Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom
2.2. Submerged Cultivation of T. versicolor NBIMCC 8939
2.3. Isolation of Exopolysaccharides
2.4. Preparation of Mycelial Biomass Extracts
2.5. Characterization of Mycelium Biomass
2.5.1. Dietary Fibers Content Analysis
2.5.2. Glucans Content Analysis
2.5.3. Total Polyphenol (TPC) and Flavonoid Content Analysis
2.5.4. Total Protein and Amino Acid Determination
2.6. Chemical and Structural Characterization of the Crude Exopolysaccharides
2.6.1. Analysis of Monosaccharide Composition
2.6.2. Molecular Weight Measurement
2.6.3. Infrared (IR) Spectra
2.7. Bioactivity Assays
2.7.1. Determination of the In Vitro Antioxidant Activity (AOA) of Biomass Extracts
- DPPH radical scavenging activity
- ABTS radical cation decolorization assay
- Ferric reducing antioxidant power assay (FRAP)
- Copper reduction assay (CUPRAC)
2.7.2. Prebiotic Activity of Crude Exopolysaccharides
2.7.3. In Vitro Determination of Anti-Inflammatory Potential of the Crude Exopolysaccharides
2.8. Statistical Analysis
3. Results and Discussion
3.1. Submerged Cultivation of T. versicolor NBIMCC 8939 for Mycelium Biomass and Exopolysaccharides Production
3.2. Characterization of Mycelium Biomass and Biomass Extracts
3.2.1. Dietary Fibers and Glucans
3.2.2. Phenolic and Flavonoid Content
3.2.3. Protein and Amino Acid Content
3.3. Basic Chemical and Structural Characterization of the Obtained Crude Exopolysaccharides
3.3.1. Total Carbohydrate and Protein Content
3.3.2. Monosaccharide Content
3.3.3. Molecular Weight
3.3.4. FTIR Spectra of Exopolysaccharides
3.4. Bioactivity of Mycelium Biomass and Crude Exopolysaccharides from T. versicolor NBIMCC 8939
3.4.1. In Vitro Antioxidant Activity (AOA) of Mycelium Biomass Extracts
3.4.2. Prebiotic Activity of Exopolysaccharides
3.4.3. In Vitro Anti-Inflammatory Potential of the Crude Exopolysaccharides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez-Medina, G.A.; Chavez-Gonzalez, M.L.; Verma, D.K.; Prado-Barragan, L.A.; Martínez-Hernandez, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Srivastav, P.P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Funct. Foods 2021, 77, 104326. [Google Scholar] [CrossRef]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef] [PubMed]
- Mariga, A.-M.; Pei, F.; Yang, W.-J.; Shao, Y.N.; Mugambi, D.K.; Hu, Q.H. Immunopotentiation of Pleurotus eryngii (DC. ex Fr.) Quel. J. Ethnopharmacol. 2014, 153, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Zhao, P.; Li, G.; Zhang, K. In depth natural product discovery from the Basidiomycetes Stereum Species. Microorganisms 2020, 8, 1049. [Google Scholar] [CrossRef] [PubMed]
- Sandargo, B.; Chepkirui, C.; Cheng, T.; Chaverra-Muñoz, L.; Thongbai, B.; Stadler, M.; Hüttel, S. Biological and chemical diversity go hand in hand: Basidomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 2019, 37, 107344. [Google Scholar] [CrossRef]
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef]
- Lin, H.C.; Hewage, R.T.; Lu, Y.C.; Chooi, Y.H. Biosynthesis of bioactive natural products from Basidiomycota. Org. Biomol. Chem. 2019, 17, 1027–1036. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Patel, M.; Reddy, M.N.; Alshammari, E. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep. 2018, 8, 1740. [Google Scholar] [CrossRef]
- Bains, A.; Chawla, P.; Kaur, S.; Melinda, F.; Najda, A.; Fogarasi, S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials 2021, 14, 7640. [Google Scholar] [CrossRef]
