Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Sampling
2.2. Chemicals and Solvents
2.3. Acid Digestion Procedure
2.4. Analysis
2.5. Estimated Daily Intake of Metals
2.6. Health Risk Index
2.7. Software and Multivariate Analysis
3. Results and Discussion
3.1. Metallic Elements and Metalloids Content in Mushrooms
3.1.1. Essential Metallic Elements and Metalloids
3.1.2. Toxic Metallic Elements and Metalloids
3.2. Multivariate Analysis
3.3. Estimated Daily Intake of Metals
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.; Mi, F.; Zhang, Y.; He, X.; Cao, Y.; Wang, P.; Liu, C.; Yang, D.; Dong, J.; Zhang, K.; et al. Diversity, population genetics, and evolution of macrofungi associated with animals. Mycology 2015, 6, 94–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikurkcu, C.; Popović-Djordjević, J.; Solak, M.H. Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 190, 110058. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, G.C. Ainsworth and Bisby’s Dictionary of the Fungi, 10th ed.; Kirk, P.M., Cannon, P.F., David, J.C., Stalpers, J.A., Eds.; CABI Publishing: Wallingford, UK, 2008. [Google Scholar]
- Huili, L.; Yang, T.; Nelson, M.; Lei, Y.; Karunarathna, S.C.; Perez-Moreno, J.; Mahmudur Rahman, M.; Md Harunur, R.; Pheng, P.; Rizal, L.; et al. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed]
- Fogarasi, M.; Diaconeasa, Z.M.; Pop, C.R.; Fogarasi, S.; Semeniuc, C.A.; Fărcaş, A.C.; Țibulcă, D.; Sălăgean, C.-D.; Tofană, M.; Socaci, S.A. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy 2020, 10, 1972. [Google Scholar] [CrossRef]
- Global Mushroom Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2021 to 2028. Available online: https://www.grandviewresearch.com/industry-analysis/mushroom-market (accessed on 23 January 2022).
- Ministerio De Agricultura, Pesca Y Alimentación, Statistical Services From the Spanish Government. Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/panel-de-consumo-alimentario/series-anuales/default.aspx (accessed on 23 January 2022).
- Milenge Kamalebo, H.; Nshimba Seya Wa Malale, H.; Masumbuko Ndabaga, C.; Degreef, J.; De Kesel, A. Uses and importance of wild fungi: Traditional knowledge from the Tshopo province in the Democratic Republic of the Congo. J. Ethnobiol. Ethnomed. 2018, 14, 17464269. [Google Scholar] [CrossRef] [Green Version]
- Chelela, B.L.; Chacha, M.; Matemu, A. Wild Mushrooms from Tanzania: Characterization and their Importance to the Rural Communities. Curr. Res. Environ. Appl. Mycol. 2015, 5, 307–321. [Google Scholar] [CrossRef]
- Haro, A.; Trescastro, A.; Lara, L.; Fernández-Fígares, I.; Nieto, R.; Seiquer, I. Mineral elements content of wild growing edible mushrooms from the southeast of Spain. J. Food Compos. Anal. 2020, 91, 103504. [Google Scholar] [CrossRef]
- Falandysz, J.; Drewnowska, M.; Jarzyńska, G.; Zhang, D.; Zhang, Y.; Wang, J. Mineral constituents in common chanterelles and soils collected from a high mountain and lowland sites in Poland. J. Mt. Sci. 2012, 9, 697–705. [Google Scholar] [CrossRef]
- Krupa, P.; Kozdrój, J. Accumulation of Heavy Metals by Ectomycorrhizal Fungi Colonizing Birch Trees Growing in an Industrial Desert Soil. World J. Microbiol. Biotechnol. 2004, 20, 427–430. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Q.; Cai, H.; Guo, X.; Wang, T.; Gui, M. Study of heavy metal concentrations in wild edible mushrooms in yunnan province, China. Food Chem. 2015, 188, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.J.; Campbell, J.R. Lead Poisoning. Pediatr. Clin. Advis. 2007, 332. [Google Scholar] [CrossRef]
- Canfield, R.L.; Jusko, T.A. Lead Poisoning. Encycl. Infant Early Child. Dev. 2008, 200–213. [Google Scholar] [CrossRef]
- Cai, L.; Li, X.-K.; Song, Y.; Cherian, M. Essentiality, Toxicology and Chelation Therapy of Zinc and Copper. Curr. Med. Chem. 2005, 12, 2753–2763. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Benítez-Rodríguez, A.; López-Castillo, J.G.; Palma, M.; Barbero, G.F. Metal concentrations in Lactarius mushroom species collected from Southern Spain and Northern Morocco: Evaluation of health risks and benefits. J. Food Compos. Anal. 2021, 99, 103859. [Google Scholar] [CrossRef]
- Zsigmond, A.R.; Varga, K.; Kántor, I.; Urák, I.; May, Z.; Héberger, K. Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). J. Food Compos. Anal. 2018, 72, 15–21. [Google Scholar] [CrossRef]
