Inoculation of Indigenous Arbuscular Mycorrhizal Fungi as a Strategy for the Recovery of Long-Term Heavy Metal-Contaminated Soils in a Mine-Spill Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. AMF Inocula
2.3. Experimental Design
2.4. Soil Analysis
2.5. Plant Analysis
2.6. Statistical Analysis
3. Results
3.1. Changes in Soil
3.1.1. Physico-Chemical Characteristics
3.1.2. Enzymatic Activities
3.2. Plant Analysis
3.2.1. Biomass
3.2.2. AMF Colonization
3.2.3. Heavy Metal Accumulation
3.2.4. Enzymatic Antioxidant Systems
3.2.5. Principal Component Analysis Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous Impact of Mining Activities on Soil Heavy Metals Levels and Human Health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Cao, X.; Lin, D.; Wang, L.; Graham, N.J.D.; Alessi, D.S.; Komárek, M.; Ok, Y.S.; et al. Multifunctional Iron-Biochar Composites for the Removal of Potentially Toxic Elements, Inherent Cations, and Hetero-Chloride from Hydraulic Fracturing Wastewater. Environ. Int. 2019, 124, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tsibart, A.; Nam, H.; Hur, J.; El-Naggar, A.; Tack, F.M.G.; Wang, C.-H.; Lee, Y.H.; Tsang, D.C.W.; Ok, Y.S. Effect of Gasification Biochar Application on Soil Quality: Trace Metal Behavior, Microbial Community, and Soil Dissolved Organic Matter. J. Hazard. Mater. 2019, 365, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Liu, S.; Li, Y.; Li, X.; Luo, Z.; Song, H.; Chen, Q. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol. Environ. Saf. 2019, 170, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Bajpai, O.; Singh, N. Energy crops in sustainable phytoremediation. Renew. Sustain. Energy Rev. 2016, 54, 58–73. [Google Scholar] [CrossRef]
- Bahraminia, M.; Zarei, M.; Ronaghi, A.; Ghasemi-Fasaei, R. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Int. J. Phytoremediation 2016, 18, 730–737. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Ghosh, A.; Song, Y.; Chen, H.; Tang, M. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: Potential applications for phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 13179–13193. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Lou, X.; Tang, M. Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress. Environ. Exp. Bot. 2019, 164, 10–19. [Google Scholar] [CrossRef]
- Beltrán-Nambo, M.; Rojas-Jacuinde, N.; Martínez-Trujillo, M.; Jaramillo-López, P.F.; Romero, M.G.; Carreón-Abud, Y. Differential strategies of two species of arbuscular mycorrhizal fungi in the protection of maize plants grown in chromium-contaminated soils. BioMetals 2021, 34, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular Mycorrhizal Fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Mahajan, P.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013, 11, 229–254. [Google Scholar] [CrossRef]
- Solís-Ramos, L.Y.; Coto-López, C.; Andrade-Torres, A. Role of arbuscular mycorrhizal symbiosis in remediation of anthropogenic soil pollution. Symbiosis 2021, 84, 321–336. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Ma, F.; Ho, S.-H.; Wu, J.; Zhu, S. Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis. Environ. Sci. Pollut. Res. 2017, 24, 3593–3607. [Google Scholar] [CrossRef] [PubMed]
- García-Carmona, M.; García-Robles, H.; Turpín Torrano, C.; Fernández Ondoño, E.; Lorite Moreno, J.; Sierra Aragón, M.; Martín Peinado, F.J. Residual pollution and vegetation distribution in amended soils 20 years after a pyrite mine tailings spill (Aznalcóllar, Spain). Sci. Total Environ. 2019, 650, 933–940. [Google Scholar] [CrossRef]
- Glomus Irregulare DAOM 197198. Available online: https://www.gbif.org/es/species/166341596 (accessed on 10 May 2022).
