Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Chemicals
2.2. Deletion and Revertant Construction Strategy
2.3. Lipid Extraction
2.4. Mass Spectrometry Analysis
2.5. Gas Chromatography Mass Spectrometry (GCMS)
2.6. Growth Assay
2.7. Minimal Inhibitory Concentration (MIC) Measurements
2.8. Spot Microdilution Assay
2.9. Uptake Measurements of Radiolabelled 3H-FLC
2.10. Fluorescence Imaging and FRAP (Fluorescence Recovery after Photobleaching)
2.11. Virulence Study
3. Results
3.1. The Deletion of CgIpt1 and CgSkn1 in Candida Glabrata
3.2. Lipidomics of ΔCgipt1 and ΔCgskn1 Mutants Confirmed Their Involvement in SL Metabolism in C. glabrata
3.3. CgSkn1 Does Not Significantly Impact MIPC Metabolism
3.4. ΔCgipt1 Cells Manifest Increased Drug Susceptibility
3.5. ΔCgipt1 Cells Revealed Increase Levels of Sterols
3.6. Deletion of CgIpt1 Leads to Reduced PM Rigidity
3.7. ΔCgipt1 Cells Show Enhanced Diffusion of 3H-FLC
3.8. ΔCgipt1 Cells Show Attenuated Virulence in Mouse Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Nair, R.; Banerjee, A. Multidrug Transporters of Candida Species in Clinical Azole Resistance. Fungal Genet. Biol. 2019, 132, 103252. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K.; Kohli, A.; Prasad, R. Drug Susceptibilities of Yeast Cells Are Affected by Membrane Lipid Composition. Antimicrob. Agents Chemother. 2002, 46, 3695–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014, 5, a019752. [Google Scholar] [CrossRef] [PubMed]
- Kohli, A.; Smriti; Mukhopadhyay, K.; Rattan, A.; Prasad, R. In Vitro Low-Level Resistance to Azoles in Candida Albicans Is Associated with Changes in Membrane Lipid Fluidity and Asymmetry. Antimicrob. Agents Chemother. 2002, 46, 1046–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Singh, A. Lipids of Candida Albicans and Their Role in Multidrug Resistance. Curr. Genet. 2013, 59, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Prasad, R. Comparative Lipidomics of Azole Sensitive and Resistant Clinical Isolates of Candida Albicans Reveals Unexpected Diversity in Molecular Lipid Imprints. PLoS ONE 2011, 6, e19266. [Google Scholar] [CrossRef] [Green Version]
- Rella, A.; Farnoud, A.M.; Del Poeta, M. Plasma Membrane Lipids and Their Role in Fungal Virulence. Prog. Lipid Res. 2016, 61, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattif, A.A.; Mukherjee, P.K.; Chandra, J.; Roth, M.R.; Welti, R.; Rouabhia, M.; Ghannoum, M.A. Lipidomics of Candida Albicans Biofilms Reveals Phase-Dependent Production of Phospholipid Molecular Classes and Role for Lipid Rafts in Biofilm Formation. Microbiology 2011, 157 Pt 11, 3232–3242. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.M.; Richards, A.; Wahl, T.; Mao, C.; Obeid, L.; Hannun, Y. Involvement of Yeast Sphingolipids in the Heat Stress Response of Saccharomyces Cerevisiae. J. Biol. Chem. 1997, 272, 32566–32572. [Google Scholar] [CrossRef]
- Patton, J.L.; Srinivasan, B.; Dickson, R.C.; Lester, R.L. Phenotypes of Sphingolipid-Dependent Strains of Saccharomyces Cerevisiae. J. Bacteriol. 1992, 174, 7180–7184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanolari, B.; Friant, S.; Funato, K.; Sütterlin, C.; Stevenson, B.J.; Riezman, H. Sphingoid Base Synthesis Requirement for Endocytosis in Saccharomyces Cerevisiae. EMBO J. 2000, 19, 2824–2833. [Google Scholar] [CrossRef] [PubMed]
