Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushrooms and Forest soil Sampling
2.2. Analysis of Cadmium
2.3. Bioconcentration and Health Risk Index (HRI) Calculation
2.4. Data Analysis and Statistics
3. Results and Discussion
3.1. Cadium Contents in Tricholoma spp. Collected from Central and Coastal Croatia
3.2. Bioconcentration Factor (BCF) of Cd Accumulation in Tricholoma spp.
3.3. PCA and HCA Results
3.4. Health Risk Assessment of Cd Intake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace Elements in Agroecosystems and Impacts on the Environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Final Review of Scientific Information on Lead; Version of December; United Nations Environment Programme, Economy Division: Nairobi, Kenya, 2010. [Google Scholar]
- Türkdoǧan, M.K.; Kilicel, F.; Kara, K.; Tuncer, I.; Uygan, I. Heavy Metals in Soil, Vegetables and Fruits in the Endemic Upper Gastrointestinal Cancer Region of Turkey. Environ. Toxicol. Pharmacol. 2003, 13, 175–179. [Google Scholar] [CrossRef]
- Cocchi, L.; Vescovi, L.; Petrini, L.E.; Petrini, O. Heavy Metals in Edible Mushrooms in Italy. Food Chem. 2006, 98, 277–284. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs; International Agency for Research on Cancer: Lyon, France, 2012; Volume 1–105. [Google Scholar]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalač, P. Mineral Composition and Radioactivity of Edible Mushrooms. In Mineral Composition and Radioactivity of Edible Mushrooms; Academic Press: Cambridge, MA, USA, 2019; pp. 1–392. ISBN 9780128175651. [Google Scholar]
- Falandysz, J.; Borovička, J. Macro and Trace Mineral Constituents and Radionuclides in Mushrooms: Health Benefits and Risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niazi, A.R.; Ghafoor, A. Different Ways to Exploit Mushrooms: A Review. All Life 2021, 14, 450–460. [Google Scholar] [CrossRef]
- Talpur, N.A.; Echard, B.W.; Fan, A.Y.; Jaffari, O.; Bagchi, D.; Preuss, H.G. Antihypertensive and Metabolic Effects of Whole Maitake Mushroom Powder and Its Fractions in Two Rat Strains. Mol. Cell. Biochem. 2002, 237, 129–136. [Google Scholar] [CrossRef]
- Jeong, S.C.; Jeong, Y.T.; Yang, B.K.; Islam, R.; Koyyalamudi, S.R.; Pang, G.; Cho, K.Y.; Song, C.H. White Button Mushroom (Agaricus bisporus) Lowers Blood Glucose and Cholesterol Levels in Diabetic and Hypercholesterolemic Rats. Nutr. Res. 2010, 30, 49–56. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Q.; Rong, C.; Wang, S.; Zhao, Z.; Liu, Y.; Xu, J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J. Fungi 2020, 6, 269. [Google Scholar] [CrossRef]
- Petkovšek, S.A.S.; Pokorny, B. Lead and Cadmium in Mushrooms from the Vicinity of Two Large Emission Sources in Slovenia. Sci. Total Environ. 2013, 443, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Salgado, M.J.; García, M.A.; Melgar, M.J. Accumulation of Mercury in Edible Macrofungi: Influence of Some Factors. Arch. Environ. Contam. Toxicol. 2000, 38, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Aloupi, M.; Koutrotsios, G.; Koulousaris, M.; Kalogeropoulos, N. Trace Metal Contents in Wild Edible Mushrooms Growing on Serpentine and Volcanic Soils on the Island of Lesvos, Greece. Ecotoxicol. Environ. Saf. 2012, 78, 184–194. [Google Scholar] [CrossRef]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy Metal Bioaccumulation by Wild Edible Saprophytic and Ectomycorrhizal Mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef] [PubMed]