- Cano, C.; Bago, A.; Dalpé, Y. Glomus custos sp. nov., isolated from a naturally heavy metal-polluted environment in southern Spain. Mycotaxon 2009, 109, 499–512. [Google Scholar] [CrossRef]
- Cano, C.; Dickson, S.; González-Guerrero, M.; Bago, A. In Vitro Cultures Open New Prospects for Basic Research in Arbuscular Mycorrhizas. In Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 627–654. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis, Tomo 3. Ministerio de Agricultura, Pesca y Alimentación; Secretaría General: Madrid, Spain, 1994. [Google Scholar]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Camiña, F.; Trasar-Cepeda, C.; Gil-Sotres, F.; Leirós, C. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 1998, 30, 1005–1011. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Locato, V.; De Pinto, M.C.; De Gara, L. Different involvement of the mitochondrial, plastidial and cytosolic ascorbate–glutathione redox enzymes in heat shock responses. Physiol. Plant. 2009, 135, 296–306. [Google Scholar] [CrossRef]
- Paradiso, A.; de Pinto, M.C.; Locato, V.; De Gara, L. Galactone-γ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biol. 2012, 14, 652–658. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination; Version 5.0.; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Salazar, S.; Sánchez, L.E.; Alvarez, J.; Valverde, A.; Galindo, P.; Igual, J.M.; Peix, A.; Santa-Regina, I. Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng. 2011, 37, 1123–1131. [Google Scholar] [CrossRef]
- Goicoechea, N.; Bettoni, M.M.; Fuertes-Mendizábal, T.; González-Murua, C.; Aranjuelo, I. Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci. 2016, 67, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Mbodj, D.; Effa-Effa, B.; Kane, A.; Manneh, B.; Gantet, P.; Laplaze, L.; Diedhiou, A.G.; Grondin, A. Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 2018, 8, 12–26. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Azcon, R.; Ruiz-Lozano, J.M. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 2016, 26, 673–684. [Google Scholar] [CrossRef]
- Gupta, M.M.; Chourasiya, D.; Sharma, M.P. Diversity of arbuscular mycorrhizal fungi in relation to sustainable plant production systems. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications; Springer: Singapore, 2019; pp. 167–186. [Google Scholar]
- Miransari, M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch. Microbiol. 2011, 193, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Cano, C. Estudio de la Prevalencia del Efecto Protector Frente a Metales Pesados en Plantas Conferido por el Hongo Formador de Micorrizas Arbusculares Glomus Custos Tras Años de Subcultivo en Medios Artificiales; Editorial Universidad de Granada: Granada, Spain, 2018. [Google Scholar]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, X.; Sun, Y.; Wu, Z.; Li, T.; Hu, Y.; Lv, J.; Li, G.; Zhang, Z.; Zhang, J.; et al. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. J. Hazard. Mater. 2016, 316, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Berger, F.; Gutjahr, C. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr. Opin. Plant Biol. 2021, 59, 101994. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.C.; Martínez-Medina, A.; López-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Tang, B.; Xu, H.; Song, F.; Ge, H.; Yue, S. Effects of heavy metals on microorganisms and enzymes in soils of lead–zinc tailing ponds. Environ. Res. 2022, 207, 112174. [Google Scholar] [CrossRef]