- Türkmen, M.; Budur, D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018, 254, 256–259. [Google Scholar] [CrossRef]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Igbiri, S.; Udowelle, N.A.; Ekhator, O.C.; Asomugha, R.N.; Igweze, Z.N.; Orisakwe, O.E. Edible Mushrooms from Niger Delta, Nigeria with Heavy Metal Levels of Public Health Concern: A Human Health Risk Assessment. Recent Pat. Food Nutr. Agric. 2018, 9, 31–41. [Google Scholar] [CrossRef]
- Falandysz, J.; Sapkota, A.; Mędyk, M.; Feng, X. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem. 2017, 221, 24–28. [Google Scholar] [CrossRef]
- Ostos, C.; Pérez-Rodríguez, F.; Arroyo, B.M.; Moreno-Rojas, R. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. J. Food Compos. Anal. 2015, 37, 136–142. [Google Scholar] [CrossRef]
- Melgar, M.J.; Alonso, J.; García, M.A. Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem. Toxicol. 2014, 73, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, H.; Zhang, J.; Li, T.; Wang, Y. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Melgar, M.J.; Alonso, J.; García, M.A. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem. Toxicol. 2016, 88, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179, 191–199. [Google Scholar] [CrossRef]
- Demirbaş, A. Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem. 2001, 74, 293–301. [Google Scholar] [CrossRef]
- Lalotra, P.; Gupta, D.; Yangdol, R.; Sharma, Y.; Gupta, S. Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Curr. Res. Environ. Appl. Mycol. 2016, 6, 159–165. [Google Scholar] [CrossRef]
- Damodaran, D.; Vidya Shetty, K.; Raj Mohan, B. Uptake of certain heavy metals from contaminated soil by mushroom—Galerina vittiformis. Ecotoxicol. Environ. Saf. 2014, 104, 414–422. [Google Scholar] [CrossRef]
- Kokkoris, V.; Massas, I.; Polemis, E.; Koutrotsios, G.; Zervakis, G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ. 2019, 685, 280–296. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; Barbero, G.F. Toxic elements and trace elements in Macrolepiota procera mushrooms from southern Spain and northern Morocco. J. Food Compos. Anal. 2022, 108, 104419. [Google Scholar] [CrossRef]
- Zsigmond, A.R.; Kántor, I.; May, Z.; Urák, I.; Héberger, K. Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania). Chemosphere 2020, 238, 124566. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Tepe, B.; Semiz, D.K.; Solak, M.H. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem. Toxicol. 2010, 48, 1230–1233. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, M.G.; Dongarrà, G.; La Rosa, A.; Tamburo, E.; Vasquez, G.; Varrica, D. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy). Ecotoxicol. Environ. Saf. 2018, 157, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Kunito, T.; Kubota, R.; Bielawski, L.; Frankowska, A.; Falandysz, J.J.; Tanabe, S. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2008, 43, 1692–1699. [Google Scholar] [CrossRef]
- Cocchi, L.; Vescovi, L.; Petrini, L.E.; Petrini, O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006, 98, 277–284. [Google Scholar] [CrossRef]
- Tuzen, M.; Sesli, E.; Soylak, M. Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 2007, 18, 806–810. [Google Scholar] [CrossRef]
- Yamaç, M.; Yildiz, D.; Sarikürkcü, C.; Çelikkollu, M.; Solak, M.H. Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem. 2007, 103, 263–267. [Google Scholar] [CrossRef]
- García, M.A.; Alonso, J.; Melgar, M.J. Bioconcentration of chromium in edible mushrooms: Influence of environmental and genetic factors. Food Chem. Toxicol. 2013, 58, 249–254. [Google Scholar] [CrossRef]
- Chiocchetti, G.M.; Latorre, T.; Clemente, M.J.; Jadán-Piedra, C.; Devesa, V.; Vélez, D. Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety. Food Chem. 2020, 306, 125478. [Google Scholar] [CrossRef]
- Melgar, M.J.; Alonso, J.; García, M.A. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Total Environ. 2009, 407, 5328–5334. [Google Scholar] [CrossRef]
- García, M.Á.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms: Levels and bioaccumulation factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Integrated Risk Information System|US EPA. Available online: https://www.epa.gov/iris (accessed on 23 January 2022).
