranae Infection. Res. Vet. Sci. 2015, 102, 167–172. [Google Scholar] [CrossRef]
- Strachecka, A.; Paleolog, J.; Olszewski, K.; Borsuk, G. Influence of Amitraz and Oxalic Acid on the Cuticle Proteolytic System of Apis Mellifera L. Workers. Insects 2012, 3, 821. [Google Scholar] [CrossRef] [Green Version]
- Grzywnowicz, K.; Ciołek, A.; Tabor, A.; Jaszek, M. Profiles of the Body-Surface Proteolytic System of Honey Bee Queens, Workers and Drones: Ontogenetic and Seasonal Changes in Proteases and Their Natural Inhibitors. Apidologie 2009, 40, 4–19. [Google Scholar] [CrossRef]
- Strachecka, A.; Paleolog, J.; Grzywnowicz, K. The Surface Proteolytic Activity in Apis Mellifera. J. Apic. Sci. 2008, 52, 57–66. [Google Scholar]
- Genath, A.; Petruschke, H.; von Bergen, M.; Einspanier, R. Influence of Formic Acid Treatment on the Proteome of the Ectoparasite Varroa Destructor. PLoS ONE 2021, 16, e0258845. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Genersch, E. Identification of Candidate Agents Active against N. Ceranae Infection in Honey Bees: Establishment of a Medium Throughput Screening Assay Based on N. Ceranae Infected Cultured Cells. PLoS ONE 2015, 10, e0117200. [Google Scholar] [CrossRef] [PubMed]
- Boukraâ, L.; Sulaiman, S.A. Rediscovering the Antibiotics of the Hive. Recent Patents Anti-Infect. Drug Disc. 2009, 4, 206–213. [Google Scholar]
- Lozano, A.; Hernando, M.; Uclés, S.; Hakme, E.; Fernández-Alba, A. Identification and Measurement of Veterinary Drug Residues in Beehive Products. Food Chem. 2019, 274, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.; Salom, K.; Al-Ghamdi, A.; Ansari, M.J. Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards. Sci. World J. 2012, 2012, 930849. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.M.G.; Dalla Nora, F.M.; Seraglio, S.K.T.; da Silva, J.M.; Marzoque, H.J.; Santana, R.F.; Verruck, S.; Scussel, V.M. Antibiotic Residues in Honey: A Public Health Issue. Res. Soc. Dev. 2020, 9, e1739119604. [Google Scholar] [CrossRef]
- Formato, G.; Rivera-Gomis, J.; Bubnic, J.; Martín-Hernández, R.; Milito, M.; Croppi, S.; Higes, M. Nosemosis Prevention and Control. Appl. Sci. 2022, 12, 783. [Google Scholar] [CrossRef]
- Tauber, J.P.; Collins, W.R.; Schwarz, R.S.; Chen, Y.; Grubbs, K.; Huang, Q.; Lopez, D.; Peterson, R.; Evans, J.D. Natural Product Medicines for Honey Bees: Perspective and Protocols. Insects 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Cilia, G.; Garrido, C.; Bonetto, M.; Tesoriero, D.; Nanetti, A. Effect of Api-Bioxal® and ApiHerb® Treatments against Nosema Ceranae Infection in Apis Mellifera Investigated by Two QPCR Methods. Vet. Sci. 2020, 7, 125. [Google Scholar] [CrossRef]
- Shumkova, R.; Balkanska, R.; Hristov, P. The Herbal Supplements NOZEMAT HERB® and NOZEMAT HERB PLUS®: An Alternative Therapy for N. Ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens 2021, 10, 234. [Google Scholar] [CrossRef]
- Charistos, L.; Parashos, N.; Hatjina, F. Long Term Effects of a Food Supplement HiveAliveTM on Honey Bee Colony Strength and Nosema Ceranae Spore Counts. J. Apic. Res. 2015, 54, 420–426. [Google Scholar] [CrossRef]
- Higes, M.; Gómez-Moracho, T.; Rodriguez-García, C.; Botias, C.; Martín-Hernández, R. Preliminary Effect of an Experimental Treatment with “Nozevit®”,(a Phyto-Pharmacological Preparation) for Nosema Ceranae Control. J. Apic. Res. 2014, 53, 472–474. [Google Scholar] [CrossRef]
- Gajger, I.; Kozaric, Z.; Berta, D.; Nejedli, S.; Petrinec, Z. Effect of the Herbal Preparation Nozevict on the Mid-Gut Structure of Honeybees (Apis Melífera) Infected with Nosema Sp. Spores. Vet. Med. 2011, 56, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Chioveanu, G.; Ionescu, D.; Mardare, A. Control of Nosemosis-Treatment with Protofil. Apiacta 2004, 39, 31–38. [Google Scholar]