- Borovička, J.; Konvalinková, T.; Žigová, A.; Ďurišová, J.; Gryndler, M.; Hršelová, H.; Kameník, J.; Leonhardt, T.; Sácký, J. Disentangling the Factors of Contrasting Silver and Copper Accumulation in Sporocarps of the Ectomycorrhizal Fungus Amanita strobiliformis from Two Sites. Sci. Total Environ. 2019, 694, 133679. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Mędyk, M.; Treu, R. Bio-Concentration Potential and Associations of Heavy Metals in Amanita muscaria (L.) Lam. from Northern Regions of Poland. Environ. Sci. Pollut. Res. 2018, 25, 25190–25206. [Google Scholar] [CrossRef] [Green Version]
- Kavčič, A.; Mikuš, K.; Debeljak, M.; Teun van Elteren, J.; Arčon, I.; Kodre, A.; Kump, P.; Karydas, A.G.; Migliori, A.; Czyzycki, M.; et al. Localization, Ligand Environment, Bioavailability and Toxicity of Mercury in Boletus spp. and Scutiger Pes-Caprae Mushrooms. Ecotoxicol. Environ. Saf. 2019, 184, 109623. [Google Scholar] [CrossRef]
- Širić, I.; Falandysz, J. Contamination, Bioconcentration and Distribution of Mercury in Tricholoma spp. Mushrooms from Southern and Northern Regions of Europe. Chemosphere 2020, 251, 126614. [Google Scholar] [CrossRef]
- Choma, A.; Nowak, K.; Komaniecka, I.; Waśko, A.; Pleszczyńska, M.; Siwulski, M.; Wiater, A. Chemical Characterization of Alkali-Soluble Polysaccharides Isolated from a Boletus edulis (Bull.) Fruiting Body and Their Potential for Heavy Metal Biosorption. Food Chem. 2018, 266, 329–334. [Google Scholar] [CrossRef]
- Malik, A. Metal Bioremediation through Growing Cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef]
- Mleczek, M.; Magdziak, Z.; Gąsecka, M.; Niedzielski, P.; Kalač, P.; Siwulski, M.; Rzymski, P.; Zalicka, S.; Sobieralski, K. Content of Selected Elements and Low-Molecular-Weight Organic Acids in Fruiting Bodies of Edible Mushroom Boletus badius (Fr.) Fr. from Unpolluted and Polluted Areas. Environ. Sci. Pollut. Res. 2016, 23, 20609–20618. [Google Scholar] [CrossRef] [Green Version]
- Severoglu, Z.; Sumer, S.; Yalcin, B.; Leblebici, Z.; Aksoy, A. Trace Metal Levels in Edible Wild Fungi. Int. J. Environ. Sci. Technol. 2013, 10, 295–304. [Google Scholar] [CrossRef]
- Širić, I.; Kasap, A.; Bedeković, D.; Falandysz, J. Lead, Cadmium and Mercury Contents and Bioaccumulation Potential of Wild Edible Saprophytic and Ectomycorrhizal Mushrooms, Croatia. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.X.; Chen, Y.; Li, S.; Zhang, W.; Zhang, Y.; Gao, S.; Li, N.; Tao, L.; Wang, Y. Trace Elements Determination and Health Risk Assessment of Tricholoma matsutake from Yunnan Province, China. J. Consum. Prot. Food Saf. 2020, 15, 153–162. [Google Scholar] [CrossRef]
- Gałgowska, M.; Pietrzak-fiećko, R. Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules 2021, 26, 7289. [Google Scholar] [CrossRef]
- Liu, S.; Fu, Y.; Shi, M.; Wang, H.; Guo, J. Pollution Level and Risk Assessment of Lead, Cadmium, Mercury, and Arsenic in Edible Mushrooms from Jilin Province, China. J. Food Sci. 2021, 86, 3374–3383. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Puścion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of Toxic Element Content and Health Risk Assessment of Edible Wild Mushrooms. J. Food Compos. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Popović-Djordjević, J.; Solak, M.H. Wild Edible Mushrooms from Mediterranean Region: Metal Concentrations and Health Risk Assessment. Ecotoxicol. Environ. Saf. 2020, 190, 110058. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhang, J.; Li, J.; Li, T.; Liu, H.; Wang, Y. Determination of Mineral Contents of Wild Boletus edulis Mushroom and Its Edible Safety Assessment. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2018, 53, 454–463. [Google Scholar] [CrossRef]
