Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae
Abstract
:1. Introduction
1.1. Host Microorganisms
1.2. Lipid Synthesis in Yeast
2. Modular Metabolic Engineering Strategies for Standard and High-Value Lipid Production
2.1. Increase Fatty Acid Biosynthesis Module
2.1.1. Acetyl-CoA Synthase
2.1.2. Acetyl-CoA Carboxylase
2.1.3. Fatty Acid Synthase
2.1.4. β-Oxidation Pathway
2.1.5. NADPH Supply
2.2. Enhance the Lipid Accumulation Module
2.2.1. Glycerol-3-Phosphate Acyltransferase
2.2.2. Lysophosphatidate Acyltransferase
2.2.3. Diacylglycerol Acyltransferase
2.2.4. Other Potential Lipid Accumulation Enzymes
2.3. Improve the Lipid Sequestration Module
2.3.1. Increase Neutral Lipid Supply
2.3.2. Lipid Droplet Stabilization
2.4. Fatty Acid Modification Module towards High-Value Lipid Production
2.5. Combination of Lipid Pathway Engineering with Other Emerging Engineering Strategies
Gene/Enzyme Modification | Remarks/Achievements | Refs |
---|---|---|
| ||
↑ ACC1 | ↑ 58%, 6.8% lipids | [26] |
(1)↑ ACC1 (2)↑ ACC1ser659ala,ser1157ala | (1) Not significant (2) ↑ 65% FAs | [50] |
ACC1ser1157ala | ↑ 3-fold FAs | [52] |
ACC1ser659ala,ser1157ala | Not significant | [47] |
↑ FAS1, FAS2 | ↑ 30% lipid content, 70.6 mg/L (5.6% CDW) | [26] |
↑ ACS1, ACS2 | ↑ 2–5 × acetyl-CoA level | [44,49] |
↑ SeACSL641P | ↑ α-santalene | [49] |
↑ ACS1 | ↑ acyl-CoA level ↑ 8–23% amorphadiene | [46] |
↑ SeACSL641P, ADH2, ALD6, WS2 | ↑ 3 × FAEE, 408 ± 270 ug/g CDW | [117] |
(1) △ POX1, ↑ POX2; (2) △ POX1, ↑ POX2, ↑ crot | (1) ↑ 29.5% total FAs, 2.26 × intracellular MCFAs, 3.29 × extracellular MCFAs; (2) ↑ 15.6% total FAs, 1.87 × intracellular MCFAs, 3.34 × extracellular MCFAs | [53] |
△ POX1 | ↑ 4 × FFAs | [54] |
△β-oxidation, △ACSs, △ADH1, ↑ thioesterases, ↑ ACC1, ↑ acetyl-CoA | ↑ 2 ×, 140 mg/L FAs | [27] |
(1) △β-oxidation, △FAA2, PXA1, POX1; (2) △ACSs, FAA1, FAA4, FAT1; (3) Combine (1) & (2) | (1)↑ intracellular FAs up to 55%; (2)↑ extracellular FFAs to 490 mg/L; (3)↑ 1.3 g/L extracellular FFAs | [111] |
△FAA1△FAA4, ↑ acyl-CoA thioesterase ACOT5 (Acot5s) | ↑ 6.43 × FFAs, 500 μg/mL, ↑ UFA ratio (42% > 0 in WT), ACOT5 helps restore cell growth | [118] |
(1) △ARE1△ DGA1 △ARE2△LRO1; (2) △POX1; (3) Combine (1) & (2) | (1) 3 × FFA; (2) 4 × FF; (3) 5 × FFA | [54] |
↑ ACC1, ↑ FAS1, ↑ FAS2 | >17% DCW lipids, ↑ 4× than WT | [26] |
| ||
↑ At-Gh13LPAAT5 | ↑ 25–31% in palmitic acid and oleic acid; ↑ 16–29% TAG | [64] |
↑ DGAT | ↑ 3–9 × TAG, (25- 80 nmol TAG/mg DCW) | [16] |
↑ Dga1p (YOR245c) | ↑ 70–90 × DGAT activity in LDs; ↑ 2–3 × in ER. | [69] |
↑ DGAT1, ↑ N-terminal tag | ↑ 53% × TAG, 28% × total FAs, 453 mg FAs/L | [70] |
↑ PDAT | ↑ TAG, 2 × (log phase), 40% × (stationary phase), identified PDAT gene YNR008w | [73] |
↑ LuPDCT1, LuPDCT2, ↑ FAD2, FAD3 | ↑ PUFAs (linoleic acid (18:2 cisΔ9,12), α-linolenic acid (18:3 cisΔ9, 12, 15)) levels in phosphatidylcholine (PC), DAG, and TAG | [71] |
△SLC1 (YDL052C); △TGL3 (YMR313C) | ↑ LD content | [79] |
△HMG2 (YLR450W); △DGA1(YOR245C); △ERG4 (YGL012W); △ERG5 (YMR015C); △ARE (YNR019W); △SIT4 (YDL047W); △REG1 (YDR028C); △SAP190 (YKR028W) | ↓ LD content | [79] |
△PAH1 | ↓ 63% × LDs number, total lipids stable | [91] |
↑ WS2, ACB1, GAPN | ↑ 7.7×, 48 mg/L FAEE | [119] |
| ||
↑ ACC1, FAS1, FAS2, terminal “converting enzymes” | 400 mg/L FFA, 100 mg/L fatty alcohols, 5 mg/L FAEE | [26] |
(1) ↑ ACL, △IDH1; (2) ↑ ACL, △IDH2; (3) ↑ ACL, △IDH1, 2 | (1) ↑ 80% C16:1, ↑60% C18:1; (2) ↑ 60% C16:1, ↑45% C18:1; (3) ↑ 92% C16:1, ↑77% C18:1 | [120] |
(1) ↑ Reversed β–oxidation pathway, SeACSL641P, △ADH1, 4, △GPD1,2; (2) ↑ Reversed β-oxidation pathway, EEB1 or ETH1 | (1) ↑ medium-chain FAEEs (0.011 g/L FFA, C16, C18); (2) ↑ FAEE (C4–C10, 0.75 g/L) | [121] |
(1)↑ WS2, ADH2, ALD6, SeACSL641P; (2)↑ WS2, xpkA, ack, pta | (1) ↑ 3 × FAEE (408 ± 270 μg/g, DCW) (2) ↑ 1.7-fold FAEE (5100 ± 509 μg/g, DCW). | [117] |
↑ WS2, △ FAA2, △ACB1, △PXA2 | ↑ 17×, 25 mg/L FAEE | [122] |
△β-oxidation, △FAA2, △PXA1 & △POX1, △ACSs, △FAA1, 4 & △FAT1, ↑DGA1 & ↑TGL3 | 2.2 g/L extracellular FFAs | [111] |
(1) △SNF2; (2) ↑LEU2, △SNF2; (3) ↑DGA1, △SNF2; (4) ↑LRO1, △SNF2; (5) ↑FAA3, ↑DGA1,△SNF2 | (1) ↑ lipid; (2)↑ growth and lipid accumulation; (3)↑ lipids; (4)↓ lipids; (5)↑lipids, 30% lipids content, mainly TAG (add exogenous FAs). | [123] |
↑ ACC1ser659ala,ser1157ala, ↑PAH1, ↑DGA1, △ GUT2, △ARE1, △PXA1, △POX1, △FAA2, △TGL3, 4, 5 | 254 mg TAG/g DCW, 27.4% of the maxi theoretical yield | [110] |
