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Abstract: Coevolution between the pathogen and host plant drives pathogenic effector diversity.
However, the molecular mechanism behind host-specific pathogenesis remains to be explored. Here,
we present a 43 Mb whole-genome sequence of Endomelanconiopsis endophytica strain LS29, a host-
specific pathogen of the common subtropical tree Castanopsis fissa. We described its genome anno-
tations and identified its effector candidates. By performing temporal transcriptome sequencing of
E. endophytica on C. fissa during early infection, we found that E. endophytica repressed other microbes
in order to attack the tissue of the host by producing antibiotics earlier than 24 h post-inoculation (hpi).
Simultaneously, a variety of effectors were secreted to recognize the host plant, but most of them
showed a significantly opposing expression regulation trend after 24 hpi, indicating that 24 hpi repre-
sents a key time point between host recognition and specific infection. Furthermore, a comparison
of isoenzymes showed that only a few effectors were identified as specific effectors, which were in-
volved in hydrolyzing the compounds of the plant cell wall and releasing fatty acids during the early
infection of C. fissa. Our results determined host recognition timing and identified a specific catalog
of effectors, which are crucial for revealing the molecular mechanism of host-specific pathogenesis.

Keywords: comparative transcriptomics; effector; genomics; specific infection; whole-genome
sequence

1. Introduction

The Janzen-Connell hypothesis suggests that the maintenance of plant diversity is
driven by density- and distance-dependent in tropical forests, and host specialization is a
crucial assumption of this hypothesis [1,2]. It has demonstrated that host-specific pathogens
have a stronger effect on promoting plant diversity compared to general pathogens [3].
Previous studies on the pathogenic mechanism of host-specific pathogens mainly focused
on monoculture crops [4], and how host-specific pathogens infect host trees in forest will
contribute to understanding the maintenance of forest diversity. In 2020, we isolated
Endomelanconiopsis endophytica strain LS29 from the common subtropical tree Castanopsis
fissa, and its host-specific pathogenicity was determined [5], but the pathogenesis of host-
specific pathogen E. endophytica on C. fissa remains unclear.

Botryosphaeriaceae fungi are widely distributed endophytes across the world, but
most of them represent potential pathogen threats to woody plants [6]. The life cycle of
Botryosphaeriaceae can be divided into an endophytic phase and a pathogenic phase. The
endophytic phase may be an incubation period where they may survive for many years
as endophytes and then switch into a pathogenic lifestyle, causing diseases such as leaf
spots, fruit and root rot, cankers, and dieback [7]. As a member of this family, E. endophytica
produces a dark green to nearly black colony on potato-dextrose agar [8].

Many phytopathogens are generally recognized, and defended against, by plants and
are only able to infect certain plant species, which determines their host ranges [9]. The
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pathogenic mechanisms of fungi are complex and various. By contrast, plants generally
have two defense systems to detect pathogens: One is to recognize conserved pathogen-
associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) activating
the defense system, referred to as PAMP-triggered immunity (PTI) [10]; and the other is
effector-triggered immunity (ETI), in which fungal specific avirulence proteins are recog-
nized by plant-specific resistance proteins, resulting in disease resistance [11]. However,
fungal virulence proteins successfully escape recognition by the plant, eventually leading
to the development of disease. The “Zigzag model” has been proposed to explain the
interactions between plants and pathogens: to overcome PTI, pathogens secrete effectors,
and to suppress ETI, pathogens diversify the recognized effectors [12,13].

Effectors are cytotoxic or otherwise damaging plant cells in the apoplast or cytoplasm [14].
The known effector secretion systems in bacteria contain six secretion systems (types I–VI) of
Gram-negative bacteria and the unique mycobacterial type VII secretion system [15]. Unlike
bacteria, the effectors of fungi are various and diverse, and there is no universally approved
classification for the secretion system as of yet. Effector genes have evolved multiple ways
to evade host recognition in a spatial and temporal manner depending on the stage of
infection, such as through disrupting physical barriers, creating conditions conducive to
invasion, masking microbial features, inhibiting the activity of PRR complexes, interfering
with PRR translation, and inhibiting the activity of plant proteolysis [16,17]. For example,
Sclerotinia sclerotiorum breaks down a wide range of complex plant polysaccharides by
cell wall degrading enzymes (CWDEs) [18]. lysin motif (LysM) proteins are the most
extensive class of apoplastic effector proteins, which sequester chitin fragments released to
evade the perception of chitin fragments as PAMPs by plant PRRs during infection [19]. A
microRNA-like RNA (bba-milR1) is exported to hijack the host RNA-interference machinery
by Beauveria bassiana [20]. Protein essential during penetration 1 (Pep1) acts as an inhibitor
of host peroxidases, suppressing the apoplastic oxidative burst during the infection of
maize by Ustilago maydis [21]. After hundreds of years, the coevolution between plants and
pathogens has resulted in specific effectors to circumvent host immunity, thereby forming
specific pathogeneses. Alternaria alternata strains produce a variety of host-selective toxins
(HSTs) that cause disease in specific hosts [22].