- Obeid, L.M.; Okamoto, Y.; Mao, C. Yeast Sphingolipids: Metabolism and Biology. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2002, 1585, 163–171. [Google Scholar] [CrossRef]
- Cheng, J.; Park, T.-S.; Chio, L.-C.; Fischl, A.S.; Ye, X.S. Induction of Apoptosis by Sphingoid Long-Chain Bases in Aspergillus Nidulans. Mol. Cell Biol. 2003, 23, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Luberto, C.; Toffaletti, D.L.; Wills, E.A.; Tucker, S.C.; Casadevall, A.; Perfect, J.R.; Hannun, Y.A.; Del Poeta, M. Roles for Inositol-Phosphoryl Ceramide Synthase 1 (IPC1) in Pathogenesis of C. Neoformans. Genes Dev. 2001, 15, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, S.; Castillon, G.A.; Qin, Y.; Riezman, H. An Essential Function of Sphingolipids in Yeast Cell Division. Mol. Microbiol. 2012, 84, 1018–1032. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Prasad, T.; Saini, P.; Pucadyil, T.J.; Chattopadhyay, A.; Prasad, R. Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida Albicans. Antimicrob. Agents Chemother. 2004, 48, 1778–1787. [Google Scholar] [CrossRef] [Green Version]
- Pasrija, R.; Prasad, T.; Prasad, R. Membrane Raft Lipid Constituents Affect Drug Susceptibilities of Candida Albicans. Biochem. Soc. Trans. 2005, 33, 1219–1223. [Google Scholar] [CrossRef]
- Pasrija, R.; Panwar, S.L.; Prasad, R. Multidrug Transporters CaCdr1p and CaMdr1p of Candida Albicans Display Different Lipid Specificities: Both Ergosterol and Sphingolipids Are Essential for Targeting of CaCdr1p to Membrane Rafts. Antimicrob. Agents Chemother. 2008, 52, 694–704. [Google Scholar] [CrossRef] [Green Version]
- Prasad, T.; Saini, P.; Gaur, N.A.; Vishwakarma, R.A.; Khan, L.A.; Haq, Q.M.R.; Prasad, R. Functional Analysis of CaIPT1, a Sphingolipid Biosynthetic Gene Involved in Multidrug Resistance and Morphogenesis of Candida Albicans. Antimicrob. Agents Chemother. 2005, 49, 3442–3452. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.W.; Konopka, J.B. Lipid Raft Polarization Contributes to Hyphal Growth in Candida Albicans. Eukaryot. Cell 2004, 3, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mor, V.; Rella, A.; Farnoud, A.M.; Singh, A.; Munshi, M.; Bryan, A.; Naseem, S.; Konopka, J.B.; Ojima, I.; Bullesbach, E.; et al. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio 2015, 6, e00647. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinea, J. Global Trends in the Distribution of Candida Species Causing Candidemia. Clin. Microbiol. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal Drug Resistance among Candida Species: Mechanisms and Clinical Impact. Mycoses 2015, 58 (Suppl. S2), 2–13. [Google Scholar] [CrossRef]
- Kołaczkowska, A.; Kołaczkowski, M. Drug Resistance Mechanisms and Their Regulation in Non-Albicans Candida Species. J. Antimicrob. Chemother. 2016, 71, 1438–1450. [Google Scholar] [CrossRef] [Green Version]
- vanden Bossche, H.; Marichal, P.; Odds, F.C.; Le Jeune, L.; Coene, M.C. Characterization of an Azole-Resistant Candida Glabrata Isolate. Antimicrob. Agents Chemother. 1992, 36, 2602–2610. [Google Scholar] [CrossRef] [Green Version]