- Cristina, R.T.; Kovačević, Z.; Cincović, M.; Dumitrescu, E.; Muselin, F.; Imre, K.; Militaru, D.; Mederle, N.; Radulov, I.; Hădărugă, N. Composition and Efficacy of a Natural Phytotherapeutic Blend against Nosemosis in Honey Bees. Sustainability 2020, 12, 5868. [Google Scholar] [CrossRef]
- Glavinic, U.; Stankovic, B.; Draskovic, V.; Stevanovic, J.; Petrovic, T.; Lakic, N.; Stanimirovic, Z. Dietary Amino Acid and Vitamin Complex Protects Honey Bee from Immunosuppression Caused by Nosema Ceranae. PLoS ONE 2017, 12, e0187726. [Google Scholar] [CrossRef] [PubMed]
- Botías, C.; Martín-Hernández, R.; Meana, A.; Higes, M. Screening Alternative Therapies to Control Nosemosis Type C in Honey Bee (Apis Mellifera Iberiensis) Colonies. Res. Vet. Sci. 2013, 95, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Suwannapong, G.; Maksong, S.; Phainchajoen, M.; Benbow, M.; Mayack, C. Survival and Health Improvement of Nosema Infected Apis Florea (Hymenoptera: Apidae) Bees after Treatment with Propolis Extract. J. Asia-Pac. Entomol. 2018, 21, 437–444. [Google Scholar] [CrossRef]
- Mura, A.; Pusceddu, M.; Theodorou, P.; Angioni, A.; Floris, I.; Paxton, R.J.; Satta, A. Propolis Consumption Reduces Nosema Ceranae Infection of European Honey Bees (Apis Mellifera). Insects 2020, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Naree, S.; Ponkit, R.; Chotiaroonrat, E.; Mayack, C.L.; Suwannapong, G. Propolis Extract and Chitosan Improve Health of Nosema Ceranae Infected Giant Honey Bees, Apis Dorsata Fabricius, 1793. Pathogens 2021, 10, 785. [Google Scholar] [CrossRef]
- Naree, S.; Ellis, J.D.; Benbow, M.E.; Suwannapong, G. The Use of Propolis for Preventing and Treating Nosema Ceranae Infection in Western Honey Bee (Apis Mellifera Linnaeus, 1787) Workers. J. Apic. Res. 2021, 60, 686–696. [Google Scholar] [CrossRef]
- Yemor, T.; Phiancharoen, M.; Eric Benbow, M.; Suwannapong, G. Effects of Stingless Bee Propolis on Nosema Ceranae Infected Asian Honey Bees, Apis Cerana. J. Apic. Res. 2015, 54, 468–473. [Google Scholar] [CrossRef]
- Arismendi, N.; Vargas, M.; López, M.D.; Barría, Y.; Zapata, N. Promising Antimicrobial Activity against the Honey Bee Parasite Nosema Ceranae by Methanolic Extracts from Chilean Native Plants and Propolis. J. Apic. Res. 2018, 57, 522–535. [Google Scholar] [CrossRef]
- Chaimanee, V.; Kasem, A.; Nuanjohn, T.; Boonmee, T.; Siangsuepchart, A.; Malaithong, W.; Sinpoo, C.; Disayathanoowat, T.; Pettis, J.S. Natural Extracts as Potential Control Agents for Nosema Ceranae Infection in Honeybees, Apis Mellifera. J. Invertebr. Pathol. 2021, 186, 107688. [Google Scholar] [CrossRef] [PubMed]
- Özkırım, A.; Küçüközmen, B. Application of Herbal Essential Oil Extract Mixture for Honey Bees (Apis Mellifera L.) Against Nosema Ceranae and Nosema Apis. J. Apic. Sci. 2021, 65, 163–175. [Google Scholar] [CrossRef]
- Pașca, C.; Matei, I.A.; Diaconeasa, Z.; Rotaru, A.; Erler, S.; Dezmirean, D.S. Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additives against Bee Pathogens. Antibiotics 2021, 10, 960. [Google Scholar] [CrossRef]
- Yilmaz, F.; Kuvanci, A.; Konak, F.; Öztürk, S.; Şahiïn, A. The Effects of Some Essential Oils Against Nosemosis. Bee Stud. 2020, 12, 37–41. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Xu, Y.; Gong, H.; Wu, Y.; Chen, Y.; Hu, F.; Zheng, H. Protective Potential of Chinese Herbal Extracts against Microsporidian Nosema Ceranae, an Emergent Pathogen of Western Honey Bees, Apis Mellifera L. J. Asia-Pac. Entomol. 2021, 24, 502–512. [Google Scholar] [CrossRef]