- Arunachalama, K.; Sasidharan, S.P.; Yang, X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food Chem. Adv. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Kujawowicz, K.; Witkowska, A.M. Beta-glucans from fungi: Biological and health-promoting potential in the COVID-19 pandemic era. Nutrients 2021, 13, 3960. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, E.A.; Oloke, J.K. Oyster mushroom (Pleurotus species); a natural functional food. J. Microbiol. Biotech. Food Sci. 2017, 18, 254–264. [Google Scholar] [CrossRef]
- Zhao, D.; Dai, W.; Tao, H.; Zhuang, W.; Qu, M.; Chang, Y.N. Polysaccharide isolated from Auricularia auricular-judae (Bull.) prevents dextran sulfate sodium-induced colitis in mice through modulating the composition of the gut microbiota. J. Food Sci. 2020, 85, 2943–2951. [Google Scholar] [CrossRef]
- Miao, J.; Shi, W.; Zhang, J.; Zhang, X.; Zhang, H.; Wang, Z.; Qiu, J. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities. Int. J. Biol. Macromol. 2020, 155, 393–402. [Google Scholar] [CrossRef]
- Hu, T.; Hui, G.; Li, H.; Guo, Y. Selenium biofortifcation in Hericium erinaceus (Lion’s Mane mushroom) and its in vitro bioaccessibility. Food Chem. 2020, 331, 127287. [Google Scholar] [CrossRef]
- Chopra, H.; Mishra, A.K.; Baig, A.A.; Mohanta, T.K.; Mohanta, Y.K.; Baek, K.-H. Narrative review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product. J. Fungi 2021, 7, 728. [Google Scholar] [CrossRef]
- Martínez-Montemayor, M.M.; Ling, T.; Suárez-Arroyo, I.J.; Ortiz-Soto, G.; Santiago-Negrón, C.L.; Lacourt-Ventura, M.Y.; Valentín-Acevedo, A.; Lang, W.H.; Rivas, F. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anti-cancer activities in vitro. Front. Pharmacol. 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Cör, D.; Knez, Ž.; Hrnčič, M.H. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Girometta, C.; Tirillini, B.; Morettia, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.J.; Zhu, L.W.; Li, H.M.; Li, D.S. Submerged culture of mushrooms in bioreactors-challenges, current state-of-the-art, and future prospects. Food Technol. Biotechnol. 2007, 45, 221–229. [Google Scholar]
- Wang, Z.; Quan, Y.; Zhou, F. Optimization of medium composition for exopolysacchride production by Phellinus nigricans. Carbohydr. Polym. 2014, 105, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Tsai, G.J.; Houng, J.Y. Optimization of medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme Microb. Technol. 2006, 38, 407–414. [Google Scholar] [CrossRef]
- Bakratsas, G.; Polydera, A.; Katapodis, P.; Stamatis, H. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods 2021, 4, 100086. [Google Scholar] [CrossRef]
- Bolla, K.; Gopinath, B.V.; Shaheen, S.Z.; Charya, M.A.S. Optimization of carbon and nitrogen sources of submerged culture process for the production of mycelial biomass and exopolysaccharides by Trametes versicolor. Int. J. Biotechnol. Mol. Biol. Res. 2010, 1, 15–21. [Google Scholar]
- Feng, J.; Feng, N.; Zhang, J.S.; Yang, Y.; Jia, W.; Lin, C.C. A new temperature control shifting strategy for enhanced triperpene production by Ganoderma lucidum G0119 based on submerged liquid fermentation. Appl. Biochem. Biotechnol. 2016, 180, 740–752. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.S.; Feng, N.; Yan, M.Q.; Yang, Y.; Jia, W.; Lin, C.C. A novel Ganoderma lucidum G0119 fermentation strategy for enhanced triterpenes production by statistical process optimization and addition of oleic acid. Eng. Life Sci. 2017, 17, 430–439. [Google Scholar] [CrossRef]