At present, more than 1500 fungal genomes have been collected in the Ensembl Fungi
Release 56 database (https://fungi.ensembl.org/index.html, accessed on 13 June 2023).
Based on the fungal genome, a variety of bioinformatics methods are used to predict
effectors, which are important virulence factors of pathogenic fungi [14]. In general, the
criteria of candidate secretory effector proteins include a signal peptide, no trans-membrane
domains, no glycosylphosphatidylinositol (GPI) lipid anchoring site, extracellular local-
ization, and, often, species specificity [23,24]. More than 100 tools including pipelines and
online servers are available to identify the conserved motifs, characteristic sequences, and
structural features of proteins, and multiple tools can be combined for the genome-wide
identification of effector proteins [24]. The ability of Botryosphaeriaceae species to cause
disease may rely on the production of effectors, such as cell-wall-degrading enzymes and
degrading wood parietal compounds [25].

The transcriptome of fungal genes in temporally infected hosts reveals further details
about their pathogenic processes and mechanisms. The genes encoding glycosyl hydro-
lases, cutinases, and LysM domain-containing proteins have been shown to be upregulated
in Magnaporthe oryzae after inoculation on rice [26]. A total of 307 effector candidates of
Leptosphaeria maculans were identified and over-expressed in the infected stems of Bras-
sica napus, suggesting that they are involved in systemic colonization [27]. In addition,
differences in gene expression may reveal the determinants of virulence variation among
Zymoseptoria tritici strains during the infection of wheat [28].

Currently, few previous data on E. endophytica are available. Therefore, our knowledge
of specific effectors of E. endophytica is of vital importance to understanding the molecular
mechanisms underlying how E. endophytica invade host plants. In this study, the first
whole-genome sequence of E. endophytica was obtained and assembled by high-throughput
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sequencing by Illumina HiSeq. The functional characterizations of putative genomic
proteins were annotated from multiple databases, and potential effector candidates were
screened using bioinformatics software. Through temporal transcriptome sequencing
during early infection, the differentially expressed genes (DEGs) and effector isoenzymes
in different infection stages revealed the specific pathogenetic mechanism of E. endophytica
during C. fissa infection.

2. Materials and Methods
2.1. DNA Extraction and Whole-Genome Sequence of E. endophytica

The E. endophytica strain LS29 was isolated from a diseased seedling of the common
tree C. fissa at Heishiding forest [5] and stored at −80 ◦C in an ultra-low temperature freezer
(Meiling, Hefei, China). The E. endophytica strain LS29 was resuscitated and cultured in
potato dextrose broth (PDB, Huankai Microbial, Guangzhou, China) liquid medium at
220 rpm and 28 ◦C for a week. Then, fungal mycelia were collected with sediment after
centrifuging at 4000 rpm for 6 min and washing three times with sterile distilled water.
For DNA extraction, fungal mycelia were collected, and DNA was extracted using an
Ezup Column Fungi Genomic DNA Purification Kit (Sangon Biotech, Shanghai, China).
After extraction, the genomic DNA was sequenced using the Illumina HiSeq sequencing
platform of Novogene (Beijing, China). To improve the assembly quality, raw data were
filtered and low-quality sequence fragments were removed, including (1) low-quality reads
with a base mass value less than or equal to 38 and a full length over 40 bp; (2) reads
with N-bases of more than 10 bp in the read sequence; and (3) reads and adapters with
an overlap exceeding 15 bp threshold. Clean data were obtained to ensure the accuracy
of the subsequent information analysis results. Subsequently, the clean data were spliced
and assembled using SOAP denovo2 software v2.40 [29]. Different K-mer lengths (35, 47,
59, 71, 83, 95, 107, 119) were selected for assembly, in which the basic assembly data were
obtained by the optimal K-mer screening, and fragments below 500 bp were filtered out to
obtain the final assembly data.

2.2. Genomic Annotation of E. endophytica

The assembly data components were predicted and categorized into coding genes, non-
coding RNA, and repeated sequences. Coding genes were predicted using ab initio with
AUGUSTUS v3.3.2 [30]. Compared with various databases, the coding genes were anno-
tated with the blast results under the condition of e-value ≤ 1 × 10−5, identity ≥ 40%,
and coverage ≥ 40%. The annotated databases included Gene Ontology (GO, http://
geneontology.org/, accessed on 21 December 2021) [31,32], Clusters of Orthologous Groups
of proteins (COG, http://www.ncbi.nlm.nih.gov/COG/, accessed on 21 December 2021) [33],
Carbohydra-Active enZYmes Database (CAZy, http://www.CAZY.org/, accessed on
21 December 2021) [34], Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.
genome.jp/kegg/, accessed on 21 December 2021) [35], Non-Redundant Protein Database
(Nr, https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/, accessed on
21 December 2021), the Protein families database (Pfam, http://pfam-legacy.xfam.org/,
accessed on 21 December 2021) [36], and the Transporter Classification Database (TCDB,
http://www.tcdb.org/tcdb/, accessed on 21 December 2021) [37].