- Joint Fao WHO Expert Committee on Food Additives (JECFA). 2021. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx?fcc=2/ (accessed on 23 January 2022).
- Rousseau, M.-C.; Straif, K.; Siemiatycki, J. IARC Carcinogen Update. Environ. Health Perspect. 2005, 113, A580–A581. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J. Selenium in edible mushrooms. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 256–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirończuk-Chodakowska, I.; Socha, K.; Zujko, M.E.; Terlikowska, K.M.; Borawska, M.H.; Witkowska, A.M. Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the eastern territory of “green lungs of Poland”: Nutritional and toxicological implications. Int. J. Environ. Res. Public Health 2019, 16, 3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health. 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Mercury and Mercury Compounds (IARC Summary & Evaluation, Volume 58, 1993). Available online: http://www.inchem.org/documents/iarc/vol58/mono58-3.html (accessed on 23 January 2022).
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2019, 65, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Naz, A.; Mishra, B.K.; Gupta, S.K. Human Health Risk Assessment of Chromium in Drinking Water: A Case Study of Sukinda Chromite Mine, Odisha, India. Expo. Health 2016, 8, 253–264. [Google Scholar] [CrossRef]
- Tseng, C.H.; Lee, I.H.; Chen, Y.C. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model. Sci. Total Environ. 2019, 669, 103–111. [Google Scholar] [CrossRef]
- ASTDR. Toxicological Profile for Arsenic; U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Chamblee, GA, USA, 2007. [Google Scholar]
- Waalkes, M.P. Cadmium carcinogenesis. Mutat. Res. Mol. Mech. Mutagen. 2003, 533, 107–120. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
Sample ID | Mushroom Species | Family | Sample Location | Date | Habitat |
---|---|---|---|---|---|
#1 | Russula cyanoxantha | Russulaceae | Cortes de la Fra. (Malaga, Spain) | 2017 | Deciduous forest; Quercus |
#2 | Sendero El Palancar (Cadiz, Spain) | 2018 | |||
#3 | Cortes de la Fra. (Malaga, Spain) | 2018 | |||
#4 | Amanita caesarea | Amanitaceae | Puerto de Galiz (Cadiz, Spain) | 2017 | Deciduous forest; Quercus suber |
#5 | Puerto de Galiz (Cadiz, Spain) | 2018 | |||
#6 | Sendero El Palancar (Cadiz, Spain) | 2018 | |||
#7 | Cortes de la Fra. (Malaga, Spain) | 2018 | |||
#8 | Agaricus silvicola | Agaricaceae | Parc Naturel Bouhachem(Chaouen, Morocco) | 2017 | Deciduous forest; Quercus suber |
#9 | Cortes de la Fra. (Malaga, Spain) 1 | 2018 | |||
#10 | Cortes de la Fra. (Malaga, Spain) 2 | 2018 | |||