- Sanglard, D.; Ischer, F.; Calabrese, D.; Majcherczyk, P.A.; Bille, J. The ATP Binding Cassette Transporter GeneCgCDR1 from Candida Glabrata Is Involved in the Resistance of Clinical Isolates to Azole Antifungal Agents. Antimicrob. Agents Chemother. 1999, 43, 2753–2765. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Nunes, J.; Henriques, A.; Mira, N.P.; Nakayama, H.; Chibana, H.; Teixeira, M.C. Candida Glabrata Drug:H+ Antiporter CgTpo3 (ORF CAGL0I10384g): Role in Azole Drug Resistance and Polyamine Homeostasis. J. Antimicrob. Chemother. 2014, 69, 1767–1776. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Ischer, F.; Calabrese, D.; Posteraro, B.; Sanguinetti, M.; Fadda, G.; Rohde, B.; Bauser, C.; Bader, O.; Sanglard, D. Gain of Function Mutations in CgPDR1 of Candida Glabrata Not Only Mediate Antifungal Resistance but Also Enhance Virulence. PLoS Pathog. 2009, 5, e1000268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Pires, C.; Cabrito, T.R.; Renaudin, A.; Ohno, M.; Chibana, H.; Sá-Correia, I.; Teixeira, M.C. Candida Glabrata Drug:H+ Antiporter CgQdr2 Confers Imidazole Drug Resistance, Being Activated by Transcription Factor CgPdr1. Antimicrob. Agents Chemother. 2013, 57, 3159–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Schmidt, J.A.; Moye-Rowley, W.S. Regulation of the CgPdr1 Transcription Factor from the Pathogen Candida Glabrata. Eukaryot. Cell 2011, 10, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frías-De-León, M.G.; Hernández-Castro, R.; Conde-Cuevas, E.; García-Coronel, I.H.; Vázquez-Aceituno, V.A.; Soriano-Ursúa, M.A.; Farfán-García, E.D.; Ocharán-Hernández, E.; Rodríguez-Cerdeira, C.; Arenas, R.; et al. Candida Glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021, 13, 1529. [Google Scholar] [CrossRef] [PubMed]
- Filler, E.E.; Liu, Y.; Solis, N.V.; Wang, L.; Diaz, L.F.; Edwards, J.E.; Filler, S.G.; Yeaman, M.R.; Noverr, M.C. Identification of Candida Glabrata Transcriptional Regulators That Govern Stress Resistance and Virulence. Infect. Immun. 2021, 89, e00146-20. [Google Scholar] [CrossRef]
- Vermitsky, J.-P.; Earhart, K.D.; Smith, W.L.; Homayouni, R.; Edlind, T.D.; Rogers, P.D. Pdr1 Regulates Multidrug Resistance in Candida Glabrata: Gene Disruption and Genome-Wide Expression Studies. Mol. Microbiol. 2006, 61, 704–722. [Google Scholar] [CrossRef]
- Simonicova, L.; Moye-Rowley, W.S. Functional Information from Clinically-Derived Drug Resistant Forms of the Candida Glabrata Pdr1 Transcription Factor. PLoS Genet. 2020, 16, e1009005. [Google Scholar] [CrossRef]
- Roetzer, A.; Gabaldón, T.; Schüller, C. From Saccharomyces Cerevisiae to Candida Glabrata in a Few Easy Steps: Important Adaptations for an Opportunistic Pathogen. FEMS Microbiol. Lett. 2011, 314, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.N.; Balusu, S.; Gorityala, N.; Dandu, L.; Kaur, R. Functional Genomic Analysis of Candida Glabrata-Macrophage Interaction: Role of Chromatin Remodeling in Virulence. PLoS Pathog. 2012, 8, e1002863. [Google Scholar] [CrossRef] [Green Version]
- Bialková, A.; Šubík, J. Biology of the Pathogenic YeastCandida Glabrata. Folia Microbiol. 2006, 51, 3–20. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, M.; Khandelwal, N.K.; Pandey, A.K.; Bhakt, P.; Kaur, R.; Prasad, R.; Gaur, N.A. A Homologous Overexpression System to Study Roles of Drug Transporters in Candida Glabrata. FEMS Yeast Res. 2020, 20, foaa032. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, T.; Kapoor, K.; Mandal, A.; Roth, M.; Welti, R.; Prasad, R. Phospholipidome of Candida: Each Species of Candida Has Distinctive Phospholipid Molecular Species. OMICS J. Integr. Biol. 2010, 14, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Yadav, V.; Prasad, R. Comparative Lipidomics in Clinical Isolates of Candida Albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance. PLoS ONE 2012, 7, e39812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahto, K.K.; Singh, A.; Khandelwal, N.K.; Bhardwaj, N.; Jha, J.; Prasad, R. An Assessment of Growth Media Enrichment on Lipid Metabolome and the Concurrent Phenotypic Properties of Candida Albicans. PLoS ONE 2014, 9, e113664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, S.; Kumar, M.; Esquivel, B.D.; Wasi, M.; Pandey, A.K.; Kumar, K.N.; Mondal, A.K.; White, T.C.; Prasad, R.; Gaur, N.A. Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida Glabrata. mBio 2022, 13, e03545-21. [Google Scholar] [CrossRef]
- Esquivel, B.D.; Smith, A.R.; Zavrel, M.; White, T.C. Azole Drug Import into the Pathogenic Fungus Aspergillus Fumigatus. Antimicrob. Agents Chemother. 2015, 59, 3390–3398. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, B.E.; Oltean, H.N.; Oliver, B.G.; Hoot, S.J.; Leyde, S.E.; Hedstrom, L.; White, T.C. Azole Drugs Are Imported By Facilitated Diffusion in Candida Albicans and Other Pathogenic Fungi. PLoS Pathog. 2010, 6, e1001126. [Google Scholar] [CrossRef] [Green Version]
- Koppel, D.E.; Sheetz, M.P.; Schindler, M. Lateral Diffusion in Biological Membranes. A Normal-Mode Analysis of Diffusion on a Spherical Surface. Biophys. J. 1980, 30, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Andes, D.R.; Diekema, D.J.; Pfaller, M.A.; Marchillo, K.; Bohrmueller, J. In Vivo Pharmacodynamic Target Investigation for Micafungin against Candida Albicans and C. Glabrata in a Neutropenic Murine Candidiasis Model. Antimicrob. Agents Chemother. 2008, 52, 3497–3503. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.C.; Nagiec, E.E.; Wells, G.B.; Nagiec, M.M.; Lester, R.L. Synthesis of Mannose-(Inositol-P)2-Ceramide, the Major Sphingolipid in Saccharomyces Cerevisiae, Requires the IPT1 (YDR072c) Gene. J. Biol. Chem. 1997, 272, 29620–29625. [Google Scholar] [CrossRef] [Green Version]
- Thevissen, K.; Idkowiak-Baldys, J.; Im, Y.-J.; Takemoto, J.; François, I.E.J.A.; Ferket, K.K.A.; Aerts, A.M.; Meert, E.M.K.; Winderickx, J.; Roosen, J.; et al. SKN1, a Novel Plant Defensin-Sensitivity Gene in Saccharomyces Cerevisiae, Is Implicated in Sphingolipid Biosynthesis. FEBS Lett. 2005, 579, 1973–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevissen, K.; Yen, W.-L.; Carmona-Gutierrez, D.; Idkowiak-Baldys, J.; Aerts, A.M.; François, I.E.J.A.; Madeo, F.; Klionsky, D.J.; Hannun, Y.A.; Cammue, B.P.A. Skn1 and Ipt1 Negatively Regulate Autophagy in Saccharomyces Cerevisiae. FEMS Microbiol. Lett. 2010, 303, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roemer, T.; Delaney, S.; Bussey, H. SKN1 and KRE6 Define a Pair of Functional Homologs Encoding Putative Membrane Proteins Involved in Beta-Glucan Synthesis. Mol. Cell. Biol. 1993, 13, 4039–4048. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, N.; Yao, G.; Mu, C.; Wang, Y.; Sang, J. Blocking β-1,6-Glucan Synthesis by Deleting KRE6 and SKN1 Attenuates the Virulence of Candida Albicans. Mol. Microbiol. 2019, 111, 604–620. [Google Scholar] [CrossRef]