2.3. Effector Candidate Prediction and Pathogenic Analysis of E. endophytica

Based on the genome data, candidate-secreted effector proteins were predicted using mul-
tiple protein-related bioinformatics software. First, SignalP 5.0 (https://services.healthtech.
dtu.dk/services/SignalP-5.0/, accessed on 30 October 2022) was used for screening protein
sequences with N’-terminal signal peptides [38], and protein sequences that contained the
membrane structure domain were removed using TMHMM 2.0 (https://services.healthtech.
dtu.dk/services/TMHMM-2.0/, accessed on 30 October 2022) [39]. Simultaneously, Phobius
(https://www.ebi.ac.uk/Tools/pfa/phobius/, accessed on 30 October 2022) [40] incorpo-
rated both transmembrane topology and signal peptides. The classically secreted proteins
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predicted by the combination of the above methods were identified as the putative secretome
of E. endophytica strain LS29. Second, the subcellular localizations of the classically secreted
proteins were predicted using Wolfpsort (https://wolfpsort.hgc.jp, accessed on 30 Octo-
ber 2022) and ProtComp 9.0 (http://www.softberry.com/berry.phtml?topic=protcompan&
group=programs&subgroup=proloc, accessed on 30 October 2022). Third, PredGPI
(https://busca.biocomp.unibo.it/predgpi/, accessed on 30 October 2022) [41] and NetGPI 1.1
(https://services.healthtech.dtu.dk/services/NetGPI-1.1/, accessed on 30 October 2022) [42]
were used to predict protein sequences with a GPI modification site, and nine potential GPI
modification sites were reserved. Finally, effector candidates were identified using EffectorP-
fungi 3.0 (http://effectorp.csiro.au/, accessed on 30 October 2022) [43]. The databases of
proteins associated with the disease included the Database of Fungal Virulence Factors (DFVF,
http://sysbio.unl.edu/DFVF/, accessed on 30 October 2022) [44] and the Pathogen-Host
Interactions database (PHI, http://www.phi-base.org/, accessed on 30 October 2022) [45].

2.4. Early Infection Experiment

To explore the molecular mechanism of the pathogenic process, a time-dependent
infection experiment was carried out using E. endophytica strain LS29 mycelia on C. fissa
seedlings. The seeds of C. fissa were surface disinfected (75% ethanol (Aladdin, Shanghai,
China) 1 min, 2.63% NaClO (Aladdin, Shanghai, China) 3 min, 75% ethanol 1 min, sterile
distilled water 1 min) and sowed with sterilized sand until 2 months of age before experi-
mentation. The 2-month-old seedlings were pretreated with Hoagland’s nutrient solution
(Hopebio, Qingdao, China) for 2 weeks and then transferred to sterile distilled water. The
fungal mycelia were prepared according to the method described in Section 2.1. Briefly,
6 g (~200 mg dry biomass) of fungal mycelia was inoculated around the seedling roots,
while the plant controls were treated with an equal weight of sterile distilled water. Fungal
mycelia of equal weight were used as fungal controls (control check, CK). Mixed samples
of roots and mycelia were collected at 2 h post-infection (hpi), 6 hpi, 12 hpi, 24 hpi, and
48 hpi. The mixed samples were cut into pieces with sterilized scissors and placed into
2-mL sterilized centrifuge tubes. The samples were rapidly frozen in liquid nitrogen for
5 min and kept at −80 ◦C for transcriptome sequencing.

2.5. High-Throughput Transcriptomic Sequencing

The RNA extraction and transcriptome RNA library sequencing were performed using
the Illumina HiSeq sequencing platforms of Sangon Biotech (Shanghai, China). The original
image data obtained were converted into raw data through CASAVA v1.8.2 Base Calling.
The quality of the raw data was evaluated by FastQC v0.11.9 [46]. Trimmomatic was used
to filter the raw data to ensure quality [47], which included the following: (1) removing the
N-base sequences; (2) removing the junction sequences in the reads; (3) removing low-quality
bases (Q value < 20); (4) removing the base of reads tails with a mass value below 20 using a
sliding window method (window size of 5 bp); and (5) removing reads with a length less than
35 nt as well as their paired reads. HISAT2 v2.2.1was used to compare the quality control
sequences with the genomic DNA sequences that were used as reference sequences [48], and
RseQC v4.0.0was used to calculate the comparison results [49].

2.6. Statistical Analysis

Pearson’s correlation coefficients and principal component analysis (PCA) were used
to test correlations between samples. The DEGs were analyzed by DESeq2 analysis, and
genes with |log2 (Fold Change)| > 1 and q-value < 0.05 were considered DEGs.