- Liu, S.R.; Zhang, W.R. Hyperproduction of exopolysaccharides by submerged mycelial culture of Ganoderma lucidum using a solid seed grown in fine-powder of wheat bran and in vitro evaluation of the antioxidant activity of the exopolysaccharides produced. Food Sci. Biotechnol. 2018, 27, 1129–1136. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, R.; Zhang, Y.; Qi, P.; Wang, L. Biosynthesis and regulation of terpenoids from basidiomycetes: Exploration of new research. AMB Express 2021, 11, 150. [Google Scholar] [CrossRef]
- Pezzella, C.; Macellaro, G.; Sannia, G.; Raganati, F.; Olivieri, G.; Marzocchella, A.; Schlosser, D.; Piscitelli, A. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors. PLoS ONE 2017, 12, e0178758. [Google Scholar] [CrossRef] [Green Version]
- Pop, R.M.; Puia, I.C.; Puia, A.; Chedea, V.S.; Leopold, N.; Bocsan, I.C.; Buzoianu, A.D. Characterization of Trametes versicolor: Medicinal mushroom with important health benefits. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Jhan, M.H.; Yeh, C.H.; Tsai, C.C.; Kao, C.T.; Chang, C.K.; Hsieh, C.W. Enhancing the antioxidant ability of Trametes versicolor polysaccharopeptides by an enzymatic hydrolysis process. Molecules 2016, 21, 1215. [Google Scholar] [CrossRef] [Green Version]
- Que, Y.; Sun, S.; Xu, L.; Zhang, Y.; Hu, Z. High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor. Food Chem. 2014, 159, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Chan, W.K.; Sze, D.M. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.F.; Sun, J.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem. 2002, 50, 6910–6916. [Google Scholar] [CrossRef]
- Cui, J.; Chisti, Y. Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnol. Adv. 2003, 21, 109–122. [Google Scholar] [CrossRef]
- Tsang, K.W.; Ho, P.L.; Ooi, G.C.; Yee, W.K.; Wang, T.; Chan-Yeung, M.; Lam, W.K.; Seto, W.H.; Yam, L.Y.; Cheung, T.M.; et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1977–1985. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.P.; Hsub, T.; Lin, F.; Hsua, W.; Chena, Y. Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH. Carbohydr. Polym. 2012, 90, 174–180. [Google Scholar] [CrossRef]
- Yeung, J.H.K.; Or, P.M.Y. Polysaccharide peptides from Coriolus versicolor competitively inhibit model cytochrome p450 enzyme probe substrates metabolism in human liver microsomes. Phytomedicine 2012, 19, 457–463. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Habtemariam, S. Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: Targets and efficacy. Biomedicines 2020, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.; Govedarova, E.; Brazkova, M.; Kostov, G.; Krastanov, A. Optimization of exopolysaccharide synthesys by medicinal fungus Trametes versicolor in submerged culture. Agric. Sci. 2021, 13, 84–93. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Arlington, VA, USA, 2007. [Google Scholar]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 8, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, I.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Deseva, I.; Mihaylova, D.; Stoyanova, M.; Krastev, L.; Nikolova, R.; Yanakieva, V.; Ivanov, I. Isolation, Characterization and Amino Acid Composition of a Bacteriocin Produced by Bacillus methylotrophicus Strain BM47. Food Technol. Biotechnol. 2018, 56, 546–552. [Google Scholar] [CrossRef]
- EZChrom Elite™ Software; v. 3.2.1 (Build 31b); Agilent Technologies Inc.: Santa Clara, CA, USA, 2007; Available online: https://www.agilent.com (accessed on 16 April 2022).