- Kurita, T.; Noda, Y.; Yoda, K. Action of Multiple Endoplasmic Reticulum Chaperon-like Proteins Is Required for Proper Folding and Polarized Localization of Kre6 Protein Essential in Yeast Cell Wall β-1,6-Glucan Synthesis. J. Biol. Chem. 2012, 287, 17415–17424. [Google Scholar] [CrossRef] [Green Version]
- Moffett, S.; Brown, D.A.; Linder, M.E. Lipid-Dependent Targeting of G Proteins into Rafts. J. Biol. Chem. 2000, 275, 2191–2198. [Google Scholar] [CrossRef] [Green Version]
- Prasad, T.; Chandra, A.; Mukhopadhyay, C.K.; Prasad, R. Unexpected Link between Iron and Drug Resistance of Candida Spp.: Iron Depletion Enhances Membrane Fluidity and Drug Diffusion, Leading to Drug-Susceptible Cells. Antimicrob. Agents Chemother. 2006, 50, 3597–3606. [Google Scholar] [CrossRef] [Green Version]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.-M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J. Biol. Chem. 2016, 291, 3658–3667. [Google Scholar] [CrossRef] [Green Version]
- Galocha, M.; Costa, I.V.; Teixeira, M.C. Carrier-Mediated Drug Uptake in Fungal Pathogens. Genes 2020, 11, 1324. [Google Scholar] [CrossRef]
- Esquivel, B.D.; White, T.C. Accumulation of Azole Drugs in the Fungal Plant Pathogen Magnaporthe Oryzae Is the Result of Facilitated Diffusion Influx. Front. Microbiol. 2017, 8, 1320. [Google Scholar] [CrossRef] [Green Version]
- Pagé, N.; Gérard-Vincent, M.; Ménard, P.; Beaulieu, M.; Azuma, M.; Dijkgraaf, G.J.P.; Li, H.; Marcoux, J.; Nguyen, T.; Dowse, T.; et al. A Saccharomyces Cerevisiae Genome-Wide Mutant Screen for Altered Sensitivity to K1 Killer Toxin. Genetics 2003, 163, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Ragni, E.; Piberger, H.; Neupert, C.; García-Cantalejo, J.; Popolo, L.; Arroyo, J.; Aebi, M.; Strahl, S. The Genetic Interaction Network of CCW12, a Saccharomyces Cerevisiae Gene Required for Cell Wall Integrity during Budding and Formation of Mating Projections. BMC Genom. 2011, 12, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sherbeini, M.; Clemas, J.A. Cloning and Characterization of GNS1: A Saccharomyces Cerevisiae Gene Involved in Synthesis of 1,3-Beta-Glucan in Vitro. J. Bacteriol. 1995, 177, 3227–3234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, P.W.J.; Ruiz, C.; Vázquez de Aldana, C.R.; Duenas, E.; Cid, V.J.; Del Rey, F.; Rodríquez-Peña, J.M.; Pérez, P.; Andel, A.; Caubín, J.; et al. A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation in Saccharomyces Cerevisiae. Comp. Funct. Genom. 1900, 2, 349784. [Google Scholar] [CrossRef] [Green Version]
- Campodónico, V.L.; Rifat, D.; Chuang, Y.-M.; Ioerger, T.R.; Karakousis, P.C. Altered Mycobacterium Tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D. Front. Microbiol. 2018, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Lan, Q.; Li, Y.; Wang, F.; Li, Z.; Gao, Y.; Lu, H.; Wang, Y.; Zhao, Z.; Deng, Z.; He, F.; et al. Deubiquitinase Ubp3 Enhances the Proteasomal Degradation of Key Enzymes in Sterol Homeostasis. J. Biol. Chem. 2021, 296, 100348. [Google Scholar] [CrossRef]
- Ejsing, C.S.; Sampaio, J.L.; Surendranath, V.; Duchoslav, E.; Ekroos, K.; Klemm, R.W.; Simons, K.; Shevchenko, A. Global Analysis of the Yeast Lipidome by Quantitative Shotgun Mass Spectrometry. Proc. Natl. Acad. Sci. USA 2009, 106, 2136–2141. [Google Scholar] [CrossRef] [Green Version]
- Bento-Oliveira, A.; Santos, F.C.; Marquês, J.T.; Paulo, P.M.R.; Korte, T.; Herrmann, A.; Marinho, H.S.; de Almeida, R.F.M. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020, 10, 871. [Google Scholar] [CrossRef]