- Pohorecka, K. Laboratory Studies on the Effect of Standardized Artemisia Absinthium L. Extract on Nosema Apis Infection in the Worker Apis Mellifera. J. Apic. Sci. 2004, 48, 131–136. [Google Scholar]
- Lee, J.K.; Kim, J.H.; Jo, M.; Rangachari, B.; Park, J.K. Anti-Nosemosis Activity of and Aqueous Extracts. J. Apic. Sci. 2018, 62, 27–38. [Google Scholar]
- Balamurugan, R.; Park, J.K.; Lee, J.K. Anti-Nosemosis Activity of Phenolic Compounds Derived from Artemisia Dubia and Aster Scaber. J. Apic. Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Nanetti, A.; Ugolini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Cardaio, I.; Matteo, R.; Lazzeri, L. Seed Meals from Brassica Nigra and Eruca Sativa Control Artificial Nosema Ceranae Infections in Apis Mellifera. Microorganisms 2021, 9, 949. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Carbonell, V.; Sepúlveda, B.; Delporte, C.; Valdovinos, C.E.; Martín-Hernández, R.; Higes, M. Antifungal Activity of the Essential Oil Obtained from Cryptocarya Alba against Infection in Honey Bees by Nosema Ceranae. J. Invertebr. Pathol. 2017, 149, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ptaszyńska, A.A.; Załuski, D. Extracts from Eleutherococcus Senticosus (Rupr. et Maxim.) Maxim. Roots: A New Hope against Honeybee Death Caused by Nosemosis. Molecules 2020, 25, 4452. [Google Scholar] [CrossRef] [PubMed]
- Damiani, N.; Fernández, N.J.; Porrini, M.P.; Gende, L.B.; Álvarez, E.; Buffa, F.; Brasesco, C.; Maggi, M.D.; Marcangeli, J.A.; Eguaras, M.J. Laurel Leaf Extracts for Honeybee Pest and Disease Management: Antimicrobial, Microsporicidal, and Acaricidal Activity. Parasitol. Res. 2014, 113, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Porrini, M.P.; Fernández, N.J.; Garrido, P.M.; Gende, L.B.; Medici, S.K.; Eguaras, M.J. In Vivo Evaluation of Antiparasitic Activity of Plant Extracts on Nosema Ceranae (Microsporidia). Apidologie 2011, 42, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Radoi, I.; Sapcaliu, A.; Mateescu, C.; Pop, A.; Savu, V. In Vitro Screening of Hydroalcoholic Plant Extracts to Control Nosema Apis Infection. J. Biotechnol. 2014, 185, 46. [Google Scholar] [CrossRef]
- Bernklau, E.; Bjostad, L.; Hogeboom, A.; Carlisle, A.; HS, A. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. Insects 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Braglia, C.; Alberoni, D.; Porrini, M.P.; Garrido, P.M.; Baffoni, L.; Di Gioia, D. Screening of Dietary Ingredients against the Honey Bee Parasite Nosema Ceranae. Pathogens 2021, 10, 1117. [Google Scholar] [CrossRef]
- Saltykova, E.; Karimova, A.; Gataullin, A.; Gaifullina, L.; Matniyazov, R.; Frolova, M.; Albulov, A.; Nikolenko, A. The Effect of High-Molecular Weight Chitosans on the Antioxidant and Immune Systems of the Honeybee. Appl. Biochem. Microbiol. 2016, 52, 553–557. [Google Scholar] [CrossRef]
- Saltykova, E.; Gaifullina, L.; Kaskinova, M.; Gataullin, A.; Matniyazov, R.; Poskryakov, A.; Nikolenko, A. Effect of Chitosan on Development of Nosema Apis Microsporidia in Honey Bees. Microbiology 2018, 87, 738–743. [Google Scholar] [CrossRef]