- Dhillon, M.; Kumar, S.; Gujar, G. A common HPLC-PDA method for amino acid analysis in insects and plants. Indian J. Exp. Biol. 2014, 52, 73–79. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Brazkova, M.; Angelova, G.; Krastanov, A. Removal of fluorene by native and modified by linear-dendritic copolymers laccase from Trametes versicolor. In Proceedings of the Fourth International Conference on Advances in Applied Science and Environmental Technology—ASET 2016, Bangkok, Thailand, 3–4 January 2015. [Google Scholar]
- Angelova, G.; Stoilova, I.; Dinkov, K.; Krastanov, A. Biodegradation of phenolic mixtures at high initial concentrations by Trametes versicolor 1 in a fed-batch process. Eur. J. Biomed. Pharm. Sci. 2018, 5, 45–50. [Google Scholar]
- Brazkova, M.; Angelova, G.; Krastanov, A. Biodegradation of bisphenol A during submerged cultivation of Trametes versicolor. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 204–207. [Google Scholar] [CrossRef]
- Stoilova, I.; Dimitrova, G.; Angelova, G.; Krastanov, A. Biodegradation of phenol, catechol and 2, 4-dichlorophenol at higher initial inhibitory concentrations by Trametes versicolor 1 in a “fed-batch” process. Bulg. J. Agric. Sci. 2017, 23, 988–993. [Google Scholar]
- Elisashvili, V. Submerged cultivation of medicinal mushrooms: Bioprocesses and products (Review). Int. J. Med. Mushrooms 2012, 14, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Jaros, D.; Kobsch, J.; Rohm, H. Exopolysaccharides from Basidiomycota: Formation, isolation and techno-functional properties. Eng. Life Sci. 2018, 18, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Rathore, H.; Prasad, S.; Kapri, M.; Tiwari, A.; Sharma, S. Medicinal importance of mushroom mycelium: Mechanisms and applications. J. Funct. Foods 2019, 56, 182–193. [Google Scholar] [CrossRef]
- López-Legarda, X.; Arboleda-Echavarría, C.; Parra-Saldívar, R.; Rostro-Alanis, M.; Alzate, J.F.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. Int. J. Biol. Macromol. 2020, 164, 3133–3144. [Google Scholar] [CrossRef]
- Sánchez, O.J.; Montoya, S.; Vargas, L.M. Polysaccharide Production by Submerged Fermentation. In Polysaccharides; Springer: Cham, Switzerland, 2015; pp. 451–473. [Google Scholar] [CrossRef]
- Maziero, R.; Cavazzoni, V.; Bononi, V.L.R. Screening of basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Rev. Microbiol. 1999, 30, 77–84. [Google Scholar] [CrossRef]
- Osińska-Jaroszuk, M.; Jarosz-Wilkołazka, A.; Jaroszuk-Ściseł, J.; Szałapata, K.; Nowak, A.; Jaszek, M.; Ozimek, E.; Majewska, M. Extracellular polysaccharides from ascomycota and basidiomycota: Production conditions, biochemical characteristics, and biological properties. World J. Microbiol. Biotechnol. 2015, 31, 1823–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjusevic, L.; Karaman, M.; Sibul, F.; Tommonaro, G.; Iodice, C.; Jakovljevic, D.; Pejin, B. The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): A promising natural source of antiradical and AChE inhibitory agents. J. Enzym. Inhib. Med. Chem. 2017, 32, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, S.; Liu, M.; Chen, F.; Yang, W.; Chang, X.; Liu, N.; Zhao, Y.; Wang, J.; Chen, X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr. Res. 2020, 494, 108037. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K. Mushrooms as source of dietary fiber and its medicinal value: A review article. J. Pharmacogn. Phytochem. 2020, 9, 2075–2078. [Google Scholar]