All analyses were carried out in the R statistical environment [50] using the fol-
lowing packages: “ClusterProfiler” [51], “Deseq2” [52], “ggraph” [53], “ggplot2” [54],
“heatmap” [55], “oaqc” [56], “psych” [57], and “vegan” [58].
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3. Results
3.1. Genome Features and Completeness of E. endophytica

The draft genome of E. endophytica was 43 Mb in size with a G + C content of 56.65%,
in which 37,673,308 bases obtained were spliced into 348 contigs and then assembled into
291 scaffolds. There was a total of 131 tRNA and 36 rRNA, 44 snRNA, and 8728 coding
sequences (CDSs). The N50 length represents the sum of the lengths of all the predicted
genome sequences longer than the median, which is generally used to assess the quality of
the genome assembly. The Contig N50 of E. endophytica (>300 kb) indicated that most of the
genes had relatively complete sequences, which provided a foundation for the subsequent
gene prediction and functional analysis. The genome statistics are presented in Table 1.

Table 1. Genome features of the assembled Endomelanconiopsis endophytica.

Assembly Name Endomelanconiopsis endophytica LS29

Assembly size (Mb) 43
K-mer Depth 26.77

Sequence GC (%) 56.65
Total Num (>500 bp) of scaffolds 291

N50 Length (bp) 551,176
N90 Length (bp) 126,219
Max Length (bp) 1,466,726
Min Length (bp) 503

Total Num (>500 bp) of contigs 348
N50 Length (bp) 332,028
N90 Length (bp) 88,513
Max Length (bp) 1,466,726
Min Length (bp) 468

3.2. Functional Annotation of the E. endophytica Genome

The whole-genome sequence of E. endophytica was annotated using the GO, KOG,
CAZy, KEGG, NR, Pfam, and TCDB databases, the results of which have been summa-
rized in Table S1. By comparing the amino acid sequences of E. endophytica with the GO
database, a total of 5747 coding genes were categorized into biological process, cellular
component, and molecular function categories (Figure S1). In the biological processes
category, most genes participate in metabolic processes, cellular processes, and the estab-
lishment of localizations. In the cellular component category, most genes were associated
with cell parts, organelles, and macromolecular complexes. In the molecular functions
category, most genes were involved in binding, catalytic activities, and transporter activities.
A total of 2123 KOG annotations were obtained, for which the top seven classifications
were [O] posttranslational modification, protein turnover, chaperones (217), [J] translation,
ribosomal structure and biogenesis (214), [R] general function prediction only (206), [C]
energy production and conversion (184), [E] amino acid transport and metabolism (154),
[U] intracellular trafficking, secretion, and vesicular transport (122), and [G] carbohydrate
transport and metabolism (114) (Figure S2). The genome of E. endophytica encoded 465
proteins homologous to CAZymes, which provided the carbohydrate enzyme family data,
including 238 glycoside hydrolases (GHs), 82 glycosyl transferases (GTs), 67 auxiliary activ-
ities (AAs), 30 carbohydrate-binding molecules (CBMs), 28 carbohydrate esterases (CEs),
and 20 polysaccharide lyases (PLs). To further understand the functions of the protein of
E. endophytica, 7836 genes were annotated and assigned to five known classifications of
KEGG, including metabolism, processing, processes, diseases, and systems. Translation
was the most enriched gene distribution, followed by carbohydrate metabolism, amino
acid metabolism, folding, sorting and degradation, and transport and catabolism in KEGG
(Figure S3). With the Nr database annotation, the most matched species for the annotated
genes of E. endophytica was Neofusicoccum parvum (4028), followed by Macrophomina phase-
olina (1858) and Diplodia seriata (920). A total of 5747 annotation results were retrieved
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from the Pfam database. The FAD/NAD(P)-binding Rossmann fold superfamily (1735),
P-loop containing nucleoside triphosphate hydrolase superfamily (1534), and major facili-
tator superfamily (554) were the main protein families in E. endophytica. Following TCDB
annotation, 193 coding genes belonged to electrochemical potential-driven transporters,
146 coding genes were classified as primary active transporters, and 71 coding genes were
channels or pores.

3.3. Identification of Effector Candidates and Pathogenic Annotation Based on the
E. endophytica Genome

Effector candidates were predicted by SignalP, TMHMM, Phobius, Wolfpsort, Prot-
Comp, PredGPI, NetGPI, and EffectorP (Figure S4). Of the 8728 putative proteins of
E. endophytica, 762 were believed to carry N-terminal signal peptides using SignalP 5.0, and
then, 689 were predicted to be proteins with 0/1 transmembrane helices by TMHMM 2.0.
Phobius obtained 1007 predictions that met these two requirements from the proteome. A
total of 681 results were retained by the combination of the three algorithms, which were
identified as the putative secretome of E. endophytica. Subsequently, 465 expected proteins
were predicted to be localized outside the organism of the fungus, combining the results
from Wolfpsort (635) and ProtComp 9.0 (483) from the secretome. PredGPI and NetGPI 1.1
were used to predict the presence of GPI anchoring. The GPI-anchored secreted proteins
were excluded, and 417 expected proteins without GPI-anchoring were obtained using
PredGPI (425) and NetGPI 1.1 (419). Finally, 155 effector candidates were identified using
EffectorP-fungi 3.0. Among the effector candidates, 128 were believed to be apoplastic
effectors, 15 were regarded as cytoplasmic effectors, and the other 12 were considered to
have both possibilities. Among the effector candidates of E. endophytica, most (71.61%)
ranged in length from 100 to 300 amino acids, and one was a large effector of 556 amino
acids in length (Figure S5).