- Valizadeh, P.; Guzman-Novoa, E.; Goodwin, P.H. Effect of Immune Inducers on Nosema Ceranae Multiplication and Their Impact on Honey Bee (Apis Mellifera L.) Survivorship and Behaviors. Insects 2020, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.; Villay, A.; Delbac, F.; Michaud, P.; Laroche, C.; Roriz, D.; El Alaoui, H.; Diogon, M. Antimicrosporidian Activity of Sulphated Polysaccharides from Algae and Their Potential to Control Honeybee Nosemosis. Carbohydr. Polym. 2015, 133, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Klassen, S.S.; VanBlyderveen, W.; Eccles, L.; Kelly, P.G.; Borges, D.; Goodwin, P.H.; Petukhova, T.; Wang, Q.; Guzman-Novoa, E. Nosema Ceranae Infections in Honey Bees (Apis Mellifera) Treated with Pre/Probiotics and Impacts on Colonies in the Field. Vet. Sci. 2021, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Ptaszyńska, A.A.; Trytek, M.; Borsuk, G.; Buczek, K.; Rybicka-Jasińska, K.; Gryko, D. Porphyrins Inactivate Nosema Spp. Microsporidia. Sci. Rep. 2018, 8, 5523. [Google Scholar] [CrossRef]
- Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Maistrello, L.; Lodesani, M.; Costa, C.; Leonardi, F.; Marani, G.; Caldon, M.; Mutinelli, F.; Granato, A. Screening of Natural Compounds for the Control of Nosema Disease in Honeybees (Apis Mellifera). Apidologie 2008, 39, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Lodesani, M.; Maistrello, L. Effect of Thymol and Resveratrol Administered with Candy or Syrup on the Development of Nosema Ceranae and on the Longevity of Honeybees (Apis Mellifera L.) in Laboratory Conditions. Apidologie 2010, 41, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Borges, D.; Guzman-Novoa, E.; Goodwin, P.H. Control of the Microsporidian Parasite Nosema Ceranae in Honey Bees (Apis Mellifera) Using Nutraceutical and Immuno-Stimulatory Compounds. PLoS ONE 2020, 15, e0227484. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Ribarić, J.; Smodiš Škerl, M.; Vlainić, J.; Sikirić, P. Stable Gastric Pentadecapeptide BPC 157 in Honeybee (Apis Mellifera) Therapy, to Control Nosema Ceranae Invasions in Apiary Conditions. J. Vet. Pharmacol. Ther. 2018, 41, 614–621. [Google Scholar] [CrossRef]
- Go, E.B.; Kim, J.-G.; Park, H.-G.; Kang, E.-J.; Kim, H.-K.; Choi, Y.-S.; Moon, J.-H. Screening of Anti-Nosemosis Active Compounds Based on the Structure-Activity Correlation. J. Asia-Pac. Entomol. 2021, 24, 606–613. [Google Scholar] [CrossRef]
- Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vejnovic, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus Bisporus Mushroom Extract on Honey Bees Infected with Nosema Ceranae. Insects 2021, 12, 915. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Stevanovic, J.; Ristanic, M.; Rajkovic, M.; Davitkov, D.; Lakic, N.; Stanimirovic, Z. Potential of Fumagillin and Agaricus Blazei Mushroom Extract to Reduce Nosema Ceranae in Honey Bees. Insects 2021, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Kunat, M.; Wagner, G.; Staniec, B.; Jaszek, M.; Matuszewska, A.; Stefaniuk, D.; Ptaszyńska, A. Aqueous Extracts of Jet-Black Ant Lasius Fuliginosus Nests for Controlling Nosemosis, a Disease of Honeybees Caused by Fungi of the Genus Nosema. Eur. Zool. J. 2020, 87, 770–780. [Google Scholar] [CrossRef]
- Tragust, S. External Immune Defence in Ant Societies (Hymenoptera: Formicidae): The Role of Antimicrobial Venom and Metapleural Gland Secretion. Myrmecol. News 2016, 23, 119–128. [Google Scholar]
- Bos, N.; Kankaanpää-Kukkonen, V.; Freitak, D.; Stucki, D.; Sundström, L. Comparison of Twelve Ant Species and Their Susceptibility to Fungal Infection. Insects 2019, 10, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, N.; Dasaradhi, P.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannon, G.J. RNA Interference. Nature 2002, 418, 244–251. [Google Scholar] [CrossRef]
- Mamta, B.; Rajam, M. RNAi Technology: A New Platform for Crop Pest Control. Physiol. Mol. Biol. Plants 2017, 23, 487–501. [Google Scholar] [CrossRef]