- Cheung, P. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Latgé, J.P. The cell wall: A carbohydrate armour for the fungal cell. Mol. Bicrob. 2007, 66, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, J.; Ortiz-Castellanos, L. Cell wall glucans of fungi. A review. Cell Surf. 2019, 5, 100022. [Google Scholar] [CrossRef]
- Khan, A.; Gani, A.; Khanday, F.A.; Masoodi, F.A. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. Bioact 2018, 16, 1–13. [Google Scholar] [CrossRef]
- Cognigni, V.; Ranallo, N.; Tronconi, F.; Morgese, F.; Berardi, R. Potential benefit of β-glucans as adjuvant therapy in immunooncology: A review. Explor. Target. Antitumor Ther. 2021, 2, 122–138. [Google Scholar]
- Ruthes, A.C.; Cantu-Jungles, T.M.; Cordeiro, L.M.C.; Iacomini, M. Prebiotic potential of mushroom d-glucans: Implications of physicochemical properties and structural features. Carbohydr Polym. 2021, 262, 117940. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Noratto, G.D.; Fan, X.; Chen, Z.; Fen, Y.; Shi, D.; Gao, H. The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host: A review. Carbohydr. Polym. 2020, 250, 116942. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Nandi, A.K.; Manna, D.K.; Pattanayak, M.; Sen, I.K.; Bhanja, S.K.; Samanta, S.; Panda, B.C.; Paloi, S.; Acharya, K.; et al. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr. Polym. 2017, 157, 1237–1245. [Google Scholar] [CrossRef]
- Shetty, P.; Batchu, U.; Buddana, S.K.; Rao, K.S.; Penna, S. A comprehensive review on α-d-glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr. Res. 2021, 503, 108297. [Google Scholar] [CrossRef]
- Morales, D.; Rutckeviski, R.; Villalva, M.; Abreu, H.; Soler-Rivasa, C.; Santoyo, S.; Iacomin, M.; Ribeiro Smiderle, F. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr. Polym. 2020, 229, 115521. [Google Scholar] [CrossRef] [PubMed]
- Amirullah, N.A.; Abidina, N.Z.; Abdullah, N. The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res. Int. 2018, 105, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, D.; Lante, A. Water an Eco-Friendly Crossroad in Green Extraction: An Overview. Open Biotechnol. J. 2019, 13, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yan, H.; Chen, J.; Zhang, X. Bioactive proteins from mushrooms. Biotechnol. Adv. 2011, 29, 667–674. [Google Scholar] [CrossRef]
- Bach, F.; Vieira Helm, C.; Bellettini, M.; Macie, M.; Charles, W.; Haminiuk, I. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. 2017, 52, 2382–2392. [Google Scholar] [CrossRef]
- Benson, K.F.; Stamets, P.; Davis, R.; Nally, R.; Taylor, A.; Slater, S.; Jensen, G.S. The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC Complement. Altern. Med. 2019, 19, 342. [Google Scholar] [CrossRef] [Green Version]
- Assemie, A.; Abaya, G. The effect of edible mushroom on health and their biochemistry. Int. J. Microbiol. 2022, 2022, 8744788. [Google Scholar] [CrossRef] [PubMed]
- Ahlborn, J.; Stephan, A.; Meckel, T.; Maheshwari, G.; Rühl, M.; Zorn, H. Upcycling of food industry side streams by basidiomycetes for production of a vegan protein source. Int. J. Recycl. Org. Waste Agric. 2019, 8, S447–S455. [Google Scholar] [CrossRef] [Green Version]