Engineering ScFAS, bacterial type I FAS, directed evolution of membrane transporter Tpo1, strain adaptive laboratory evolution | ↑ 250-fold, >1 g/L Medium-chain fatty acids (C6–C12) | [115] |
↑ RtME, ↑MDH3, ↑CTP1, ↑MmACL, ↑RtFAS, ↑ACC1, ↑tesA, △POX1, △FAA1, 4 | 10.4 g/L extracellular FFA | [112] |
↑ Cytosolic acetyl-CoA, ↑ NADPH supply, ↑ FA biosynthesis, △ethanol pathway, mutate pyruvate kinase and direction evolution: ↑MPC, RtCIT1, ME, PYC1, YHM2, MDH3, RtFAS, ACC1, AnACL, MmACL, IDP2, ↓PGI1, IDH2, ↑ ZWF1, GND1, TKL1, TAL1, etc. | 33.4 g/L extracellular FFA, the highest titer reported to date in S. cerevisiae | [59] |
3. Cellular Physiological Responses to Lipid Pathway Engineering
3.1. Cell Growth
3.2. Cell Membrane Integrity
3.3. Reactive Oxygen Species
3.4. Mitochondria Membrane Potential
3.5. Heterogeneity
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.; Alper, H.S. Synthetic Biology for Specialty Chemicals. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Lennen, R.M.; Pfleger, B.F. Microbial production of fatty acid-derived fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24, 1044–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfleger, B.F.; Gossing, M.; Nielsen, J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng. 2015, 29, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD/FAO. Oilseeds and oilseed products. In OECD-FAO Agricultural Outlook 2014; OECD Publishing: Paris, France, 2014; pp. 145–156. [Google Scholar]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- JanSZen, H.; Steinbuchel, A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol. Biofuels 2014, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Rottig, A.; Zurek, P.J.; Steinbuchel, A. Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab. Eng. 2015, 32, 195–206. [Google Scholar] [CrossRef]
- Janßen, H.; Steinbüchel, A. Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1. Appl. Microbiol. Biotechnol. 2014, 98, 1913–1924. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Xia, X.; Dong, M. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab. Eng. 2017, 41, 115–124. [Google Scholar] [CrossRef]
- Liang, M.-H.; Jiang, J.-G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 2013, 52, 395–408. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Greenwell, H.C.; Laurens, L.M.L.; Shields, R.J.; Lovitt, R.W.; Flynn, K.J. Placing microalgae on the biofuels priority list: A review of the technological challenges. J. R. Soc. Interface 2010, 7, 703–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratledge, C. Microbial Lipids. In Biotechnology; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 133–197. [Google Scholar]
- Ratledge, C. Yeasts, moulds, algae and bacteria as sources of lipids. In Technological Advances in Improved and Alternative Sources of Lipids; Kamel, B.S., Kakuda, Y., Eds.; Springer: Berlin, Germany, 1994; pp. 235–291. [Google Scholar]
- Bouvier-Navé, P.; Benveniste, P.; Oelkers, P.; Sturley, S.L.; Schaller, H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: Diacylglycerol acyltransferase. Eur. J. Biochem. 2000, 267, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Vanhercke, T.; El Tahchy, A.; Liu, Q.; Zhou, X.-R.; Shrestha, P.; Divi, U.K.; Ral, J.-P.; Mansour, M.P.; Nichols, P.D.; James, C.N.; et al. Metabolic engineering of biomass for high energy density: Oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 2014, 12, 231–239. [Google Scholar] [CrossRef]
- Aznar-Moreno, J.; Denolf, P.; Van Audenhove, K.; De Bodt, S.; Engelen, S.; Fahy, D.; Wallis, J.G. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. J. Exp. Bot. 2015, 66, 6497–6506. [Google Scholar] [CrossRef] [Green Version]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Lessman, K.J. Crambe: A new industrial crop in limbo. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 217–222. [Google Scholar]
- Abeln, F.; Chuck, C.J. The history, state of the art and future prospects for oleaginous yeast research. Microb. Cell Factories 2021, 20, 221. [Google Scholar] [CrossRef]
- Spagnuolo, M.; Yaguchi, A.; Blenner, M. Oleaginous yeast for biofuel and oleochemical production. Curr. Opin. Biotechnol. 2019, 57, 73–81. [Google Scholar] [CrossRef]
- Xu, J.Y.; Liu, N.; Qiao, K.J.; Vogg, S.; Stephanopoulos, G. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proc. Natl. Acad. Sci. USA 2017, 114, E5308–E5316. [Google Scholar] [CrossRef] [Green Version]