- Demirbas, A. Levels of Trace Elements in the Fruiting Bodies of Mushrooms Growing in the East Black Sea Region. Energy Edu. Sci. Technol. 2001, 7, 67–81. [Google Scholar]
- Kumar, P.; Kumar, V.; Eid, E.M.; AL-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Melgar, M.J.; Alonso, J.; García, M.A. Cadmium in Edible Mushrooms from NW Spain: Bioconcentration Factors and Consumer Health Implications. Food Chem. Toxicol. 2016, 88, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Meisch, H.-U.; Schmitt, J.A.; Reinle, W. Schwermetalle in Höheren Pilzen Cadmium, Zink Und Kupfer Heavy Metals in Higher Fungi Cadmium, Zinc, and Copper. Z. Für Nat. C 1977, 32, 172–181. [Google Scholar] [CrossRef]
- Strapáč, I.; Baranová, M. Content of Chemical Elements in Wood-Destroying Fungi. Folia Vet. 2016, 60, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Zhang, J.D.; Xu, H.; Li, D.H. Metal Content of Armillaria mellea in the Tumen River Basin. Int. J. Food Prop. 2017, 20, 2052–2059. [Google Scholar] [CrossRef] [Green Version]
- Karmanska, A.; Wedzisz, A. Content of Selected Macro- and Microelements in Various Species of Large Fruiting Body Mushroomscollected in the Province of Łódz. Chem. Toksykol. 2010, 43, 124–129. [Google Scholar]
- Anna Adamiak, E.; Kalembasa, S.; Kuziemska, B. Contents of Heavy Metals in Selected Species of Edible Mushrooms. Acta Agrophysica 2013, 20, 7–16. [Google Scholar]
- Chiocchetti, G.M.; Latorre, T.; Clemente, M.J.; Jadán-Piedra, C.; Devesa, V.; Vélez, D. Toxic Trace Elements in Dried Mushrooms: Effects of Cooking and Gastrointestinal Digestion on Food Safety. Food Chem. 2020, 306, 125478. [Google Scholar] [CrossRef]
- Zavastin, D.E.; Biliută, G.; Dodi, G.; Macsim, A.M.; Lisa, G.; Gherman, S.P.; Breabăn, I.G.; Miron, A.; Coseri, S. Metal Content and Crude Polysaccharide Characterization of Selected Mushrooms Growing in Romania. J. Food Compos. Anal. 2018, 67, 149–158. [Google Scholar] [CrossRef]
- Rasalanavho, M.; Moodley, R.; Jonnalagadda, S.B. Elemental Bioaccumulation and Nutritional Value of Five Species of Wild Growing Mushrooms from South Africa. Food Chem. 2020, 319, 126596. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P.; Svoboda, L. A Review of Trace Element Concentrations in Edible Mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Falandysz, J.; Chudzińska, M.; Barałkiewicz, D.; Drewnowska, M.; Hanć, A. Toxic Elements and Bio-Metals in Cantharellus Mushrooms from Poland and China. Environ. Sci. Pollut. Res. 2017, 24, 11472–11482. [Google Scholar] [CrossRef] [Green Version]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of Wild-Grown Edible Mushrooms by Heavy Metals in a Former Mercury-Mining Area. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2014, 49, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Coroian, A.; Odagiu, A.; Marchis, Z.; Miresan, V.; Raducu, C.; Oroian, C.; Longodor, A.L. Heavy Metals and the Radioactivity in Boletus (Boletus edulis), and Chanterelle Mushrooms (Cantharellus cibarius) in Transylvanian Area. Agrolife Sci. J. 2018, 7, 17–21. [Google Scholar]