#11 | Boletus edulis | Boletaceae | Puerto de Galiz (Cadiz, Spain) | 2018 | Deciduous forest; Quercus suber |
#12 | Valdeinfierno (Cadiz, Spain) | 2018 | |||
#13 | Boletus aereus | Boleataceae | Valdeinfierno (Cadiz, Spain) | 2018 | Deciduous forest; Quercus suber |
#14 | Puerto de Galiz (Cadiz, Spain) | 2018 | |||
#15 | Parc Naturel Bouhachem(Chaouen, Morocco) 1 | 2017 | |||
#16 | Parc Naturel Bouhachem(Chaouen, Morocco) 2 | 2017 |
ICP-MS Instrumental Conditions | |
---|---|
CCT H2(7%)/He (mL min–1) | 4.5 |
Pole Bias Voltage (V) | –17.0 |
Hexapole Bias Voltage (V) | –20.0 |
Auxiliary Ar Flow Rate (L min–1) | 1.0 |
Nebulizer Ar Flow Rate (L min–1) | 1.0 |
Plasma Ar Flow Rate (L min–1) | 14.0 |
Sampling depth (mm) | 80.0 |
RF Power | 1380 W |
Sample ID | Cu | Zn | Se | Cr | As | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|
#1 | 23.7 ± 0.035 | 51.2 ± 0.873 | 0.613 ± 0.876 | 7.39 ± 0.951 | 0.147 ± 0.008 | 0.408 ± 0.027 | 2.14 ± 0.024 | 0.397 ± 0.032 |
#2 | 43.1 ± 2.81 | 61.4 ± 0.972 | 2.55 ± 0.102 | 5.01 ± 0.119 | 0.302 ± 0.004 | 0.223 ± 0.030 | 4.12 ± 0.069 | 0.325 ± 0.007 |
#3 | 35.3 ± 0.254 | 63.4 ± 1.15 | 1.49 ± 0.059 | 10.2 ± 0.079 | 0.111 ± 0.003 | 1.16 ± 0.045 | 3.21 ± 0.091 | 0.305 ± 0.017 |
#4 | 18.9 ± 0.231 | 117 ± 2.03 | 2.28 ± 0.002 | 1.84 ± 0.093 | 0.113 ± 0.009 | 4.03 ± 0.006 | 2.49 ± 0.002 | 0.199 ± 0.009 |
#5 | 123 ± 1.47 | 85.6 ± 0.624 | 2.13 ± 0.004 | 0.828 ± 0.011 | 0.113 ± 0.009 | 2.79 ± 0.023 | 2.27 ± 0.038 | 0.115 ± 0.013 |
#6 | 22.0 ± 0.500 | 74.1 ± 0.155 | 41.1 ± 0.761 | 3.57 ± 0.181 | 0.436 ± 0.010 | 2.09 ± 0.039 | 1.37 ± 0.018 | 0.342 ± 0.013 |
#7 | 25.5 ± 0.512 | 67.6 ± 1.24 | 0.958 ± 0.037 | 10.0 ± 0.026 | 0.529 ± 0.040 | 1.10 ± 0.013 | 3.09 ± 0.064 | 0.591 ± 0.020 |
#8 | 101 ± 1.63 | 213 ± 3.62 | 0.750 ± 0.029 | 1.38 ± 0.010 | 0.453 ± 0.048 | 13.5 ± 0.100 | 1.19 ± 0.023 | 0.354 ± 0.004 |
#9 | 147 ± 2.07 | 105 ± 1.81 | 1.57 ± 0.002 | 2.77 ± 0.991 | 3.78 ± 0.005 | 25.9 ± 0.418 | 5.16 ± 0.153 | 1.21 ± 0.019 |
#10 | 102 ± 5.90 | 104 ± 5.95 | 1.38 ± 0.049 | 0.531 ± 0.051 | 1.05 ± 0.046 | 20.8 ± 1.39 | 2.96 ± 0.175 | 0.405 ± 0.030 |
#11 | 18.6 ± 0.257 | 144 ± 2.21 | 30.3 ± 0.686 | 1.13 ± 0.308 | 0.570 ± 0.002 | 1.25 ± 0.034 | 4.70 ± 0.126 | 0.293 ± 0.013 |
#12 | 33.2 ± 0.034 | 199 ± 0.245 | 54.7 ± 0.201 | 0.675 ± 0.032 | 0.439 ± 0.002 | 1.50 ± 0.035 | 6.85 ± 0.147 | 0.094 ± 0.008 |
#13 | 32.1 ± 0.181 | 155 ± 1.34 | 0.278 ± 0.003 | 0.750 ± 0.023 | 0.278 ± 0.003 | 1.13 ± 0.001 | 6.66 ± 0.073 | 0.078 ± 0.001 |
#14 | 50.3 ± 0.737 | 160 ± 1.78 | 76.8 ± 1.46 | 0.660 ± 0.007 | 0.328 ± 0.007 | 1.30 ± 0.021 | 6.49 ± 0.050 | 0.047 ± 0.003 |