- Davidoff, F.; Korn, E. Fatty acid and phospholipid composition of the cellular slime mold, Dictyostelium discoideum. J. Biol. Chem 1963, 238, 3199–3209. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Lipids of selected molds grown for production of n−3 and n−6 polyunsaturated fatty acids. Lipids 1992, 27, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Runguphan, W.; Keasling, J.D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 2014, 21, 103–113. [Google Scholar] [CrossRef]
- Li, X.W.; Guo, D.Y.; Cheng, Y.B.; Zhu, F.Y.; Deng, Z.X.; Liu, T.G. Overproduction of Fatty Acids in Engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2014, 111, 1841–1852. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry. Chapter 10 Lipids; W.H. Freeman: New York, NY, USA, 2013; pp. 343–368. [Google Scholar]
- Walther, T.C.; Farese, R.V., Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, T.C.; Farese, R.V. The life of lipid droplets. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2009, 1791, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E. The biosynthesis of phosphatides and triglycerides. Dtsch. Med. Wochenschr. 1962, 87, 99–102. [Google Scholar] [CrossRef]
- Beopoulos, A.; Mrozova, Z.; Thevenieau, F.; Le Dall, M.-T.; Hapala, I.; Papanikolaou, S.; Chardot, T.; Nicaud, J.-M. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 2008, 74, 7779–7789. [Google Scholar] [CrossRef] [Green Version]
- Czabany, T.; Athenstaedt, K.; Daum, G. Synthesis, storage and degradation of neutral lipids in yeast. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2007, 1771, 299–309. [Google Scholar] [CrossRef]
- Wagner, S.; Paltauf, F. Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast 1994, 10, 1429–1437. [Google Scholar] [CrossRef]
- Kurat, C.F.; Natter, K.; Petschnigg, J.; Wolinski, H.; Scheuringer, K.; Scholz, H.; Zimmermann, R.; Leber, R.; Zechner, R.; Kohlwein, S.D. Obese yeast: Triglyceride lipolysis is functionally conserved from mammals to yeast. J. Biol. Chem. 2006, 281, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, H.; Steinbüchel, A. Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 2002, 60, 367–376. [Google Scholar] [PubMed]
- Leber, R.; Zinser, E.; Paltauf, F.; Daum, G.; Zellnig, G. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 1994, 10, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Sandager, L.; Gustavsson, M.H.; Stahl, U.; Dahlqvist, A.; Wiberg, E.; Banas, A.; Lenman, M.; Ronne, H.; Stymne, S. Storage lipid synthesis is non-essential in yeast. J. Biol. Chem. 2002, 277, 6478–6482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploegh, H.L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 2007, 448, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Robenek, H.; Hofnagel, O.; Buers, I.; Robenek, M.J.; Troyer, D.; Severs, N.J. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J. Cell Sci. 2006, 119, 4215–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, K.; Chandra, N.; Sarma, S.J.; Brar, S.K.; Veeranki, V.D. Genetic Engineering Strategies for Enhanced Biodiesel Production. Mol. Biotechnol. 2015, 57, 606–624. [Google Scholar] [CrossRef]
- Courchesne, N.M.D.; Parisien, A.; Wang, B.; Lan, C.Q. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 2009, 141, 31–41. [Google Scholar] [CrossRef]
- Jiang, W.; Peng, H.; Ledesma Amaro, R.; Haritos, V.S. Metabolic Engineering of Yeast for Enhanced Natural and Exotic Fatty Acid Production. In Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities; Liu, Z.-H., Ragauskas, A., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 207–228. [Google Scholar]
- Chen, F.; Zhou, J.; Shi, Z.; Liu, L.; Du, G.; Chen, J. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao = Acta Microbiol. Sin. 2010, 50, 1172–1179. [Google Scholar]
- Starai, V.J.; Gardner, J.G.; Escalante-Semerena, J.C. Residue Leu-641 of Acetyl-CoA Synthetase is Critical for the Acetylation of Residue Lys-609 by the Protein Acetyltransferase Enzyme of Salmonella enterica. J. Biol. Chem. 2005, 280, 26200–26205. [Google Scholar] [CrossRef] [Green Version]
- Shiba, Y.; Paradise, E.M.; Kirby, J.; Ro, D.-K.; Keasling, J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168. [Google Scholar] [CrossRef]
- Peng, H.; He, L.; Haritos, V.S. Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology. J. Ind. Microbiol. Biotechnol. 2018, 45, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Kocharin, K.; Chen, Y.; Siewers, V.; Nielsen, J. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2012, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Daviet, L.; Schalk, M.; Siewers, V.; Nielsen, J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 2013, 15, 48–54. [Google Scholar] [CrossRef]