- Miletić, D.; Pantić, M.; Sknepnek, A.; Vasiljević, I.; Lazović, M.; Nikšić, M. Influence of selenium yeast on the growth, selenium uptake and mineral composition of Coriolus versicolor mushroom. J. Basic Microbiol. 2020, 60, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Parniakov, O.; Toepfl, S.; Barba, F.J.; Granato, D.; Zamuz, S.; Galvez, F.; Lorenzo, J.M. Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. J. Food Sci. Technol. 2018, 55, 2552–2559. [Google Scholar] [CrossRef]
- Wang, H.T.; Yang, L.C.; Yu, H.C.; Chen, M.L.; Wang, H.J.; Lu, T.J. Characteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murill. J. Food Drug Anal. 2018, 26, 678–687. [Google Scholar]
- Cui, J.; Kelvin, K.T.G.; Archer, R.; Singh, H. Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains. J. Ind. Microbiol. Biotechnol. 2007, 34, 393–402. [Google Scholar] [CrossRef]
- Zhang, X.; Zhenyu, C.; Mao, H.; Hu, P.; Li, X. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int. J. Biol. Macromol. 2021, 166, 1387–1395. [Google Scholar] [CrossRef]
- Wang, H.X.; Ng, T.B.; Liu, W.K.; Ooi, V.E.C.; Chang, S.T. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages. Int. J. Biochem. Cell Biol. 1990, 28, 601–607. [Google Scholar] [CrossRef]
- Jeong, S.C.; Yang, B.K.; Ra, K.S.; Wilson, M.A.; Cho, Y.; Gu, Y.A.; Song, C.H. Characteristics of anti-complementary biopolymer extracted from Coriolus versicolor. Carbohydr. Polym. 2004, 55, 255–263. [Google Scholar] [CrossRef]
- Lau, C.B.S.; Ho, C.Y.; Kim, C.F.; Leung, K.N.; Fung, K.P.; Tse, T.F.; Chan, H.H.L.; Chow, M.S.S. Cytotoxic activities of Coriolus versicolor (Yunzhi) extract on human leukemia and lymphoma cells by induction of apoptosis. Life Sci. 2004, 75, 797–808. [Google Scholar] [CrossRef]
- Keeley, T.; Yang, S.; Lau, E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers 2019, 11, 1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Ren, X.; Yu, Y.; Gao, W.; Zhu, C.; Sun, H.; Kong, Q.; Fu, X.; Mou, H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem. 2022, 13, 100233. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, C.; Hua, J. Cultivation and Application of Edible and Medicinal Mushroom; Food Industry Research and Development Institute: Hsinchu City, Taiwan, 1998; pp. 112–187.
- Duvnjak, D.; Pantić, M.; Pavlović, V.; Nedović, V.; Lević, S.; Matijašević, D.; Sknepnek, A.; Nikšić, M. Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. Innov. Food Sci. Emerg. Technol. 2016, 34, 1–8. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Sknepnek, A.; Tomić, S.; Miletić, D.; Lević, S.; Čolić, M.; Nedović, V.; Nikšić, M. Fermentation characteristics of novel Coriolus versicolor and Lentinus edodes kombucha beverages and immunomodulatory potential of their polysaccharide extracts. Food Chem. 2021, 342, 128344. [Google Scholar] [CrossRef]
- Baeva, E.; Bleha, R.; Lavrova, E.; Sushytskyi, L.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization. Molecules 2019, 24, 2740. [Google Scholar] [CrossRef] [Green Version]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Comp. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietry supplements. J. Agric. Food Chem. 2005, 47, 4718–4723. [Google Scholar]
- Hsu, W.; Hsu, T.; Lin, F.; Cheng, Y.; Yang, G. Separation, purification, and α-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia. Carbohydr. Polym. 2013, 92, 297–306. [Google Scholar] [CrossRef]