- Das, S.; Jean, J.-S.; Kar, S.; Chakraborty, S. Effect of arsenic contamination on bacterial and fungal biomass and enzyme activities in tropical arsenic-contaminated soils. Biol. Fertil. Soils 2013, 49, 757–765. [Google Scholar] [CrossRef]
- Filion, M.; ST-Arnaud, M.; Fortin, J.A. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 1999, 141, 525–533. [Google Scholar] [CrossRef]
- Toljander, J.F.; Lindahl, B.D.; Paul, L.R.; Elfstrand, M.; Finlay, R.D. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 2007, 61, 295–304. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Panda, S.K.; Bhattacharjee, M.K.; Dutta, S. Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremidiation. J. Phytol. 2010, 2, 16–27. [Google Scholar]
- Basiru, S.; Hijri, M. Does commercial inoculation promote arbuscular mycorrhizal fungi invasion? Microorganisms 2022, 10, 404. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Aghili, F.; Jafarinia, R. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ. Sci. Pollut. Res. 2019, 26, 30794–30807. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, M.; Silva-Castro, G.A.; Sánchez, A.; Arriagada, C.; García-Romera, I. Effect of arbuscular mycorrhizal fungi and mycoremediated dry olive residue in lead uptake in wheat plants. Appl. Soil Ecol. 2021, 159, 103838. [Google Scholar] [CrossRef]
- Vejvodová, K.; Száková, J.; García-Sánchez, M.; Praus, L.; Romera, I.G.; Tlustoš, P. Effect of dry olive residue–based biochar and arbuscular mycorrhizal fungi inoculation on the nutrient status and trace element contents in wheat grown in the As, Cd, Pb, and Zn-contaminated soils. J. Soil Sci. Plant Nutr. 2020, 20, 1067–1079. [Google Scholar] [CrossRef]
- Ma, Y.; Prasad, M.N.V.; Rajkumar, M.; Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, Y.; Hu, N.; Shi, Y.; Li, T.; Zhao, Z. Differential responses of 23 maize cultivar seedlings to an arbuscular mycorrhizal fungus when grown in a metal-polluted soil. Sci. Total Environ. 2021, 789, 148015. [Google Scholar] [CrossRef]
- González-Villalobos, M.A.; Martínez-Trinidad, T.; Alarcón, A.; Plascencia-Escalante, F.O. Growth and lead uptake by Parkinsonia aculeata L. inoculated with Rhizophagus intraradices. Int. J. Phytoremediation 2021, 23, 272–278. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.W.; Wong, M.H. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 2016, 145, 224–230. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, W.; Zhou, S.; Wu, S. Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi (Brassica chinensis L.). Pedosphere 2016, 26, 13–26. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.