- Vogel, E.; Santos, D.; Mingels, L.; Verdonckt, T.-W.; Broeck, J.V. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front. Physiol. 2019, 9, 1912. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Khan, S.A.; Heckel, D.G.; Bock, R. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends Biotechnol. 2017, 35, 871–882. [Google Scholar] [CrossRef]
- Brutscher, L.M.; Flenniken, M.L. RNAi and Antiviral Defense in the Honey Bee. J. Immunol. Res. 2015, 2015, 941897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grozinger, C.M.; Robinson, G.E. The Power and Promise of Applying Genomics to Honey Bee Health. Curr. Opin. Insect Sci. 2015, 10, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of DsRNA for RNAi in Insects: An Overview and Future Directions. Insect Sci. 2013, 20, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, O.; Whyard, S.; Vélez, A.M.; Smagghe, G. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. Front. Plant Sci. 2020, 11, 451. [Google Scholar] [CrossRef]
- Joga, M.R.; Zotti, M.J.; Smagghe, G.; Christiaens, O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know so Far. Front. Physiol. 2016, 7, 553. [Google Scholar] [CrossRef] [Green Version]
- Paldi, N.; Glick, E.; Oliva, M.; Zilberberg, Y.; Aubin, L.; Pettis, J.; Chen, Y.; Evans, J.D. Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (Apis Mellifera) Colony Declines. Appl. Environ. Microbiol. 2010, 76, 5960–5964. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.D.; Huang, Q. Interactions Among Host–Parasite MicroRNAs During Nosema Ceranae Proliferation in Apis Mellifera. Front. Microbiol. 2018, 9, 698. [Google Scholar] [CrossRef] [Green Version]
- He, N.; Zhang, Y.; Duan, X.L.; Li, J.H.; Huang, W.-F.; Evans, J.D.; DeGrandi-Hoffman, G.; Chen, Y.P.; Huang, S.K. RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema Ceranae Infection in the European Honey Bee, Apis Mellifera. Microorganisms 2021, 9, 505. [Google Scholar] [CrossRef]
- Kim, I.; Kim, D.; Gwak, W.; Woo, S. Increased Survival of the Honey Bee Apis Mellifera Infected with the Microsporidian Nosema Ceranae by Effective Gene Silencing. Arch. Insect Biochem. Physiol. 2020, 105, e21734. [Google Scholar] [CrossRef]
- Balconi, E.; Pennati, A.; Crobu, D.; Pandini, V.; Cerutti, R.; Zanetti, G.; Aliverti, A. The Ferredoxin-NADP+ Reductase/Ferredoxin Electron Transfer System of Plasmodium Falciparum. FEBS J. 2009, 276, 3825–3836. [Google Scholar] [CrossRef]
- Carrillo, N.; Ceccarelli, E.A. Open Questions in Ferredoxin-NADP+ Reductase Catalytic Mechanism. Eur. J. Biochem. 2003, 270, 1900–1915. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Evans, J.D.; Li, W.; Branchiccela, B.; Li, J.H.; Heerman, M.C.; Banmeke, O.; Zhao, Y.; Hamilton, M.; Higes, M. Nosemosis Control in European Honey Bees, Apis Mellifera, by Silencing the Gene Encoding Nosema Ceranae Polar Tube Protein 3. J. Exp. Biol. 2018, 221, jeb184606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Evans, J.D.; Huang, Q.; Rodríguez-García, C.; Liu, J.; Hamilton, M.; Grozinger, C.M.; Webster, T.C.; Su, S.; Chen, Y.P. Silencing the Honey Bee (Apis Mellifera) Naked Cuticle Gene (Nkd) Improves Host Immune Function and Reduces Nosema Ceranae Infections. Appl. Environ. Microbiol. 2016, 82, 6779–6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Xu, X.; Zhao, H.; Yang, S.; Wang, X.; Zhao, D.; Diao, Q.; Hou, C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front. Genet. 2018, 9, 384. [Google Scholar] [CrossRef] [PubMed]
