The Influence of Medium Composition on EUCAST and Etest Antifungal Susceptibility Testing
Abstract
:1. Introduction
2. Material and Methods
2.1. Fungal Isolates and Identification
2.2. Antifungal Agents and Susceptibility Testing
2.3. Interpretation of Results
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Spitzer, M.; Robbins, N.; Wright, G.D. Combinatorial strategies for combating invasive fungal infections. Virulence 2016, 8, 169–185. [Google Scholar] [CrossRef]
- Bodey, G.P. The emergence of fungi as major hospital pathogens. J. Hosp. Infect. 1988, 11 (Suppl. SA), 411–426. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist. 2017, 10, 249–259. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Cuenca-Estrella, M. Changes in the epidemiological landscape of invasive mould infections and disease. J. Antimicrob. Chemother. 2017, 72 (Suppl. S1), i5–i11. [Google Scholar] [CrossRef]
- Vahedi-Shahandashti, R.; Lass-Flörl, C. Novel antifungal agents and their activity against Aspergillus species. J. Fungi 2020, 6, 213. [Google Scholar] [CrossRef]
- Vahedi-Shahandashti, R.; Houbraken, J.; Birch, M.; Lass-Flörl, C. Novel antifungals and Aspergillus section Terrei with potpourri susceptibility profiles to conventional antifungals. J. Fungi 2023, 9, 649. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef]
- Rex, J.H.; Pfaller, M.A.; Walsh, T.J.; Chaturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M.A.; Gosey, L.L.; Odds, F.C.; Rinaldi, M.G.; Sheehan, D.J.; et al. Antifungal susceptibility testing: Practical aspects and current challenges. Clin. Microbiol. Rev. 2001, 14, 643–658. [Google Scholar] [CrossRef]
- Durand, C.; Maubon, D.; Cornet, M.; Wang, Y.; Aldebert, D.; Garnaud, C. Can we improve antifungal susceptibility testing? Front. Cell. Infect. Microbiol. 2021, 11, 720609. [Google Scholar] [CrossRef]
- De Sousa, E.S.O.; Cortez, A.C.A.; de Souza Carvalho Melhem, M.; Frickmann, H.; de Souza, J.V.B. Factors influencing susceptibility testing of antifungal drugs: A critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz. J. Microbiol. 2020, 51, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 2nd ed.; CLSI Supplement M61; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J.; The Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. EUCAST E.Def. 9.3.2 2020, 1–23. 2021. Available online: https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/ast_of_moulds/ (accessed on 1 January 2023).
- Chandrasekar, P.; Abraham, O.; Manavathu, E.; Nune, U.; Kanuri, K. Effect of test medium on in vitro susceptibility testing results for Aspergillus fumigatus. Rev. Iberoam. Micol. 2000, 17, 107–110. [Google Scholar] [PubMed]