- Shi, S.; Chen, Y.; Siewers, V.; Nielsen, J. Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1. mBio 2014, 5, e01130-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yang, X.; Shen, Y.; Hou, J.; Bao, X. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product. Front. Microbiol. 2018, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Da Silva, N.A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. J. Biotechnol. 2014, 187, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, J.; Chen, W.N. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS ONE 2014, 9, e84853. [Google Scholar] [CrossRef] [Green Version]
- Valle-Rodriguez, J.O.; Shi, S.B.; Siewers, V.; Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl. Energy 2014, 115, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Wasylenko, T.M.; Ahn, W.S.; Stephanopoulos, G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 2015, 30, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Holland, P.; Lu, H.; Bergenholm, D.; Nielsen, J. Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Res. 2018, 18, foy091. [Google Scholar] [CrossRef]
- Qiao, K.; Wasylenko, T.M.; Zhou, K.; Xu, P.; Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 2017, 35, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Partow, S.; Hyland, P.B.; Mahadevan, R. Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae. Metab. Eng. 2017, 43, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhou, Y.J.; Huang, M.; Liu, Q.; Pereira, R.; David, F.; Nielsen, J. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell 2018, 174, 1549–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Balamurugan, S.; Li, D.W.; Liu, Y.H.; Zeng, H.; Wang, L.; Yang, W.D.; Liu, J.S.; Li, H.Y. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab. Eng. 2017, 41, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.J.; Huang, H.; Xiao, A.H.; Lian, M.; Jin, L.J.; Ji, X.J. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp HX-308. Bioprocess Biosyst. Eng. 2009, 32, 837–843. [Google Scholar] [CrossRef]
- Wei, Y.; Gossing, M.; Bergenholm, D.; Siewers, V.; Nielsen, J. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Kiegerl, B.; Tavassoli, M.; Smart, H.; Shabits, B.N.; Zaremberg, V.; Athenstaedt, K. Phosphorylation of the lipid droplet localized glycerol-3-phosphate acyltransferase Gpt2 prevents a futile triacylglycerol cycle in yeast. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1864, 158509. [Google Scholar] [CrossRef]
- Wang, N.; Ma, J.; Pei, W.; Wu, M.; Li, H.; Li, X.; Yu, S.; Zhang, J.; Yu, J. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: Organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genom. 2017, 18, 218. [Google Scholar] [CrossRef] [Green Version]
- Mapelli-Brahm, A.; Sánchez, R.; Pan, X.; Moreno-Pérez, A.J.; Garcés, R.; Martínez-Force, E.; Weselake, R.J.; Salas, J.J.; Venegas-Calerón, M. Functional Characterization of Lysophosphatidylcholine: Acyl-CoA Acyltransferase Genes From Sunflower (Helianthus annuus L.). Front. Plant Sci. 2020, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Katavic, V.; Giblin, E.M.; Barton, D.L.; MacKenzie, S.L.; Keller, W.A.; Hu, X.; Taylor, D.C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 1997, 9, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Moghaddam, L.; Brinin, A.; Williams, B.; Mundree, S.; Haritos, V.S. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnol. Appl. Biochem. 2018, 65, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Tomita, Y.; Matsuoka, D.; Sasayama, D.; Fukayama, H.; Azuma, T.; Soltani Gishini, M.F.; Hildebrand, D. Different acyl-CoA:diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation. J. Exp. Bot. 2022, erac084. [Google Scholar] [CrossRef] [PubMed]
- Sorger, D.; Daum, G. Synthesis of triacylglycerols by the acyl-coenzyme A: Diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J. Bacteriol. 2002, 184, 519–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, M.S.; Truksa, M.; Deng, W.; Lung, S.C.; Chen, G.Q.; Weselake, R.J. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl. Microbiol. Biotechnol. 2015, 99, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Wickramarathna, A.D.; Siloto, R.M.P.; Mietkiewska, E.; Singer, S.D.; Pan, X.; Weselake, R.J. Heterologous expression of flax phospholipid:diacylglycerol cholinephosphotransferase (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds. BMC Biotechnol. 2015, 15, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, R.K.; Sinha, K.; Chawla, K.; Randhawa, V.; Sharma, T.R. Functional characterization of two type-1 diacylglycerol acyltransferase (DGAT1) genes from rice (Oryza sativa) embryo restoring the triacylglycerol accumulation in yeast. Plant Mol. Biol. 2021, 105, 247–262. [Google Scholar] [CrossRef]