- Li, M.; Yu, L.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q.; Tian, F. Role of dietary edible mushrooms in the modulation of gut microbiota. J. Funct. Foods 2021, 83, 104538. [Google Scholar] [CrossRef]
- Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Newburg, D.S.; Kelly, C.P. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers. Gut Microbes 2014, 5, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Zhou, W.; Jin, C.; Jiang, Z.; Diao, S.; Jin, Z.; Li, G. Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Nat. Prod. Res. 2019, 33, 2422–2425. [Google Scholar] [CrossRef] [PubMed]
- Phull, A.R.; Kim, S.J. Fucoidan as bio-functional molecule: Insights into the anti-inflammatory potential and associated molecular mechanisms. J. Funct. Foods 2017, 38, 415–426. [Google Scholar] [CrossRef]
- Schwartz, B.; Hadar, Y. Possible mechanisms of action of mushroom-derived glucans on inflammatory bowel disease and associated cancer. Ann. Transl. Med. 2014, 2, 19. [Google Scholar] [CrossRef]
- Joseph, S.; Edirisinghe, I.; Burton-Freeman, B.M. Berries: Anti-inflammatory Effects in Humans. Agric. Food Chem. 2014, 62, 18, 3886–3903. [Google Scholar] [CrossRef]
- Du, B.; Lin, C.Y.; Bian, Z.X.; Xu, B.J. An insight into antiinflammatory effects of fungal beta-glucan. Trends Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Du, B.; Zeng, H.; Yang, Y.; Bian, Z.; Xu, B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int. J. Biol. Macromol. 2016, 91, 100–105. [Google Scholar] [CrossRef]
- Taofiq, O.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trend. Food Sci. Technol. 2016, 50, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Kani, Y.; Cecere, T.E.; Lahmers, K.; LeRoith, T.; Zimmerman, K.L.; Isom, S.; Hsu, F.C.; Debinksi, W.; Robertson, J.L.; Rossmeisl, J.H. Diagnostic accuracy of stereotactic brain biopsy for intracranial neoplasia in dogs: Comparison of biopsy, surgical resection, and necropsy specimens. J. Vet. Intern. Med. 2019, 33, 1384–1391. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [Green Version]
- Wahl, S.M.; Wen, J.; Moutsopoulos, N. TGF-beta: A mobile purveyor of immune privilege. Immunol. Rev. 2006, 213, 213–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasser, S.; Weis, A. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: Current perspectives. Int. J. Med. Mushrooms 1999, 1, 31–62. [Google Scholar] [CrossRef] [Green Version]
T. versicolor | Dietary Fibers, g/100 g DW | Glucans, g/100 g DW | ||||
---|---|---|---|---|---|---|
TDF | IDF | SDF | Total | α | β | |
Mycelium biomass | 39.53 ± 0.61 | 36.21 ± 0.45 | 1.99 ± 0.15 | 30.39 ± 1.25 | 6.79 ± 0.18 | 22.34 ± 0.16 |
Extract/Assay | TPC | TFC |
---|---|---|
80% ethanol | 3.41 ± 0.02 | 1.26 ± 0.02 |
methanol | 2.90 ± 0.06 | 0.52 ± 0.01 |
water | 16.11 ± 0.14 | 5.15 ± 0.03 |
Amino Acid | mg/g Sample | % |
---|---|---|
Asp (D) | 7.09 ± 0.02 | 7.69 |
Ser (S) | 9.77 ± 0.04 | 10.60 |
Glu (E) | 6.31 ± 0.01 | 6.85 |
Gly (G) | 3.08 ± 0.03 | 3.34 |
His * (H) | 10.89 ± 0.02 | 11.82 |
Arg (R) | 7.67 ± 0.01 | 8.32 |
Thr * (T) | 7.03 ± 0.01 | 7.62 |
Ala (A) | 6.49 ± 0.03 | 7.04 |
Pro (P) | 3.55 ± 0.03 | 3.85 |
Cys (C) | 0.03 ± 0.01 | 0.04 |
Tyr (Y) | 5.23 ± 0.02 | 5.67 |
Val * (V) | 4.66 ± 0/02 | 5.05 |
Met * (M) | 1.59 ± 0.02 | 1.72 |
Lys * (K) | 2.75 ± 0.01 | 2.98 |
Ile * (I) | 6.12 ± 0.04 | 6.64 |