According to the effector annotations, PHI-base provided 33 blasted results that
contained 22 results by DFVF, which indicated that 78.71% of the effector candidates were
not known to be associated with the disease. These annotated effector homologs secreted
by 16 pathogens cause diseases such as root rot, leaf spot, and Fusarium ear blight. Based
on the NCBI blast results, 29.03% of the effector candidates were identified as hypothetical
proteins, and 3.23% of the effector candidates constituted orphan genes with no matches.

3.4. Overview of the Temporal Transcriptomic Analysis during Early Infection

Following data evaluation and quality control of the transcriptomes at 2 hpi, 6 hpi, 12 hpi,
24 hpi, and 48 hpi and CK, clean reads ranging from 32,995,466 to 50,124,544 million/sample
were obtained, and the GC content of the filtered sequence was 47.57–59.48%. The proportions
of filtered sequence error rates < 1% (Q20) were 98.05–98.60%, and the proportions of filtered
sequence error rates < 0.1% (Q30) were 93.64–95.05% (Table S2). The correlation heatmap
indicated that the samples exhibited high inner-group similarity and inter-group separation
based on Pearson’s correlation coefficients (Figure S6). The PCA showed that the 48 hpi
group and other groups were separately aggregated by PC 1 (70%), and PC 2 (10%) separated
the 2 hpi, 6 hpi, 12 hpi, 24 hpi, and CK groups, but not the 48 hpi group, because of the high
dispersion degree of the repeated samples within the 48 hpi group (Figure S7).

3.5. Biosynthesizing Antibiotics to Create an Infective Environment before 24 hpi

With the extension of infection time, the numbers of DEGs increased gradually, and
the transcriptome results intensified after 24 hpi. At the 2–6, 2–12, 2–24, and 2–48 hpi
stages, there were 702, 995, 1684, and 2686 upregulated genes and 546, 893, 1715, and 2994
downregulated genes (Figure 1 and Figure S8). The CK group was not considered for DEG
comparison, because the control group differed significantly from all experimental groups
(Figure S9).
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Figure 1. Differential gene volcano map of gene expression during the infection process of Castanopsis
fissa by Endomelanconiopsis endophytica. (A) 6 hpi vs. 2 hpi, (B) 12 hpi vs. 2 hpi, (C) 24 hpi vs. 2 hpi,
(D) 48 hpi vs. 2 hpi. The results are based on DESeq2 analysis. Genes with |log2 (Fold Change)| > 1
and q-value < 0.05 were considered differentially expressed. Red points represent downregulated
genes, blue points represent upregulated genes, and gray points represent no significant difference in
gene expression.

The KEGG pathway enrichment analysis of the DEGs showed that biosynthesis of
secondary metabolites was the most overrepresented pathway, followed by microbial
metabolism in diverse environments and biosynthesis of antibiotics (Figure 2). Carbon
metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose
and mannose metabolism were also enriched. Biosynthesis of antibiotics was upregulated
before 24 hpi, and pentose and glucuronate interconversions were gradually upregulated
after 12 hpi. On the contrary, ribosome biogenesis in eukaryotes, protein processing in
endoplasmic reticulum, protein processing in endoplasmic reticulum, and ribosome were
the most downregulated enriched pathways in the four periods (Figure S10).
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Figure 2. Pathway enrichment analysis of the upregulated genes during the infection process
of Castanopsis fissa by Endomelanconiopsis endophytica. (A) 6 hpi vs. 2 hpi, (B) 12 hpi vs. 2 hpi,
(C) 24 hpi vs. 2 hpi, (D) 48 hpi vs. 2 hpi. The top 10 Kyoto Encyclopedia of Genes and Genomes
(KEGG) upregulated pathways are shown, with the abscissa representing the gene ratio, while the
ordinate represents the names of the KEGG pathways. The depth of the color represents the adjusted
p-value. The size of the circle on the graph represents the number of genes.

3.6. Identification of Effective and Specific Effectors during Early Infection

The transcriptome showed that 125 effector candidates were expressed during infec-
tion. The expression of 20 effector candidates was significantly upregulated over time, and
the expression of 46 effector candidates was significantly downregulated (Figure 3A). Some
effector candidates were significantly upregulated at 2–24 hpi but significantly downreg-
ulated at 24–48 hpi, while some genes showed the opposite (Figure 3B,C). Importantly,
the top 10 effector candidates with high gene expression included A0194 (hypothetical
protein), A0439 (Eliciting plant response protein 1, Epl1), A1948, A2703, A4087, A4417,
A5728, A6540 (hypothetical protein), A8041 (Necrosis-inducing secreted protein 1, Nis1),
and A8732 (Ubiquitin 3 binding protein, But2) (Figure 3D). The gene annotations of the
top 10 expressed effectors were summarized in Table S3. The A0439 proteins were highly
expressed without significant change, and the A8041 proteins were significantly upreg-
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ulated at an extremely high expression level. Of these hypothetical proteins with high
gene expression, the expression of A0194 and A5728 was significantly upregulated. The
A4087 and A4417 proteins were expressed and then significantly downregulated at 48 hpi.
In addition, A1948, A2703, and A6540 were expressed without any significant difference
over time.
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Figure 3. Gene expression of effectors in Endomelanconiopsis endophytica. (A) Boxplot of all effectors,
line charts of (B) effectors and (C) top 10 expressed effectors, and (D) general linear regression of top
10 expressed effectors. The abscissa represents hours post-infection, and the ordinate represents log
(counts of genes). (A–C) Red represents downregulated genes, blue represents upregulated genes,
and gray represents genes with no significant differential expression. (D) The color represents the
name of the genes, the solid line represents p < 0.05, and the dashed line represents p ≥ 0.05.