- Dahlqvist, A.; Stahl, U.; Lenman, M.; Banas, A.; Lee, M.; Sandager, L.; Ronne, H.; Stymne, H. Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc. Natl. Acad. Sci. USA 2000, 97, 6487–6492. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Fan, J.; Taylor, D.C.; Ohlrogge, J.B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 2009, 21, 3885–3901. [Google Scholar] [CrossRef] [Green Version]
- Boyle, N.R.; Page, M.D.; Liu, B.; Blaby, I.K.; Casero, D.; Kropat, J.; Cokus, S.J.; Hong-Hermesdorf, A.; Shaw, J.; Karpowicz, S.J. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 2012, 287, 15811–15825. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Fei, W.; Yang, S.; Yang, F.; Qu, G.; Tang, W.; Ou, J.; Peng, D. Alteration of the fatty acid composition of Brassica napus L. via overexpression of phospholipid: Diacylglycerol acyltransferase 1 from Sapium sebiferum (L.) Roxb. Plant Sci. 2020, 298, 110562. [Google Scholar] [CrossRef]
- Chapman, K.D.; Ohlrogge, J.B. Compartmentation of triacylglycerol accumulation in plants. J. Biol. Chem. 2012, 287, 2288–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlwein, S.D.; Veenhuis, M.; van der Klei, I.J. Lipid droplets and peroxisomes: Key players in cellular lipid homeostasis or a matter of fat—store’em up or burn’em down. Genetics 2013, 193, 1–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozaquel-Morais, B.L.; Madeira, J.B.; Maya-Monteiro, C.M.; Masuda, C.A.; Montero-Lomeli, M. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS ONE 2010, 5, e13692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athenstaedt, K.; Daum, G. YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 23317–23323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athenstaedt, K.; Daum, G. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J. Bacteriol. 1997, 179, 7611–7616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidda, S.K.; Watt, S.C.; Collins-Silva, J.; Kilaru, A.; Arondel, V.; Yurchenko, O.; Horn, P.J.; James, C.N.; Shintani, D.; Ohlrogge, J.B. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signal. Behav. 2013, 8, e27141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996, 110, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Grillitsch, K.; Connerth, M.; Köfeler, H.; Arrey, T.N.; Rietschel, B.; Wagner, B.; Karas, M.; Daum, G. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2011, 1811, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, S.-O.; Boström, P.; Andersson, L.; Rutberg, M.; Levin, M.; Perman, J.; Borén, J. Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr. Opin. Lipidol. 2008, 19, 441–447. [Google Scholar] [CrossRef]
- Horn, P.J.; James, C.N.; Gidda, S.K.; Kilaru, A.; Dyer, J.M.; Mullen, R.T.; Ohlrogge, J.B.; Chapman, K.D. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 2013, 162, 1926–1936. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Binns, D.D.; Chang, Y.-F.; Goodman, J.M. Dissecting seipin function: The localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1pΔNterm only in combination with Ldb16p. BMC Cell Biol. 2015, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, W.; Shui, G.; Zhang, Y.; Krahmer, N.; Ferguson, C.; Kapterian, T.S.; Lin, R.C.; Dawes, I.W.; Brown, A.J.; Li, P. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 2011, 7, e1002201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolinski, H.; Kolb, D.; Hermann, S.; Koning, R.I.; Kohlwein, S.D. A role for seipin in lipid droplet dynamics and inheritance in yeast. J. Cell Sci. 2011, 124, 3894–3904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadereit, B.; Kumar, P.; Wang, W.-J.; Miranda, D.; Snapp, E.L.; Severina, N.; Torregroza, I.; Evans, T.; Silver, D.L. Evolutionarily conserved gene family important for fat storage. Proc. Natl. Acad. Sci. USA 2008, 105, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Adeyo, O.; Horn, P.J.; Lee, S.; Binns, D.D.; Chandrahas, A.; Chapman, K.D.; Goodman, J.M. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 2011, 192, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-H.; Rawat, R.; Shanklin, J. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol. 2011, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-H.; Prakash, R.R.; Sweet, M.; Shanklin, J. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation. Plant Physiol. 2014, 164, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Shanklin, J.; Yu, X.-H.; Prakash, R.R. Engineering Cyclopropane Fatty Acid Accumulation in Plants. U.S. Patent 2016/0222398 A1, 4 August 2016. [Google Scholar]