- Raymann, K.; Moran, N.A. The Role of the Gut Microbiome in Health and Disease of Adult Honey Bee Workers. Curr. Opin. Insect Sci. 2018, 26, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, C.; Balloi, A.; Essanaa, J.; Crotti, E.; Gonella, E.; Raddadi, N.; Ricci, I.; Boudabous, A.; Borin, S.; Manino, A. Gut Microbiome Dysbiosis and Honeybee Health. J. Appl. Entomol. 2011, 135, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Powell, J.E.; Steele, M.I.; Dietrich, C.; Moran, N.A. Honeybee Gut Microbiota Promotes Host Weight Gain via Bacterial Metabolism and Hormonal Signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 4775–4780. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, A.G.; Toth, A.L. Feedbacks between Nutrition and Disease in Honey Bee Health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [Google Scholar] [CrossRef]
- Anderson, K.E.; Ricigliano, V.A. Honey Bee Gut Dysbiosis: A Novel Context of Disease Ecology. Vectors Med. Vet. Entomol. Soc. Insects 2017, 22, 125–132. [Google Scholar] [CrossRef]
- Maes, P.W.; Floyd, A.S.; Mott, B.M.; Anderson, K.E. Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. Insects 2021, 12, 224. [Google Scholar] [CrossRef]
- Raymann, K.; Shaffer, Z.; Moran, N.A. Antibiotic Exposure Perturbs the Gut Microbiota and Elevates Mortality in Honeybees. PLoS Biol. 2017, 15, e2001861. [Google Scholar] [CrossRef] [PubMed]
- Kešnerová, L.; Emery, O.; Troilo, M.; Liberti, J.; Erkosar, B.; Engel, P. Gut Microbiota Structure Differs between Honeybees in Winter and Summer. ISME J. 2020, 14, 801–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakumanu, M.L.; Reeves, A.M.; Anderson, T.D.; Rodrigues, R.R.; Williams, M.A. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Front. Microbiol. 2016, 7, 1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubert, J.; Bicianova, M.; Ledvinka, O.; Kamler, M.; Lester, P.J.; Nesvorna, M.; Kopecky, J.; Erban, T. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa Destructor, and Pathogens Nosema and Lotmaria Passim. Microb. Ecol. 2017, 73, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Ricigliano, V.A.; Williams, S.T.; Oliver, R. Effects of Different Artificial Diets on Commercial Honey Bee Colony Performance, Health Biomarkers, and Gut Microbiota. BMC Vet. Res. 2022, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Daisley, B.A.; Chmiel, J.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol. 2020, 28, 1010–1021. [Google Scholar] [CrossRef]
- Cariveau, D.P.; Elijah Powell, J.; Koch, H.; Winfree, R.; Moran, N.A. Variation in Gut Microbial Communities and Its Association with Pathogen Infection in Wild Bumble Bees (Bombus). ISME J. 2014, 8, 2369–2379. [Google Scholar] [CrossRef]
- Dosch, C.; Manigk, A.; Streicher, T.; Tehel, A.; Paxton, R.J.; Tragust, S. The Gut Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 2021, 9, 871. [Google Scholar] [CrossRef]
- Rouzé, R.; Moné, A.; Delbac, F.; Belzunces, L.; Blot, N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema Ceranae. Microbes Environ. 2019, 34, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Maes, P.W.; Rodrigues, P.A.; Oliver, R.; Mott, B.M.; Anderson, K.E. Diet-related Gut Bacterial Dysbiosis Correlates with Impaired Development, Increased Mortality and Nosema Disease in the Honeybee (Apis Mellifera). Mol. Ecol. 2016, 25, 5439–5450. [Google Scholar] [CrossRef]
- Rubanov, A.; Russell, K.A.; Rothman, J.A.; Nieh, J.C.; McFrederick, Q.S. Intensity of Nosema Ceranae Infection Is Associated with Specific Honey Bee Gut Bacteria and Weakly Associated with Gut Microbiome Structure. Sci. Rep. 2019, 9, 3820. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, R.S.; Moran, N.A.; Evans, J.D. Early Gut Colonizers Shape Parasite Susceptibility and Microbiota Composition in Honey Bee Workers. Proc. Natl. Acad. Sci. USA 2016, 113, 9345–9350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, L.; Peghaire, E.; Mone, A.; Diogon, M.; Debroas, D.; Delbac, F.; El Alaoui, H. Honeybee Gut Microbiota Dysbiosis in Pesticide/Parasite Co-Exposures Is Mainly Induced by Nosema Ceranae. J. Invertebr. Pathol. 2020, 172, 107348. [Google Scholar] [CrossRef] [PubMed]