- Doern, G.V.; Tubert, T.A.; Chapin, K.; Rinaldi, M.G. Effect of medium composition on results of macrobroth dilution antifungal susceptibility testing of yeasts. J. Clin. Microbiol. 1986, 24, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Vahedi-Shahandashti, R.; Dietl, A.-M.; Binder, U.; Nagl, M.; Würzner, R.; Lass-Flörl, C. Aspergillus terreus and the interplay with amphotericin B: From resistance to tolerance? Antimicrob. Agents Chemother. 2022, 66, e0227421. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Verweij, P.E. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 2001, 39, 478–484. [Google Scholar] [CrossRef]
- Vatanshenassan, M.; Boekhout, T.; Lass-Flörl, C.; Lackner, M.; Schubert, S.; Kostrzewa, M.; Sparbier, K. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method to detect caspofungin resistance in Candida albicans and Candida glabrata. J. Clin. Microbiol. 2018, 56, e00420-18. [Google Scholar] [CrossRef]
- Vahedi-Shahandashti, R.; Hahn, L.; Houbraken, J.; Lass-Flörl, C. Aspergillus section Terrei and antifungals: From broth to agar-based susceptibility testing methods. J. Fungi 2023, 9, 306. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Posteraro, B.; Torelli, R.; De Carolis, E.; Posteraro, P.; Sanguinetti, M. Antifungal susceptibility testing: Current role from the clinical laboratory perspective. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014030. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Barchiesi, F.; Hazen, K.C.; Martinez-Suarez, J.V.; Scalise, G. Standardization of antifungal susceptibility testing and clinical relevance. Med. Mycol. 1998, 36 (Suppl. S1), 68–78. [Google Scholar]
- Rex, J.H.; Pfaller, M.A.; Rinaldi, M.G.; Polak, A.; Galgiani, J.N. Antifungal susceptibility testing. Clin. Microbiol. Rev. 1993, 6, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Hoeprich, P.D.; Merry, J.M. Influence of culture medium on susceptibility testing with BAY n 7133 and ketoconazole. J. Clin. Microbiol. 1986, 24, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rinaldi, M.G.; Galgiani, J.N.; Bartlett, M.S.; Body, B.A.; Espinel-Ingroff, A.; Fromtling, R.A.; Hall, G.S.; Hughes, C.E.; Odds, F.C. Collaborative investigation of variables in susceptibility testing of yeasts. Antimicrob. Agents Chemother. 1990, 34, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, M.R.; Rinaldi, M.G. Antifungal drugs: Mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids. In Antibiotics in Laboratory Medicine, 3rd ed.; Lorian, V., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1991; pp. 198–251. [Google Scholar]
- Radetsky, M.; Wheeler, R.C.; Roe, M.H.; Todd, J.K. Microtiter broth dilution method for yeast susceptibility testing with validation by clinical outcome. J. Clin. Microbiol. 1986, 24, 600–606. [Google Scholar] [CrossRef]
- Oliver, B.G.; Silver, P.M.; White, T.C. Polyene susceptibility is dependent on nitrogen source in the opportunistic pathogen Candida albicans. J. Antimicrob. Chemother. 2008, 61, 1302–1308. [Google Scholar] [CrossRef]
- Vahedi Shahandashti, R.; Lass-Flörl, C. Antifungal resistance in Aspergillus terreus: A current scenario. Fungal Genet. Biol. 2019, 131, 103247. [Google Scholar] [CrossRef]