Among the known or putative effectors that matched with PHI-base and DFVF, A8077,
A3579 (pectate lyase, PL3_2), and A3834 (endopolygalacturonase, GH28) were significantly
and persistently upregulated during the experiment. In addition, A8509 (cellobiohydrolase,
GH7), A0949 (chitin deacetylase, CBM18), A0448 (chitinase, GH18), A5327 (lipase class 3),
A0325 (metalloprotease), A5511 (pectate lyase, PL3_2), and A2151 (pectinesterase, CE8)
were upregulated until 12–24 hpi and then significantly downregulated.
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3.7. Comparative Analysis of Isoenzymes Reveals Specific Pathogen-Related Genes during
Early Infection

The isoenzymes were obtained from the secretome of E. endophytica based on effector
candidates and were analyzed by a general linear regression model. Isoenzyme analysis
showed that A4173 (cellobiohydrolase), A5330 (cell wall protein), A6987 (endoglucanase),
A1416, A5475, A5601, A5692 (lipase), A4055, A8077, A3579 (pectate lyase), A3705, and
A3706 (rhamnogalacturonase) were significantly upregulated at high expression levels
(Figure 4).
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Figure 4. Gene expression and general linear regression of pathogenic isoenzymes in Endomelanco-
niopsis endophytica. (A) Carboxypeptidase, (B) cellobiohydrolase, (C) cell wall protein, (D) chitinase,
(E) endoglucanase, (F) lipase, (G) pectate lyase, (H) ribonuclease, and (I) rhamnogalacturonase.
The color represents the name of the genes, the solid line represents p < 0.05, and the dashed line
represents p ≥ 0.05.

Although there were no significant differences across infection stages, A8720 (car-
boxypeptidase), A5369, A3278, A3788 (lipase), and A7584 (chitin deacetylase) still had high
levels of expression. Other isoenzymes expressed at low levels were downregulated or
were not significantly differentially regulated.
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4. Discussion

The whole-genome annotation suggested that most of the genes of E. endophytica
were involved in the translation, processing, and transportation of proteins, and many
genes were associated with carbohydrate and amino acid metabolism, which are vital for
pathogen infection and survival in the host. More than half of the genes had not been
annotated. There are few studies on Endomelanconiopsis and its related genera. The best
genome-matched species in the Nr database is N. parvum, though less than half of the CDSs
of E. endophytica matched with those of N. parvum. N. parvum is a pathogen causing black
leaf spot disease on Geodorum eulophioides in China [59], while E. endophytica causes root
rot disease in C. fissa. These two pathogens belong to the family Botryosphaeriaceae and
may have similar pathogenic mechanisms that are worthy of further comparative research.
We obtained 681 genes of the secretome and 155 genes of effector proteins through bioin-
formatics prediction. Effectors play an important role in the pathogen infection process of
host plants, including recognition, adsorption, infection, colonization, and reproduction
between pathogens and host plants. The effector prediction indicated that most of the
effectors of E. endophytica worked on the extracellular matrix of plants during infection.
The pathogenicity-related annotation of effector candidates indicated that the known ef-
fector genes of E. endophytica were mainly enzymes, such as pectate lyases, chitinases,
pectinesterases, and endopolygalacturonases, which are involved in hydrolyzing the pectin
and cellulose of the plant cell wall. This corresponds to the CAZyme annotation of E. endo-
phytica, which was found to contain a large number of genes homologous to GH16, GH3,
and AA3, which interact collaboratively on plant cell walls and cellulose as the first defense
line of the plant immune system [12]. Unfortunately, more than 79% of effector proteins
had unknown functions, and some of the effector proteins did not even have homologs.
Though the blasted genes revealed the possible pathogenic mechanism of E. endophytica, the
remaining genes may shed light on the host-specificity and potential unknown pathogenic
mechanism of E. endophytica.

The temporal transcriptome herein provided us with further evidence about pathogen-
esis. Unfortunately, the CK group was not included in the DEG comparison because of its
significant difference. The fungal CK group samples were collected on a PDA solid medium,
while the other group samples were mixtures of root and fungi were collected in a liquid
medium. The fungal content and culture conditions influenced the gene expression, but the
CK group could be used as a reference for assessing expression. Also, fungal transcriptome
expression in the plant control group was too small to be considered, so it was not included
in the data analysis. With the extension of infection time, some DEGs showed a significant
opposing trend before and after 24 hpi, suggesting that some genes were temporarily out
of use, while others were re-invoked. This also indicated that 24 hpi was a key time point
at which E. endophytica had moved on to the next stage of pathogenesis.