- Castelli, L.; Branchiccela, B.; Garrido, M.; Invernizzi, C.; Porrini, M.; Romero, H.; Santos, E.; Zunino, P.; Antúnez, K. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema Ceranae Infection. Microb. Ecol. 2020, 80, 908–919. [Google Scholar] [CrossRef]
- Tauber, J.P.; Nguyen, V.; Lopez, D.; Evans, J.D. Effects of a Resident Yeast from the Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects 2019, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Ptaszyńska, A.A.; Borsuk, G.; Mułenko, W.; Wilk, J. Impact of Vertebrate Probiotics on Honeybee Yeast Microbiota and on the Course of Nosemosis. Med. Weter. 2016, 72, 430–434. [Google Scholar] [CrossRef]
- Diaz, T.; del-Val, E.; Ayala, R.; Larsen, J. Alterations in Honey Bee Gut Microorganisms Caused by Nosema Spp. and Pest Control Methods. Pest Manag. Sci. 2019, 75, 835–843. [Google Scholar] [CrossRef]
- Panjad, P.; Yongsawas, R.; Sinpoo, C.; Pakwan, C.; Subta, P.; Krongdang, S.; In-On, A.; Chomdej, S.; Chantawannakul, P.; Disayathanoowat, T. Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis Mellifera. Insects 2021, 12, 525. [Google Scholar] [CrossRef]
- Crotti, E.; Balloi, A.; Hamdi, C.; Sansonno, L.; Marzorati, M.; Gonella, E.; Favia, G.; Cherif, A.; Bandi, C.; Alma, A. Microbial Symbionts: A Resource for the Management of Insect-related Problems. Microb. Biotechnol. 2012, 5, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Crotti, E.; Sansonno, L.; Prosdocimi, E.M.; Vacchini, V.; Hamdi, C.; Cherif, A.; Gonella, E.; Marzorati, M.; Balloi, A. Microbial Symbionts of Honeybees: A Promising Tool to Improve Honeybee Health. New Biotechnol. 2013, 30, 716–722. [Google Scholar] [CrossRef]
- Alberoni, D.; Baffoni, L.; Gaggìa, F.; Ryan, P.; Murphy, K.; Ross, P.; Stanton, C.; Di Gioia, D. Impact of Beneficial Bacteria Supplementation on the Gut Microbiota, Colony Development and Productivity of Apis Mellifera L. Benef. Microbes 2018, 9, 269–278. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, S.; Rousseau, A.; Lecoeur, A.; Cheaib, B.; Bouslama, S.; Mercier, P.-L.; Demey, V.; Castex, M.; Giovenazzo, P.; Derome, N. Deleterious Interaction Between Honeybees (Apis Mellifera) and Its Microsporidian Intracellular Parasite Nosema Ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front. Ecol. Evol. 2018, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Borges, D.; Guzman-Novoa, E.; Goodwin, P.H. Effects of Prebiotics and Probiotics on Honey Bees (Apis Mellifera) Infected with the Microsporidian Parasite Nosema Ceranae. Microorganisms 2021, 9, 481. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis Mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. Insects 2020, 11, 638. [Google Scholar] [CrossRef]
- Peghaire, E.; Mone, A.; Delbac, F.; Debroas, D.; Chaucheyras-Durand, F.; El Alaoui, H. A Pediococcus Strain to Rescue Honeybees by Decreasing Nosema Ceranae-and Pesticide-Induced Adverse Effects. Pestic. Biochem. Physiol. 2020, 163, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Negri, P.; Plischuk, S.; Szawarski, N.; De Piano, F.; De Feudis, L.; Eguaras, M.; Audisio, C. Effects of the Organic Acids Produced by a Lactic Acid Bacterium in Apis Mellifera Colony Development, Nosema Ceranae Control and Fumagillin Efficiency. Vet. Microbiol. 2013, 167, 474–483. [Google Scholar] [CrossRef] [PubMed]
- De Piano, F.G.; Maggi, M.; Pellegrini, M.C.; Cugnata, N.M.; Szawarski, N.; Buffa, F.; Negri, P.; Fuselli, S.R.; Audisio, C.M.; Ruffinengo, S.R. Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L. J. Apic. Sci. 2017, 61, 93. [Google Scholar] [CrossRef] [Green Version]