-B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Virgine Tenshia, J.S.; Jayalakshmi, K.; Ramachandran, V. Antioxidant enzyme activities in arbuscular mycorrhizal (Glomus intraradices) fungus inoculated and non-inoculated maize plants under zinc deficiency. Indian J. Microbiol. 2011, 51, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhameed, R.E.; Metwally, R.A. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int. J. Phytoremediation 2019, 21, 663–671. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Favas, P.J.C.; Pratas, J.; Varun, M.; Paul, M.S. Harnessing Pisum sativum–Glomus mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. Int. J. Phytoremediation 2021, 23, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Cherif, J.; Mediouni, C.; Ammar, W.B.; Jemal, F. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J. Environ. Sci. 2011, 23, 837–844. [Google Scholar] [CrossRef]
- Singh, R.; Tripathi, R.D.; Dwivedi, S.; Kumar, A.; Trivedi, P.K.; Chakrabarty, D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 2010, 101, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Singh, N. Arbuscular mycorrhiza and reactive oxygen species. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Wu, Q.-S., Ed.; Springer: Singapore, 2017; pp. 225–243. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Yu, F.; Hu, B.; Jia, Y.; Sha, H.; Zhao, H. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci. Rep. 2019, 9, 8543. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Liu, H.; Li, Q.; Gao, N.; Yao, Y.; Xu, H. Combined remediation of Cd–phenanthrene Co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicol. Environ. Saf. 2015, 120, 386–393. [Google Scholar] [CrossRef]
Soil 1 | ||||
---|---|---|---|---|
Control | Aznalcollar | Intraradices | Custos | |
Pb (mg kg−1) | 395 ± 19 a | 396± 19 a | 394± 19 a | 395± 19 a |
Zn (mg kg−1) | 238 ± 10 a | 235 ± 5 a | 238 ± 20 a | 238 ± 4 a |
Cu (mg kg−1) | 121 ± 7.9 a | 124 ± 7.7 a | 125 ± 9.8 a | 125 ± 3.5 a |
Cr (mg kg−1) | 82 ± 3.1 a | 87 ± 11 a | 74 ± 5.8 a | 87 ± 15 a |
Ni (mg kg−1) | 38 ± 6.7 a | 39 ± 4.7 a | 38 ± 8.4 a | 40 ± 5.3 a |
As (mg kg−1) | 242 ± 9.0 a | 240 ± 7.9 a | 239 ± 13 a | 249 ± 5.9 a |
Co (mg kg−1) | ND | ND | ND | ND |
Cd (mg kg−1) | ND | ND | ND | ND |
Soil 2 | ||||
---|---|---|---|---|
Control | Aznalcollar | Intraradices | Custos | |
Pb (mg kg−1) | 96 ± 7.8 a | 95 ± 2.7 a | 96 ± 6.1 a | 94 ± 3.4 a |
Zn (mg kg−1) | 237 ± 12 a | 247 ± 6.8 a | 244 ± 16 a | 237 ± 8.9 a |
Cu (mg kg−1) | 61 ± 3.9 a | 63 ± 2.3 a | 62 ± 6.4 a | 63 ± 9.4 a |
Cr (mg kg−1) | 77 ± 7.0 ab | 80 ± 3.9 bc | 85 ± 3.6 c | 74 ± 6.2 a |
Ni (mg kg−1) | 33 ± 7.1 b | 33 ± 5.1 b | 30 ± 5.5 ab | 25 ± 4.3 a |
As (mg kg−1) | 44 ± 3.5 a | 44 ± 1.3 a | 45 ± 2.3 a | 45 ± 4 a |
Co (mg kg−1) | ND | ND | ND | ND |
Cd (mg kg−1) | ND | ND | ND | ND |
mg·kg−1 | Treatments | |||
---|---|---|---|---|
S1 | S1_Aznalcollar | S1_Intraradices | S1_Custos | |
Cu ROOT | 103.66 ± 9.1 b | 78.13 ± 14.6 a | 81.17 ± 10.1 a | 87.28 ± 4.1 ab |
Cu SHOOT | 36.27 ± 6.8 a | 81.16 ± 2.1 b | 31.51 ± 10.2 a | 22.57 ± 1.5 a |
Zn ROOT | 308.71 ± 31.7 c | 258.13 ± 16.2 b | 180.16 ± 19.1 a | 175.05 ± 16.4 a |