The KEGG pathway enrichment analysis of upregulated genes revealed that biosyn-
thesis of secondary metabolites was one of the methods for fungal invasion. Secondary
metabolites are not essential for growth, but some of them are considered effectors in disease
establishment and the induction of necrotrophy, such as polyketides, non-ribosomal pep-
tides, hybrid polyketide–non-ribosomal peptides, and terpenes [60]. T-toxin, victorin, and
HC-toxin are used by the host-specific necrotrophic fungi of Cochliobolus spp. to establish
disease in maize [61]. Biosynthesis of antibiotics was no longer significantly upregulated
after 24 hpi, suggesting that the fungi secreted antibiotics for the purpose of inhibiting
other microorganisms from occupying the plant territory when the fungi met the host plant.
Antibiotics are produced to destroy the competing organisms present in the same habitat,
and cephalosporin is a well-known antibiotic that is produced by Acremonium spp. against
both Gram-positive and negative bacteria [62]. Other KEGG-enriched upregulated path-
ways indicated that the fungi activated multiple pathways involved in energy metabolism
and effective colonization to facilitate the infection process. The enriched KEGG pathways
of the upregulated and downregulated genes also demonstrated the energy allocation of
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the fungus during infection. Understanding the role of metabolic pathways may require
additional metabolomic studies to explore specific metabolites during infection.

Our DEG expression analysis of effector candidates indicated that more than 80% of
effectors participated in infection. However, many effectors were secreted to be involved in
host recognition before 24 hpi, but only a few effectors successfully recognized and effec-
tively worked during invasion after 24 hpi. The expression of A0439 (Epl1) was always high
without significant upregulation or downregulation. A cerato-platanin protein called Epl1
can be secreted by Colletotrichum falcatum as a virulence factor or elicitor to induce hypersen-
sitive response (HR) -like cell death in Nicotiana tabacum [63], indicating that E. endophytica
had been in the active state of attack of the host for a long time. The A8041 (Nis1) proteins
were persistently expressed and significantly upregulated to an extremely high level. The
Nis1 protein is thought to be a core effector that targets BAK1 (brassinosteroid-insensitive
1 (BRI1) associated receptor kinase 1) and BIK1 (botrytis-induced kinase 1), interfering
with functions for immune activation upon pathogen recognition, and is conserved in
filamentous fungi in Ascomycota and Basidiomycota [64]. Presumably, A8041 (Nis1) is
believed to act as a key effector of E. endophytica to suppress the PAMP-triggered immunity
of C. fissa. Pectate lyase is a hydrolytic enzyme that cleaves α-1,4-polygalacturonic acid
and releases pectin products [65], and endopolygalacturonase is an enzyme required for
the hydrolysis of pectin [66]. Therefore, A8077, A3579, and A3834 are expected to play a
significant role in plant cell wall degradation, which is key in the first line of defense of
a plant. There were many proteins without annotations that were also found to play an
important role in the pathogenic mechanism of E. endophytica. Of the hypothetical proteins,
it is possible that A1948, A2703, and A6540 were general effectors for conventional infection,
and A0194 and A5728 were effective during infection, whereas A4087 and A4417 were less
useful or only worked in the early 24 h infection stage when they attacked the seedlings
of C. fissa. There were 20 significantly upregulated effector candidates containing many
hypothetical proteins that may be important for the host-specific infection of E. endophytica
on C. fissa.

Predictions of effector candidates based on machine learning are not accurate, so
the secreted isoenzymes of effector candidates were considered. Isoenzymes catalyze the
same chemical reaction but differ in amino acid composition, intracellular location, and
physiological role [67]. In our isoenzyme analysis, several effector proteins with high
expression and their isoenzymes were compared and analyzed. These enzymes included
carboxypeptidases, cellobiohydrolases, cell wall proteins, chitin deacetylases, endoglu-
canases, lipases, pectate lyases, ribonucleases, and rhamnogalacturonases, in which pectate
lyases were previously introduced. Most of them are CWDEs, including cellobiohydrolases,
chitin deacetylases, endoglucanases, pectate lyases, rhamnogalacturonases, and other cell
wall proteins. Carboxypeptidases are involved in peptide biosynthesis and in hydrolyzing
extracellular proteins or polypeptides, which play a vital role in stress response, growth,
development, and pathogen defense [68,69]. Effector lipase FGL1 is secreted by Fusarium
graminearum to release linoleic and α-linolenic acids from wheat, which suppress innate
immunity-related callose biosynthesis [70]. VdRTX1, a ribonuclease of Verticillium dahlia,
was found to translocate into the plant nucleus to modulate immunity. Its homologs are
widely distributed in fungi [71]. For CWDEs, cellobiohydrolase is an enzyme that disrupts
the chain end of cellulose and releases glucose [72]. Chitin deacetylase is secreted during in-
fection and the early growth phase in the host, which alters the physicochemical properties
of the cell wall to evade recognition by plant chitinases, thereby reducing the elicitation of
plant defenses [73,74]. MoChi1, an extracellular chitinase of M. oryzae, suppressed reactive
oxygen species in rice cells [75]. Lipase is an esterase that catalyzes the hydrolysis of
long-chain triglycerides into free fatty acids and glycerol and may be a virulence factor for
fungi [76]. Endoglucanases are suggested to contribute to the hydrolysis of cellulose com-
pounds by other cellobiohydrolases. The apoplastic effector PsXEG1 is an endoglucanase
that destroys plant cell walls in the Phytophthora sojae–soybean interaction. N-glycosylation
is employed as the shield to PsXEG1 from GmAP5 degradation [77,78]. Rhamnogalacturo-
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nan is a plant cell wall compound that can be hydrolyzed by rhamnogalacturonase, but it
has received little attention [79].