- Yu, X.-H.; Cahoon, R.E.; Horn, P.J.; Shi, H.; Prakash, R.R.; Cai, Y.; Hearney, M.; Chapman, K.D.; Cahoon, E.B.; Schwender, J.; et al. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnol. J. 2017, 16, 926–938. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; He, L.; Haritos, V.S. Enhanced Production of High-Value Cyclopropane Fatty Acid in Yeast Engineered for Increased Lipid Synthesis and Accumulation. Biotechnol. J. 2019, 14, 1800487. [Google Scholar] [CrossRef]
- Markham, K.A.; Alper, H.S. Engineering Yarrowia lipolytica for the production of cyclopropanated fatty acids. J. Ind. Microbiol. Biotechnol. 2018, 45, 881–888. [Google Scholar] [CrossRef]
- James, A.; Hadaway, H.; Webb, J.P. The biosynthesis of ricinoleic acid. Biochem. J. 1965, 95, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holic, R.; Yazawa, H.; Kumagai, H.; Uemura, H. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 2012, 95, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, H.; Kumagai, H.; Uemura, H. Secretory production of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 2013, 97, 8663–8671. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, H.; Ogiso, M.; Kumagai, H.; Uemura, H. Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 2014, 98, 9325–9337. [Google Scholar] [CrossRef] [PubMed]
- Béopoulos, A.; Verbeke, J.; Bordes, F.; Guicherd, M.; Bressy, M.; Marty, A.; Nicaud, J.-M. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2014, 98, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Van Erp, H.; Martin-Moreno, J.; Johnson, K.; Morales, E.; Eastmond, P.J.; Lin, J.-T. Expression of castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in lesquerella seed. Int. J. Mol. Sci. 2016, 17, 507. [Google Scholar] [CrossRef] [Green Version]
- Kajikawa, M.; Abe, T.; Ifuku, K.; Furutani, K.-I.; Yan, D.; Okuda, T.; Ando, A.; Kishino, S.; Ogawa, J.; Fukuzawa, H. Production of ricinoleic acid-containing monoestolide triacylglycerides in an oleaginous diatom, Chaetoceros gracilis. Sci. Rep. 2016, 6, 36809. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-S.; Chaudhary, S.; Thurmond, J.M.; Bobik, E.G.; Yuan, L.; Chan, G.M.; Kirchner, S.J.; Mukerji, P.; Knutzon, D.S. Cloning of Δ12-and Δ6-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids 1999, 34, 649–659. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Nicaud, J.-M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016, 61, 40–50. [Google Scholar] [CrossRef]
- Xie, D.; Jackson, E.N.; Zhu, Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Appl. Microbiol. Biotechnol. 2015, 99, 1599–1610. [Google Scholar] [CrossRef] [Green Version]
- Domergue, F.; Abbadi, A.; Ott, C.; Zank, T.K.; Zähringer, U.; Heinz, E. Acyl Carriers Used as Substrates by the Desaturases and Elongases Involved in Very Long-chain Polyunsaturated Fatty Acids Biosynthesis Reconstituted in Yeast. J. Biol. Chem. 2003, 278, 35115–35126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, M.; Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Ferreira, R.; Teixeira, P.G.; Gossing, M.; David, F.; Siewers, V.; Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metab. Eng. Commun. 2018, 6, 22–27. [Google Scholar] [CrossRef]
- Leber, C.; Polson, B.; Fernandez-Moya, R.; Da Silva, N.A. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 54–62. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Buijs, N.A.; Zhu, Z.; Qin, J.; Siewers, V.; Nielsen, J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 2016, 7, 11709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klamt, S.; Mahadevan, R.; Hadicke, O. When Do Two-Stage Processes Outperform One-Stage Processes? Biotechnol. J. 2018, 13, 1700539. [Google Scholar] [CrossRef] [Green Version]
- Slininger, P.J.; Dien, B.S.; Kurtzman, C.P.; Moser, B.R.; Bakota, E.L.; Thompson, S.R.; O’Bryan, P.J.; Cotta, M.A.; Balan, V.; Jin, M.; et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol. Bioeng. 2016, 113, 1676–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Hu, Y.; Teixeira, P.G.; Pereira, R.; Chen, Y.; Siewers, V.; Nielsen, J. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat. Catal. 2020, 3, 64–74. [Google Scholar] [CrossRef]