- Kim, J.H.; Singh, A.; Del Poeta, M.; Brown, D.A.; London, E. The Effect of Sterol Structure upon Clathrin-Mediated and Clathrin-Independent Endocytosis. J. Cell Sci. 2017, 130, 2682–2695. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Q.; Gamarra, S.; Garcia-Effron, G.; Park, S.; Perlin, D.S.; Rao, R. Requirement for Ergosterol in V-ATPase Function Underlies Antifungal Activity of Azole Drugs. PLoS Pathog. 2010, 6, e1000939. [Google Scholar] [CrossRef]
- Gomez-Lopez, A.; Buitrago, M.J.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. In Vitro Antifungal Susceptibility Pattern and Ergosterol Content in Clinical Yeast Strains. Rev. Iberoam. Micol. 2011, 28, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Salazar, S.B.; Wang, C.; Münsterkötter, M.; Okamoto, M.; Takahashi-Nakaguchi, A.; Chibana, H.; Lopes, M.M.; Güldener, U.; Butler, G.; Mira, N.P. Comparative Genomic and Transcriptomic Analyses Unveil Novel Features of Azole Resistance and Adaptation to the Human Host in Candida Glabrata. FEMS Yeast Res. 2018, 18, fox079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pais, P.; Galocha, M.; Viana, R.; Cavalheiro, M.; Pereira, D.; Teixeira, M.C. Microevolution of the Pathogenic Yeasts Candida Albicans and Candida Glabrata during Antifungal Therapy and Host Infection. Microb. Cell 2019, 6, 142–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, H.F.; Sammons, L.R.; Zhang, X.; Suffis, S.D.; Su, Q.; Myers, T.G.; Marr, K.A.; Bennett, J.E. Microarray and Molecular Analyses of the Azole Resistance Mechanism in Candida Glabrata Oropharyngeal Isolates. Antimicrob. Agents Chemother. 2010, 54, 3308–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, C.M.; Parker, J.E.; Bader, O.; Weig, M.; Gross, U.; Warrilow, A.G.S.; Kelly, D.E.; Kelly, S.L. Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida Glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B. Antimicrob. Agents Chemother. 2012, 56, 4223–4232. [Google Scholar] [CrossRef] [Green Version]
- Brun, S.; Bergès, T.; Poupard, P.; Vauzelle-Moreau, C.; Renier, G.; Chabasse, D.; Bouchara, J.-P. Mechanisms of Azole Resistance in Petite Mutants of Candida Glabrata. Antimicrob. Agents Chemother. 2004, 48, 1788–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahi, G.; Kumar, M.; Khandelwal, N.K.; Banerjee, A.; Sarkar, P.; Kumari, S.; Esquivel, B.D.; Chauhan, N.; Chattopadhyay, A.; White, T.C.; et al. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J. Fungi 2022, 8, 651. https://doi.org/10.3390/jof8070651
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, et al. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi. 2022; 8(7):651. https://doi.org/10.3390/jof8070651
Chicago/Turabian StyleShahi, Garima, Mohit Kumar, Nitesh Kumar Khandelwal, Atanu Banerjee, Parijat Sarkar, Sonam Kumari, Brooke D. Esquivel, Neeraj Chauhan, Amitabha Chattopadhyay, Theodore C. White, and et al. 2022. "Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata" Journal of Fungi 8, no. 7: 651. https://doi.org/10.3390/jof8070651
APA StyleShahi, G., Kumar, M., Khandelwal, N. K., Banerjee, A., Sarkar, P., Kumari, S., Esquivel, B. D., Chauhan, N., Chattopadhyay, A., White, T. C., Gaur, N. A., Singh, A., & Prasad, R. (2022). Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. Journal of Fungi, 8(7), 651. https://doi.org/10.3390/jof8070651