We found that not all disease-related proteins had significantly upregulated expression.
Many isoenzymes were upregulated before 24 hpi and downregulated after 24 hpi, which
were considered general effectors in plant recognition. However, the expression of only a
few proteins was upregulated to high levels to play an important role during infection, and
these were considered specific effectors during C. fissa infection. Therefore, A4173 (cellobio-
hydrolase), A5330 (cell wall protein), A6987 (endoglucanase), A1416, A5475, A5601, A5692
(lipase), A4055, A8077, A3579 (pectate lyase), A3705, and A3706 (rhamnogalacturonase)
were considered as specific effectors of E. endophytica to specifically destroy the defense
system of C. fissa.

As specific effectors, A4173, A5330, A6987, A4055, A8077, A3579, A3705, and A3706
hydrolyze plant wall cell compounds, such as cellulose, pectin, and rhamnogalacturonan,
while A1416, A5475, A5601, and A5692 contribute to the release of fatty acids, thereby
interfering with plant immunity. In addition, A8041 acts as a core effector interfering
with the pathogen recognition of plants, and A7584 masks fungal chitin to circumvent
reorganization by plants. Taken together, E. endophytica has a well-divided effector system
for achieving host-specific infection. Indeed, the functions of these proteins await further
verification, as do those effectors whose functions are unknown.

5. Conclusions

In this study, we examined the specific pathogenesis of E. endophytica on C. fissa in
the early infection stage. The whole-genome sequence of E. endophytica was obtained and
annotated, which provided insight into the genetic features linked to pathogenicity and
virulence. A total of 155 effector candidates were predicted based on the characteristics
of the effectors, and most of them were considered to be involved in attacking the cell
walls of host plants. The transcriptomes revealed many details about the mechanisms of
fungal pathogenesis, with 3284 genes that were upregulated and 3626 genes that were
downregulated. We found that 24 hpi was a key time point in the process of E. endophytica
pathogenesis, and some genes showed opposing expression regulation trends before and
after 24 hpi. As a specific pathogen, E. endophytica was more focused on repressing other
microbes by producing antibiotic substances before 24 hpi. The differential expression of
isoenzymes revealed that only a few effectors played an important role during the early
infection of C. fissa, which were considered specific effectors. These specific effectors were
found to be involved in hydrolyzing the compounds of plant cell walls and releasing
fatty acids after 24 hpi, while other important effectors worked at altering fungal chitin to
evade recognition by the plant. In conclusion, our results provide the first genome and
temporal transcriptome of E. endophytica for genetic structures, effector compounds, and
host-specific pathogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof9101040/s1, Figure S1: GO annotation of Endomelanconiopsis en-
dophytica; Figure S2: KOG annotation of Endomelanconiopsis endophytica; Figure S3: Top 10 pathway
in each Kyoto Encyclopedia of Genes and Genomes (KEGG) class annotation of Endomelanconiopsis
endophytica; Figure S4: Workflow demonstrating the prediction process of effector candidates in
Endomelanconiopsis endophytica; Figure S5: Amino acid length frequency distribution of effector candi-
dates in Endomelanconiopsis endophytica; Figure S6: Correlation heatmap of transcriptome samples
during the infection process of Castanopsis fissa by Endomelanconiopsis endophytica; Figure S7: Principal
component analysis of the transcriptome samples during the infection process of Castanopsis fissa
by Endomelanconiopsis endophytica; Figure S8: Differential gene cluster heat map of gene expressions
in the infection process of Castanopsis fissa by Endomelanconiopsis endophytica; Figure S9: Differential
gene volcano map of gene expression during the infection process of Castanopsis fissa by Endome-
lanconiopsis endophytica; Figure S10: Pathway enrichment analysis of the downregulated genes in
the infection process of Castanopsis fissa by Endomelanconiopsis endophytica; Table S1: Prediction re-
sults of gene function in Endomelanconiopsis endophytica; Table S2: Quality control of transcriptomic
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data in Endomelanconiopsis endophytica; Table S3: Gene annotations of top 10 expressed effectors in
Endomelanconiopsis endophytica.
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