#15 | 41.4 ± 0.509 | 112 ± 5.69 | 1.13 ± 0.154 | 4.03 ± 0.010 | <0.200 | 0.248 ± 0.007 | 11.1 ± 0.489 | 0.090 ± 0.003 |
#16 | 33.4 ± 0.065 | 133 ± 0.729 | 29.7 ± 0.774 | 1.00 ± 0.020 | <0.200 | 0.272 ± 0.037 | 4.32 ± 0.007 | 0.144 ± 0.002 |
Sample ID | Cu | Zn | Se | Cr | As | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|
#1 | 10.2 | 21.9 | 0.263 | 3.17 | 0.0629 | 0.175 | 0.918 | 0.170 |
#2 | 18.5 | 26.3 | 1.09 | 2.15 | 0.129 | 0.0957 | 1.76 | 0.139 |
#3 | 15.1 | 27.2 | 0.640 | 4.40 | 0.0475 | 0.496 | 1.38 | 0.131 |
#4 | 8.12 | 50.1 | 0.976 | 0.787 | 0.0483 | 1.73 | 1.07 | 0.085 |
#5 | 52.5 | 36.7 | 0.912 | 0.355 | 0.0485 | 1.20 | 0.971 | 0.049 |
#6 | 9.45 | 31.7 | 17.62 | 1.53 | 0.187 | 0.895 | 0.586 | 0.146 |
#7 | 10.9 | 29.0 | 0.410 | 4.29 | 0.227 | 0.472 | 1.32 | 0.253 |
#8 | 43.2 | 91.4 | 0.322 | 0.59 | 0.194 | 5.79 | 0.512 | 0.152 |
#9 | 62.9 | 45.0 | 0.671 | 1.19 | 1.62 | 11.1 | 2.21 | 0.520 |
#10 | 43.5 | 44.6 | 0.590 | 0.228 | 0.451 | 8.89 | 1.27 | 0.173 |
#11 | 7.96 | 61.6 | 13.0 | 0.483 | 0.244 | 0.535 | 2.01 | 0.126 |
#12 | 14.2 | 85.3 | 23.5 | 0.289 | 0.188 | 0.644 | 2.94 | 0.0401 |
#13 | 13.8 | 66.3 | 0.119 | 0.322 | 0.119 | 0.486 | 2.85 | 0.0332 |
#14 | 21.6 | 68.8 | 32.9 | 0.283 | 0.141 | 0.556 | 2.78 | 0.0203 |
#15 | 17.8 | 48.0 | 0.485 | 1.73 | n.d. | 0.106 | 4.74 | 0.0385 |
#16 | 14.3 | 56.9 | 12.7 | 0.429 | n.d. | 0.117 | 1.85 | 0.0618 |
RfD a (μg kg body weight-1 per day) | 40 d | 300 e | 0.5 e | 3 d | 0.3 d | 1 d | 0.3 d | 3.5 e |
PTDI b (μg kg body weight-1 per day) | - | - | - | - | 2.14 f | 0.82 f | 0.57 f | - |
PTMDI c (μg kg body weight−1 per day) | 5000 f | 300–1000 f | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; F. Barbero, G. Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. J. Fungi 2022, 8, 545. https://doi.org/10.3390/jof8050545
Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, Bouziane H, López-Castillo JG, Palma M, F. Barbero G. Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. Journal of Fungi. 2022; 8(5):545. https://doi.org/10.3390/jof8050545
Chicago/Turabian StyleBarea-Sepúlveda, Marta, Estrella Espada-Bellido, Marta Ferreiro-González, Hassan Bouziane, José Gerardo López-Castillo, Miguel Palma, and Gerardo F. Barbero. 2022. "Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco" Journal of Fungi 8, no. 5: 545. https://doi.org/10.3390/jof8050545
APA StyleBarea-Sepúlveda, M., Espada-Bellido, E., Ferreiro-González, M., Bouziane, H., López-Castillo, J. G., Palma, M., & F. Barbero, G. (2022). Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. Journal of Fungi, 8(5), 545. https://doi.org/10.3390/jof8050545