- Audisio, M.C.; Sabate, D.C.; Benítez-Ahrendts, M.R. Effect of Lactobacillus Johnsonii CRL1647 on Different Parameters of Honeybee Colonies and Bacterial Populations of the Bee Gut. Benef. Microbes 2015, 6, 687–695. [Google Scholar] [CrossRef]
- Arredondo, D.; Castelli, L.; Porrini, M.P.; Garrido, P.M.; Eguaras, M.J.; Zunino, P.; Antunez, K. Lactobacillus Kunkeei Strains Decreased the Infection by Honey Bee Pathogens Paenibacillus Larvae and Nosema Ceranae. Benef. Microbes 2018, 9, 279–290. [Google Scholar] [CrossRef]
- Tejerina, M.R.; Benítez-Ahrendts, M.R.; Audisio, M.C. Lactobacillus Salivarius A3iob Reduces the Incidence of Varroa Destructor and Nosema Spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob. Proteins 2020, 12, 1360–1369. [Google Scholar] [CrossRef]
- Sabaté, D.C.; Cruz, M.S.; Benítez-Ahrendts, M.R.; Audisio, M.C. Beneficial Effects of Bacillus Subtilis Subsp. Subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics Antimicrob. Proteins 2012, 4, 39–46. [Google Scholar] [CrossRef]
- Porrini, M.P.; Audisio, M.C.; Sabaté, D.C.; Ibarguren, C.; Medici, S.K.; Sarlo, E.G.; Garrido, P.M.; Eguaras, M.J. Effect of Bacterial Metabolites on Microsporidian Nosema Ceranae and on Its Host Apis Mellifera. Parasitol. Res. 2010, 107, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Corby-Harris, V.; Snyder, L.; Meador, C.; Naldo, R.; Mott, B.; Anderson, K. Parasaccharibacter Apium, Gen. Nov., Sp. Nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to Nosema. J. Econ. Entomol. 2016, 109, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baffoni, L.; Gaggìa, F.; Alberoni, D.; Cabbri, R.; Nanetti, A.; Biavati, B.; Di Gioia, D. Effect of Dietary Supplementation of Bifidobacterium and Lactobacillus Strains in Apis Mellifera L. against Nosema Ceranae. Benef. Microbes 2016, 7, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Engel, P. Probiotic Treatment with a Gut Symbiont Leads to Parasite Susceptibility in Honey Bees. Trends Parasitol. 2016, 32, 914–916. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Borsuk, G.; Zdybicka-Barabas, A.; Cytryńska, M.; Małek, W. Are Commercial Probiotics and Prebiotics Effective in the Treatment and Prevention of Honeybee Nosemosis C? Parasitol. Res. 2016, 115, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Andrearczyk, S.; Kadhim, M.J.; Knaga, S. Influence of a Probiotic on the Mortality, Sugar Syrup Ingestion and Infection of Honeybees with Nosema Spp. under Laboratory Assessment. Med. Weter. 2014, 70, 762. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorizzo, M.; Letizia, F.; Ganassi, S.; Testa, B.; Petrarca, S.; Albanese, G.; Di Criscio, D.; De Cristofaro, A. Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J. Fungi 2022, 8, 424. https://doi.org/10.3390/jof8050424
Iorizzo M, Letizia F, Ganassi S, Testa B, Petrarca S, Albanese G, Di Criscio D, De Cristofaro A. Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). Journal of Fungi. 2022; 8(5):424. https://doi.org/10.3390/jof8050424
Chicago/Turabian StyleIorizzo, Massimo, Francesco Letizia, Sonia Ganassi, Bruno Testa, Sonia Petrarca, Gianluca Albanese, Dalila Di Criscio, and Antonio De Cristofaro. 2022. "Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.)" Journal of Fungi 8, no. 5: 424. https://doi.org/10.3390/jof8050424
APA StyleIorizzo, M., Letizia, F., Ganassi, S., Testa, B., Petrarca, S., Albanese, G., Di Criscio, D., & De Cristofaro, A. (2022). Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). Journal of Fungi, 8(5), 424. https://doi.org/10.3390/jof8050424