Zn SHOOT | 1273.15 ± 220.6 ab | 1894.77 ± 477.6 c | 637.17 ± 30.7 a | 944.58 ± 271.3 b |
Co ROOT | ND | ND | ND | ND |
Co SHOOT | 24.02 ± 8.7 b | 38.70 ± 9.1 c | 11.76 ± 6.3 a | 13.58 ± 5.2 a |
As ROOT | 15.18 ± 8.6 a | 12.01 ± 5.5 a | 15.19 ± 1.1 a | 17.28 ± 11.5 a |
As SHOOT | 4.75 ± 1.7 a | 10.40 ± 4.3 b | 6.63 ± 2.1 a | 2.77 ± 1.4 a |
Cr ROOT | 17.35 ± 7.5 a | 23.06 ± 13.3 a | 26.63 ± 12.2 a | 12.17 ± 6.7 a |
Cr SHOOT | 1.96 ± 0.8 a | 4.35 ± 1.6 b | 1.91 ± 1.1 a | 1.37 ± 0.7 a |
Cd ROOT | ND | ND | ND | ND |
Cd SHOOT | 4.15 ± 0.9 a | 5.38 ± 1.6 a | 2.89 ± 1.7 a | 2.87± 1.1 a |
Pb ROOT | 64.08 ± 19.5 b | 60.28 ± 8.9 b | 28.94 ± 6.8 a | 47.94 ± 12.3 ab |
Pb SHOOT | 5.98 ± 0.5 a | 22.40 ± 6.9 b | 13.40 ± 1.3 a | 5.42 ± 1.45 a |
Ni ROOT | ND | ND | ND | ND |
Ni SHOOT | 22.28 ± 8.6 ab | 27.87 ± 8.1 b | 12.04 ± 6.2 a | 11.48 ± 6.4 a |
S2 | S2_Aznalcollar | S2_Intraradices | S2_Custos | |
Cu ROOT | 41.54 ± 7.4 a | 38.85 ± 5.4 a | 63.67 ± 5.8 b | 36.41 ± 3.8 a |
Cu SHOOT | 43.0 ± 10.5 a | 36.60 ± 1.9 a | 32.65 ± 4.7 a | 31.54 ± 8.9 a |
Zn ROOT | 73.79 ± 12.2 a | 76.41 ± 4.7 a | 85.71 ± 13.7 a | 76.02 ± 10.9 a |
Zn SHOOT | 399.62 ± 73.1 a | 432.91 ± 46.8 b | 376.57 ± 54.3 a | 287.05 ± 27.8 a |
Co ROOT | ND | ND | ND | ND |
Co SHOOT | ND | ND | ND | ND |
As ROOT | ND | ND | ND | ND |
As SHOOT | 3.90 ± 1.2 a | 2.83 ± 0.7 a | 2.73 ± 0.9 a | 7.56 ± 4.0 b |
Cr ROOT | 3.84 ± 1.2 a | 12.52 ± 1.1 b | 14.50 ± 1.9 b | 7.68 ± 2.9 ab |
Cr SHOOT | 16.48 ± 7.0 a | 15.33 ± 6.6 a | 24.98 ± 3.8 b | 27.12 ± 7.8 b |
Cd ROOT | ND | ND | ND | ND |
Cd SHOOT | 0.54 ± 0.1 b | 0.48 ± 0.05 b | 0.19 ± 0.1 a | 0.31 ± 0.1 b |
Pb ROOT | 4.59 ± 0.4 a | 4.48 ± 1.9 a | 15.04 ± 2.5 b | 12.69 ± 0.7 b |
Pb SHOOT | 1.54 ± 0.4 a | 1.92 ± 0.0 a | 1.18 ± 0.3 a | 9.56 ± 0.1 b |
Ni ROOT | ND | ND | ND | ND |
Ni SHOOT | 7.26 ± 2.5 a | 11.99 ± 2.6 b | 8.02 ± 2.5 a | 9.01 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Castro, G.A.; Cano, C.; Moreno-Morillas, S.; Bago, A.; García-Romera, I. Inoculation of Indigenous Arbuscular Mycorrhizal Fungi as a Strategy for the Recovery of Long-Term Heavy Metal-Contaminated Soils in a Mine-Spill Area. J. Fungi 2023, 9, 56. https://doi.org/10.3390/jof9010056
Silva-Castro GA, Cano C, Moreno-Morillas S, Bago A, García-Romera I. Inoculation of Indigenous Arbuscular Mycorrhizal Fungi as a Strategy for the Recovery of Long-Term Heavy Metal-Contaminated Soils in a Mine-Spill Area. Journal of Fungi. 2023; 9(1):56. https://doi.org/10.3390/jof9010056
Chicago/Turabian StyleSilva-Castro, Gloria Andrea, Custodia Cano, Silvia Moreno-Morillas, Alberto Bago, and Inmaculada García-Romera. 2023. "Inoculation of Indigenous Arbuscular Mycorrhizal Fungi as a Strategy for the Recovery of Long-Term Heavy Metal-Contaminated Soils in a Mine-Spill Area" Journal of Fungi 9, no. 1: 56. https://doi.org/10.3390/jof9010056
APA StyleSilva-Castro, G. A., Cano, C., Moreno-Morillas, S., Bago, A., & García-Romera, I. (2023). Inoculation of Indigenous Arbuscular Mycorrhizal Fungi as a Strategy for the Recovery of Long-Term Heavy Metal-Contaminated Soils in a Mine-Spill Area. Journal of Fungi, 9(1), 56. https://doi.org/10.3390/jof9010056