Leu * (L) | 0.72 ± 0.02 | 0.78 |
Phe * (F) | 9.20 ± 0.02 | 9.98 |
Parameters | Crude EPS |
---|---|
Total carbohydrate,% | 69.00 ± 0.52 |
Protein, g/100 DW | 5.51 ± 0.75 |
Monosaccharide composition, mg/g | |
Glucose | 38.85 ± 1.12 |
Mannose | 4.24 ± 1.34 |
Xylose | 3.86 ± 0.75 |
Galactose | 3.54 ± 0.59 |
Fucose | 2.37 ± 0.71 |
Glucuronic acid | 2.10 ± 0.78 |
Molecular weight, Da | |
Peaks 1 (26.02%) | 2.45 × 104 Da |
Peaks 2 (39.57%) | 0.53 × 104 Da |
Peaks 3 (33.98%) | 0.30 × 103 Da |
Bands, cm−1 | Experimental Bands of EPS, cm−1 | Assignment |
---|---|---|
3200–3400 | 3329 | intermolecular H-brige between OH groups, free OH groups |
2933–2981 | 2931 | asymetric stretching vibrations, C–H (CH2) |
2850–2904 | 2889 | symetric stretching vibrations, C–H (CH2) |
1745–1735 | 1741 | C=O stretching vibration |
1664–1634 | 1654 | absorption of water in polymer, N–H deformation of amide I from protein of chitin |
1541 | 1540 | Amide II from protein or chitin |
1455–1470 | 1437 | symetric stretching vibrations, C–H (CH2) in pyranose ring, in-plane bending of o–н (OH), C–O from COO− |
1416–1430 | 1418 | CH2 scissor vibration |
1382 | 1390 | symmetric bending of CH3 |
1125–1162 | 1137 | νC–O–Cas (C–O–C), stretching of glycosidic bonds |
1015–1060 | 1097 | stretching of C–O (C–O) |
1107–1010 | 1107 | Ring assimetric streching |
985–996 | 986 | stretching of C–O (C–O) |
925–930 | 937 | pyranose ring vibration; α-D-Glcp (glucose residue in polisacchride chain); scissoring vibrations in C–H in α-configuration |
890 | 890 | β-D-glucopyranose |
870 | 870 | Rocking of CH2 in the ring, β-anomer, galactopyranose derivatives |
830–810 | 816 | C–H equatorial deformation of anomer, β-bonds |
C–H out-of-plane deformation, gluco- and galacto- configuration of unit | ||
770–730 | 756 | C–H out-of-plane deformation, gluco- and galacto- configuration of unit |
Extract/ Assay | TEACDPPH | TEACABTS | TEACFRAP | TEACCUPRAC |
---|---|---|---|---|
80% ethanol | 2.21 ± 0.02 | 8.55 ± 0.13 | 4.16 ± 0.05 | 17.68 ± 0.07 |
methanol | 2.37 ± 0.02 | 8.59 ± 0.31 | 6.12 ± 0.11 | 30.81 ± 1.06 |
water | 5.63 ± 0.11 | 28.16 ± 0.49 | 4.49 ± 0.17 | 52.21 ± 0.28 |
Sample | IL-1β, pg.mL−1 | IL-8, pg.mL−1 | TGF-β, pg.mL−1 |
---|---|---|---|
2 mg/mL EPS in DMEM | 7.8 ± 0.8 | 318 ± 34 | 5848 ± 41 |
DMEM (control) | 14.8 ± 1.2 | 509 ± 42 | 2337 ± 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, G.; Brazkova, M.; Mihaylova, D.; Slavov, A.; Petkova, N.; Blazheva, D.; Deseva, I.; Gotova, I.; Dimitrov, Z.; Krastanov, A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J. Fungi 2022, 8, 738. https://doi.org/10.3390/jof8070738
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. Journal of Fungi. 2022; 8(7):738. https://doi.org/10.3390/jof8070738
Chicago/Turabian StyleAngelova, Galena, Mariya Brazkova, Dasha Mihaylova, Anton Slavov, Nadejda Petkova, Denica Blazheva, Ivelina Deseva, Irina Gotova, Zhechko Dimitrov, and Albert Krastanov. 2022. "Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor" Journal of Fungi 8, no. 7: 738. https://doi.org/10.3390/jof8070738
APA StyleAngelova, G., Brazkova, M., Mihaylova, D., Slavov, A., Petkova, N., Blazheva, D., Deseva, I., Gotova, I., Dimitrov, Z., & Krastanov, A. (2022). Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. Journal of Fungi, 8(7), 738. https://doi.org/10.3390/jof8070738