- Hillson, N.; Caddick, M.; Cai, Y.; Carrasco, J.A.; Chang, M.W.; Curach, N.C.; Bell, D.J.; Le Feuvre, R.; Friedman, D.C.; Fu, X.; et al. Building a global alliance of biofoundries. Nat. Commun. 2019, 10, 2040. [Google Scholar] [CrossRef]
- de Jong, B.W.; Shi, S.; Siewers, V.; Nielsen, J. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact 2014, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, J.; Lee, J.; Chen, W.N. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl. Microbiol. Biotechnol. 2014, 98, 6739–6750. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Valle-Rodríguez, J.O.; Siewers, V.; Nielsen, J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol. Bioeng. 2014, 111, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Feng, H.; Chen, W.N. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab. Eng. 2013, 16, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Zhao, H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 2014, 4, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.A.; Trinh, C.T. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol. Bioeng. 2014, 111, 2200–2208. [Google Scholar] [CrossRef]
- Kamisaka, Y.; Tomita, N.; Kimura, K.; Kainou, K.; Uemura, H. DGA1(diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Delta snf2 disruptant of Saccharomyces cerevisiae. Biochem. J. 2007, 408, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Johnston, G.C.; Singer, R.A. Growth and the cell cycle of the yeast Saccharomyces cerevisiae: I. Slowing S phase or nuclear division decreases the G1 cell cycle period. Exp. Cell Res. 1983, 149, 1–13. [Google Scholar] [CrossRef]
- Xu, X.; Lambrecht, A.D.; Xiao, W. Yeast survival and growth assays. In Yeast Protocols; Springer: Berlin/Heidelberg, Germany, 2014; pp. 183–191. [Google Scholar]
- Natter, K.; Kohlwein, S.D. Yeast and cancer cells–common principles in lipid metabolism. Biochim. Biophys. Acta 2013, 1831, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Mollinedo, F. Lipid raft involvement in yeast cell growth and death. Front. Oncol. 2012, 2, 140. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, T.; Buttner, S. Lipids and cell death in yeast. FEMS Yeast Res. 2014, 14, 179–197. [Google Scholar] [CrossRef] [Green Version]
- Listenberger, L.L.; Han, X.L.; Lewis, S.E.; Cases, S.; Farese, R.V.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, P.L.; Steinhardt, R.A. Loss, Restoration, and Maintenance of Plasma Membrane Integrity. J. Cell Biol. 1997, 137, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, T.L.; Roseiro, J.C.; Reis, A. Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol. 2012, 30, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boswell, C.; Nienow, A.; Gill, N.; Kocharunchitt, S.; Hewitt, C. The impact of fluid mechanical stress on Saccharomyces cerevisiae cells during continuous cultivation in an agitated, aerated bioreactor; its implication for mixing in the brewing process and aerobic fermentations. Food Bioprod. Processing 2003, 81, 23–32. [Google Scholar] [CrossRef]
- Henderson, C.M.; Block, D.E. Examining the Role of Membrane Lipid Composition in Determining the Ethanol Tolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 2966–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida, R.F.M. A route to understanding yeast cellular envelope-plasma membrane lipids interplaying in cell wall integrity. FEBS J 2018, 285, 2402–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, C.; Neves, E.; Reis, A.; Passarinho, P.C.; da Silva, T.L. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry. Appl. Biochem. Biotechnol. 2012, 168, 1501–1515. [Google Scholar] [CrossRef]
- Degreif, D.; de Rond, T.; Bertl, A.; Keasling, J.D.; Budin, I. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth. Metab. Eng. 2017, 41, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Sirobhushanam, S.; Hantak, M.P.; Lawrence, P.; Brenna, J.T.; Gatto, C.; Wilkinson, B.J. Short Branched- Chain C6 Carboxylic Acids Result in Increased Growth, Novel ‘Unnatural’ Fatty Acids and Increased Membrane Fluidity in a Listeria monocytogenes Branched- Chain Fatty Acid-Deficient Mutant. Biochim. Biophys. Acta 2015, 1851, 1406–1415. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 2006, 1, 1458–1461. [Google Scholar] [CrossRef]