- Borovička, J.; Braeuer, S.; Sácký, J.; Kameník, J.; Goessler, W.; Trubač, J.; Strnad, L.; Rohovec, J.; Leonhardt, T.; Kotrba, P. Speciation Analysis of Elements Accumulated in Cystoderma carcharias from Clean and Smelter-Polluted Sites. Sci. Total Environ. 2019, 648, 1570–1581. [Google Scholar] [CrossRef]
- Falandysz, J.; Kunito, T.; Kubota, R.; Gucia, M.; Mazur, A.; Falandysz, J.J.; Tanabe, S. Some Mineral Constituents of Parasol Mushroom (Macrolepiota procera). J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2008, 43, 187–192. [Google Scholar] [CrossRef]
- Yamaç, M.; Yildiz, D.; Sarikürkcü, C.; Çelikkollu, M.; Solak, M.H. Heavy Metals in Some Edible Mushrooms from the Central Anatolia, Turkey. Food Chem. 2007, 103, 263–267. [Google Scholar] [CrossRef]
- Malinowska, E.; Szefer, P.; Falandysz, J. Metals Bioaccumulation by Bay bolete, Xerocomus badius, from Selected Sites in Poland. Food Chem. 2004, 84, 405–416. [Google Scholar] [CrossRef]
- Yilmaz, F.; Isiloglu, M.; Merdivan, M. Heavy Metals Levels in Some Macrofungi. Turk. J. Bot. 2003, 27, 45–56. [Google Scholar]
- Heilmann-Clausen, J.; Christensen, M.; Frøslev, T.G.; Kjøller, R. Taxonomy of Tricholoma in Northern Europe Based on ITS Sequence Data and Morphological Characters. Pers. Mol. Phylogeny Evol. Fungi 2017, 38, 38–57. [Google Scholar] [CrossRef] [Green Version]
- Wheater, C.P.; Bell, J.R.; Cook, P.A. Practical Field Ecology: A Project Guide, 2nd ed.; John Willey & Sons Inc.: Hoboken, NJ, UAS, 2011; ISBN 978-1-119-41322-6. [Google Scholar]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of Metals from Soil to Vegetables in an Area near a Smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- USEPA. A Review of the Reference Dose and Reference Concentration Processes; EPA/630/P-02/002F; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 2002. [Google Scholar]
- Soylak, M.; Saraçoǧlu, S.; Tüzen, M.; Mendil, D. Determination of Trace Metals in Mushroom Samples from Kayseri, Turkey. Food Chem. 2005, 92, 649–652. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Copur, M.; Yildiz, D.; Akata, I. Metal Concentration of Wild Edible Mushrooms in Soguksu National Park in Turkey. Food Chem. 2011, 128, 731–734. [Google Scholar] [CrossRef]
- Gucia, M.; Jarzyńska, G.; Rafał, E.; Roszak, M.; Kojta, A.K.; Osiej, I.; Falandysz, J. Multivariate Analysis of Mineral Constituents of Edible Parasol Mushroom (Macrolepiota procera) and Soils beneath Fruiting Bodies Collected from Northern Poland. Environ. Sci. Pollut. Res. 2012, 19, 416–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, M.; Falandysz, J.; Nnorom, I.C. Accumulation and Distribution of Mercury in Fruiting Bodies by Fungus Suillus luteus Foraged in Poland, Belarus and Sweden. Environ. Sci. Pollut. Res. 2016, 23, 2749–2757. [Google Scholar] [CrossRef] [Green Version]
- Buruleanu, L.C.; Radulescu, C.; Antonia Georgescu, A.; Dulama, I.D.; Nicolescu, C.M.; Lucian Olteanu, R.; Stanescu, S.G. Chemometric Assessment of the Interactions Between the Metal Contents, Antioxidant Activity, Total Phenolics, and Flavonoids in Mushrooms. Anal. Lett. 2019, 52, 1195–1214. [Google Scholar] [CrossRef]
- JECFA. Joint FAO/WHO Expert Committee on Food Additives Seventy-Second Meeting: Summary and Conclusions; World Health Organization: Geneva, Switzerland, 2010; pp. 1–16. [Google Scholar]
- Leung, A.O.W.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy Metals Concentrations of Surface Dust from E-Waste Recycling and Its Human Health Implications in Southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Exs 2012, 101, 133–164. [Google Scholar] [CrossRef] [Green Version]
- de la Guardia, M.; Garrigues, S. Handbook of Mineral Elements in Food; de la Guardia, M., Garrigues, S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; ISBN 9781118654316. [Google Scholar]
- Zhang, L.; Lv, J.; Liao, C. Dietary Exposure Estimates of 14 Trace Elements in Xuanwei and Fuyuan, Two High Lungcancer Incidence Areas in China. Biol. Trace Elem. Res. 2012, 146, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; Barbero, G.F. Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. J. Fungi 2022, 8, 545. [Google Scholar] [CrossRef] [PubMed]
Site Name and Sample Size | Code | Longitude (N) | Latitude € | Zone Type | Tricholoma spp. |
---|---|---|---|---|---|
Brezova Gora (n = 14) | BG | 15.909140 | 46.281183 | Central Croatia | T. columbetta (n = 38) |
Medvednica, Stubaki (n = 14) | MS | 15.969287 | 45.919902 | Central Croatia | |
Petrova Gora (n = 10) | PG | 15.810489 | 45.239646 | Central Croatia | |
Ravna Gora (n = 11) | RG | 14.940796 | 45.369653 | Coastal Croatia | T. portentosum (n = 34) |
Island Krk (n = 10) | IK | 14.626754 | 45.090944 | Coastal Croatia | |
Labinština (n = 13) | L | 14.135917 | 45.093335 | Coastal Croatia | |
Maksimir (n = 10) | M | 16.052633 | 45.814058 | Central Croatia | T. terreum (n = 35) |
Dugi Dol, Karlovac (n = 12) | DD | 15.576698 | 45.354304 | Central Croatia | |
Skrad (n = 13) | S | 14.947011 | 45.425098 | Coastal Croatia |
Mushroom Species, Localities, and Number of Specimens | Cd Concentration | BCFcap | BCFstipe | BCFfullbody | QC/S | |||
---|---|---|---|---|---|---|---|---|
Cap | Stipe | Full Body | Soil | |||||
T. columbetta, Brezova Gora, n = 14 | 0.91 ± 0.13 | 0.66 ± 0.06 | 0.78 ± 0.16 | 0.24 ± 0.14 | 5.44 ± 4.07 | 3.95 ± 2.93 | 5.04 ± 4.39 | 1.38 ± 0.12 |
0.90 | 0.65 | 0.75 | 0.23 | 3.89 | 2.84 | 3.26 | 1.40 | |
(0.75–1.11) | (0.57–0.78) | (0.57–1.10) | (0.07–0.57) | (1.37–14.84) | (1.09–10.19) | (1.93–8.14) | (1.18–1.60) | |
T. columbetta Medvednica, Stubaki, n = 14 | 0.94 ± 0.11 | 0.73 ± 0.06 | 0.83 ± 0.14 | 0.38 ± 0.09 | 2.67 ± 0.86 | 2.08 ± 0.75 | 2.67 ± 0.70 | 1.29 ± 0.14 |
0.96 | 0.73 | 0.80 | 0.37 | 2.43 | 1.85 | 2.16 | 1.27 | |
(0.76–1.13) | (0.61–0.83) | (0.60–1.13) | (0.19–0.52) | (1.54–5.07) | (1.32–4.19) | (2.17–3.16) | (1.10–1.60) | |
T. columbetta Petrova Gora, n = 10 | 0.92 ± 0.11 | 0.71 ± 0.05 | 0.81 ± 0.13 | 0.23 ± 0.08 | 4.54 ± 1.85 | 3.46 ± 1.06 | 4.49 ± 1.75 | 1.29 ± 0.15 |
0.88 | 0.72 | 0.79 | 0.21 | 4.23 | 3.40 | 3.76 | 1.23 | |
(0.81–1.17) | (0.64–0.77) | (0.63–1.17) | (0.11–0.36) | (2.45–9.06) | (2.13–5.90) | (3.25–5.73) | (1.15–1.54) | |
T. portentosum Island Krk, n = 10 | 0.88 ± 0.06 | 0.66 ± 0.02 | 0.83 ± 0.17 | 0.27 ± 0.08 | 3.67 ± 1.85 | 2.78 ± 1.32 | 4.03 ± 1.60 | 1.33 ± 0.09 |
0.90 | 0.67 | 0.80 | 0.30 | 3.00 | 2.27 | 2.67 | 1.35 | |
(0.78–0.94) | (0.63–0.69) | (0.62–1.13) | (0.12–0.39) | (2.34–8.56) | (1.61–6.19) | (2.90–5.17) | (1.18–1.45) | |
T. portentosum Ravna Gora, n = 11 | 0.99 ± 0.08 | 0.68 ± 0.03 | 0.77 ± 0.11 | 0.17 ± 0.04 | 6.17 ± 1.77 | 4.20 ± 1.04 | 5.19 ± 1.56 | 1.46 ± 0.11 |
0.98 | 0.68 | 0.73 | 0.17 | 5.85 | 3.99 | 4.29 | 1.46 | |