- da Silva, T.L.; Feijão, D.; Reis, A. Using Multi-parameter Flow Cytometry to Monitor the Yeast Rhodotorula glutinis CCMI 145 Batch Growth and Oil Production Towards Biodiesel. Appl. Biochem. Biotechnol. 2010, 162, 2166–2176. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.G.; Tan, S.-X.; Dawes, I.W. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2008, 1783, 1354–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadenas, E.; Boveris, A.; Ragan, C.I.; Stoppani, A.O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 1977, 180, 248–257. [Google Scholar] [CrossRef]
- Brookheart, R.T.; Michel, C.I.; Schaffer, J.E. As a Matter of Fat. Cell Metab. 2009, 10, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameziane-El-Hassani, R.; Dupuy, C. Detection of intracellular reactive oxygen species (CM-H2DCFDA). Bio-Protoc. 2013, 3, e313. [Google Scholar] [CrossRef] [Green Version]
- Listenberger, L.L.; Ory, D.S.; Schaffer, J.E. Palmitate-induced Apoptosis Can Occur through a Ceramide-independent Pathway. J. Biol. Chem. 2001, 276, 14890–14895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herms, A.; Bosch, M.; Ariotti, N.; Reddy, B.J.N.; Fajardo, A.; Fernandez-Vidal, A.; Alvarez-Guaita, A.; Fernandez-Rojo, M.A.; Rentero, C.; Tebar, F.; et al. Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Curr. Biol. 2013, 23, 1489–1496. [Google Scholar] [CrossRef] [Green Version]
- de Jong, B.W.; Siewers, V.; Nielsen, J. Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters. FEMS Yeast Res. 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Trancikova, A.; Weisova, P.; Kissova, I.; Zeman, I.; Kolarov, J. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: Protective effect of Bcl-xL. FEMS Yeast Res. 2004, 5, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Qiao, K.; Stephanopoulos, G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol. Bioeng. 2017, 114, 1521–1530. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Sen, B.; Chen, X.; Xie, Y.; Keasling, J.D.; Wang, G. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism. Metab. Eng. Commun. 2018, 6, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.M.; MacIver, F.H.; Dawes, I.W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 1997, 410, 219–222. [Google Scholar] [CrossRef]
- Westermann, B. Mitochondrial inheritance in yeast. Biochim. Biophys. Acta (BBA)-Bioenerg. 2014, 1837, 1039–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, B.M.; Locke, J.C. Microbial individuality: How single-cell heterogeneity enables population level strategies. Curr. Opin. Microbiol. 2015, 24, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Delvigne, F.; Goffin, P. Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol. J. 2014, 9, 61–72. [Google Scholar] [CrossRef]
- Binder, D.; Drepper, T.; Jaeger, K.-E.; Delvigne, F.; Wiechert, W.; Kohlheyer, D.; Grünberger, A. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity. Metab. Eng. 2017, 42, 145–156. [Google Scholar] [CrossRef]
- Schuster, K.C.; Urlaub, E.; Gapes, J.R. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 2000, 42, 29–38. [Google Scholar] [CrossRef]
- Peng, H.; He, L.; Haritos, V.S. Flow-cytometry-based physiological characterisation and transcriptome analyses reveal a mechanism for reduced cell viability in yeast engineered for increased lipid content. Biotechnol. Biofuels 2019, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Kochan, K.; Peng, H.; Wood, B.R.; Haritos, V.S. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging. Biotechnol. Biofuels 2018, 11, 106. [Google Scholar] [CrossRef] [Green Version]
Sources | Host Model | Pros | Cons | Refs |
---|---|---|---|---|
Fungi | S. cerevisiae |
|
| [26,27] |
Bacteria | E. coli |
|
| [7] |
Microalgae | Chlorella |
|
| [14,15] |
Plant | Arabidopsis thaliana |
|
| [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Li, C.; Li, Y.; Peng, H. Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J. Fungi 2022, 8, 427. https://doi.org/10.3390/jof8050427
Jiang W, Li C, Li Y, Peng H. Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. Journal of Fungi. 2022; 8(5):427. https://doi.org/10.3390/jof8050427
Chicago/Turabian StyleJiang, Wei, Chao Li, Yanjun Li, and Huadong Peng. 2022. "Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae" Journal of Fungi 8, no. 5: 427. https://doi.org/10.3390/jof8050427
APA StyleJiang, W., Li, C., Li, Y., & Peng, H. (2022). Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. Journal of Fungi, 8(5), 427. https://doi.org/10.3390/jof8050427