(0.88–1.13) | (0.63–0.72) | (0.63–0.94) | (0.10–0.23) | (4.35–9.36) | (3.11–6.14) | (4.09–6.30) | (1.32–1.59) | |
T. portentosum Labinština, n = 13 | 0.89 ± 0.16 | 0.70 ± 0.08 | 0.79 ± 0.15 | 0.21 ± 0.05 | 4.59 ± 1.57 | 3.60 ± 1.11 | 4.48 ± 1.12 | 1.26 ± 0.14 |
0.87 | 0.72 | 0.76 | 0.20 | 4.14 | 3.49 | 3.80 | 1.23 | |
(0.69–1.19) | (0.59–0.81) | (0.58–1.18) | (0.11–0.32) | (2.63–7.92) | (2.31–6.52) | (3.69–5.27) | (1.06–1.57) | |
T. terreum Maksimir, n = 10 | 0.80 ± 0.05 | 0.64 ± 0.01 | 0.71 ± 0.09 | 0.30 ± 0.09 | 2.78 ± 1.06 | 2.18 ± 0.76 | 2.94 ± 1.23 | 1.27 ± 0.06 |
0.81 | 0.63 | 0.69 | 0.33 | 1.91 | 1.91 | 2.09 | 1.28 | |
(0.73–0.87) | (0.62–0.66) | (0.61–0.87) | (0.16–0.42) | (1.86–5.43) | (1.57–4.03) | (2.07–3.81) | (1.17–1.35) | |
T. terreum Dugi Dol, Karlovac, n = 12 | 0.77 ± 0.04 | 0.60 ± 0.02 | 0.68 ± 0.09 | 0.18 ± 0.07 | 4.64 ± 1.59 | 3.67 ± 1.26 | 4.28 ± 2.01 | 1.28 ± 0.09 |
0.77 | 0.59 | 0.66 | 0.17 | 4.53 | 3.69 | 3.88 | 1.28 | |
(0.68–0.83) | (0.58–0.65) | (0.57–0.83) | (0.10–0.29) | (2.82–8.25) | (2.05–5.79) | (2.86–5.70) | (1.13–1.43) | |
T. terreum Skrad, n = 13 | 0.75 ± 0.03 | 0.59 ± 0.02 | 0.66 ± 0.08 | 0.23 ± 0.09 | 3.61 ± 1.36 | 2.85 ± 1.02 | 3.55 ± 1.69 | 1.26 ± 0.07 |
0.74 | 0.58 | 0.66 | 0.22 | 3.43 | 2.56 | 3.00 | 1.26 | |
(0.68–0.81) | (0.57–0.65) | (0.57–0.80) | (0.12–0.34) | (2.16–5.93) | (1.79–4.54) | (2.35–4.75) | (1.14–1.39) |
Mushroom Species | Variables | Principal Component | |
---|---|---|---|
PC 1 | PC 2 | ||
T. columbetta (n = 38) | Variance (%) | 94.04 | 5.95 |
Eigenvalues | 0.0013 | 0.0003 | |
Cd cap | 0.99 | −0.01 | |
Cd stipe | 0.01 | 0.99 | |
T. portentosum (n = 34) | Variance (%) | 90.96 | 9.04 |
Eigenvalues | 0.0038 | 0.0001 | |
Cd cap | 0.99 | −0.01 | |
Cd stipe | 0.01 | 0.99 | |
T. terreum (n = 35) | Variance (%) | 99.25 | 0.75 |
Eigenvalues | 0.0013 | 0.0005 | |
Cd cap | 0.79 | −0.60 | |
Cd stipe | 0.60 | 0.80 |
Species | Locations | Daily Intakes of Cd (DIC, μg/kg Body Weight/Serving) | Health Risks Index (HRI) | ||
---|---|---|---|---|---|
Cap | Stipe | Cap | Stipe | ||
T. columbetta | Brezova Gora | 0.388 | 0.281 | 0.776 | 0.562 |
Medvednica, Stubaki | 0.403 | 0.312 | 0.806 | 0.624 | |
Petrova Gora, | 0.393 | 0.306 | 0.787 | 0.612 | |
T. portentosum | Island Krk | 0.379 | 0.284 | 0.757 | 0.569 |
Ravna Gora | 0.426 | 0.292 | 0.852 | 0.585 | |
Labinština | 0.382 | 0.301 | 0.764 | 0.602 | |
T. terreum | Maksimir | 0.334 | 0.272 | 0.689 | 0.544 |
Dugi Dol, Karlovac | 0.329 | 0.258 | 0.658 | 0.516 | |
Skrad | 0.320 | 0.254 | 0.639 | 0.508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; Kumar, P.; Eid, E.M.; Bachheti, A.; Kos, I.; Bedeković, D.; Mioč, B.; Humar, M. Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. J. Fungi 2022, 8, 685. https://doi.org/10.3390/jof8070685
Širić I, Kumar P, Eid EM, Bachheti A, Kos I, Bedeković D, Mioč B, Humar M. Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. Journal of Fungi. 2022; 8(7):685. https://doi.org/10.3390/jof8070685
Chicago/Turabian StyleŠirić, Ivan, Pankaj Kumar, Ebrahem M. Eid, Archana Bachheti, Ivica Kos, Dalibor Bedeković, Boro Mioč, and Miha Humar. 2022. "Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia" Journal of Fungi 8, no. 7: 685. https://doi.org/10.3390/jof8070685
APA StyleŠirić, I., Kumar, P., Eid, E. M., Bachheti, A., Kos, I., Bedeković, D., Mioč, B., & Humar, M. (2022). Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. Journal of Fungi, 8(7), 685. https://doi.org/10.3390/jof8070685