- Gale, E.F.; Johnson, A.M.; Kerridge, D.; Koh, T.Y. Factors affecting the changes in amphotericin B sensitivity of Candida albicans during growth. J. Gen. Microbiol. 1975, 87, 20–36. [Google Scholar] [CrossRef]
- Van Den Bossche, H.; Willemsens, G.; Van Cutsem, J.M. The action of miconazole of the growth of Candida albicans. Sabouraudia 1975, 13 Pt 1, 63–73. [Google Scholar] [CrossRef]
- Guarro, J.; Llop, C.; Aguilar, C.; Pujol, I. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob. Agents Chemother. 1997, 41, 2760–2762. [Google Scholar] [CrossRef]
- Nakajima, R.; Kitamura, A.; Someya, K.; Tanaka, M.; Sato, K. In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob. Agents Chemother. 1995, 39, 1517–1521. [Google Scholar] [CrossRef]
Species | Antifungals | MIC (mg/L) | ||
---|---|---|---|---|
RPMI 1640 | SDB 1 | CB 2 | ||
C. albicans (no. 1) | AmB | 0.5 | 0.125 | 0.5 |
VRC | 0.03 | ≥4 | ≥4 | |
PSC | 0.016 | ≥4 | ≥4 | |
C. albicans (no. 2) | AmB | 0.125 | 0.06 | 0.25 |
VRC | 1 | ≥4 | ≥4 | |
PSC | 0.06 | 0.03 | ≥4 | |
C. parapsilosis (no. 1) | AmB | 0.25 | 0.5 | 0.5 |
VRC | 0.016 | 0.06 | 0.03 | |
PSC | 0.03 | 0.008 | 0.008 | |
C. parapsilosis (no. 2) | AmB | 0.5 | 0.5 | 0.5 |
VRC | 1 | 4 | 0.5 | |
PSC | 0.125 | 0.03 | 0.06 | |
C. glabrata (no. 1) | AmB | 0.25 | 0.06 | 0.25 |
VRC | 0.008 | ≥4 | 0.03 | |
PSC | 0.016 | ≥4 | 0.008 | |
C. glabrata (no. 2) | AmB | 0.25 | 0.125 | 0.5 |
VRC | 2 | 4 | 1 | |
PSC | 2 | 2 | 1 | |
C. parapsilosis (ATCC 22019) | AmB | 0.5 | 0.25 | 1 |
VRC | 0.016 | 0.125 | 0.06 | |
PSC | 0.06 | 0.008 | 0.008 | |
C. krusei (ATCC 6258) | AmB | 0.5 | 0.5 | 0.5 |
VRC | 0.25 | 0.5 | 0.06 | |
PSC | 0.06 | 0.03 | 0.03 |
Species | Antifungals | MIC (mg/L) | ||
---|---|---|---|---|
RPMI 1640 | SDA 1 | CA 2 | ||
C. albicans (no. 1) | AmB | 0.25 | 0.25 | 0.125–0.25 |
VRC | 0.06 | 0.25 | 0.016 | |
PSC | 0.06 | 0.5 | 0.06 | |
C. albicans (no. 2) | AmB | 0.06 | 0.5 | 0.25 |
VRC | 2 | 4 | 1 | |
PSC | 0.25 | 0.25 | 0.125 | |
C. parapsilosis (no. 1) | AmB | 0.03 | 0.25 | 0.125 |
VRC | 0.03 | 0.03 | 0.016 | |
PSC | 0.03 | 0.03 | 0.06 | |
C. parapsilosis (no. 2) | AmB | 0.125 | 0.5 | 0.5 |
VRC | 1 | 1–2 | 1 | |
PSC | 0.25 | 0.5 | 0.5 | |
C. glabrata (no. 1) | AmB | 0.06 | 0.25 | 0.25 |
VRC | 0.06 | 0.06 | 0.008 | |
PSC | 0.016 | 0.03 | 0.03 | |
C. glabrata (no. 2) | AmB | 0.25 | 1 | 1 |
VRC | 4 | 4 | >32 | |
PSC | >32 | >32 | >32 | |
C. parapsilosis (ATCC 22019) | AmB | 0.25 | 1 | 0.125 |
VRC | 0.06 | 0.06 | 0.03 | |
PSC | 0.06 | 0.06 | 0.06 | |
C. krusei (ATCC 6258) | AmB | 0.5 | 1 | 1 |
VRC | 0.25 | 0.25 | 0.25 | |
PSC | 0.25 | 0.125 | 0.25 |
Species | Media | MIC (mg/L) | ||
---|---|---|---|---|
RPMI 1640 | SDB 1 | CB 2 | ||
A. fumigatus (no. 1) | AmB | 0.5 | 2 | 1 |
VRC | 8 | 16 | 16 | |
PSC | 2 | 2 | 2 | |
A. fumigatus (no. 2) | AmB | 0.5 | 2 | 1–2 |
VRC | 8 | >16 | 16 | |
PSC | 2 | 2 | 2 | |
A. flavus (no. 1) | AmB | 1 | 2 | 4 |
VRC | 1 | 2 | 2 | |
PSC | 0.25 | 0.125 | 0.25 | |
A. flavus (no. 2) | AmB | 2 | 4 | 4 |
VRC | 1 | 2 | 2 | |
PSC | 0.125 | 0.125 | 0.125 | |
A. terreus (no. 1) | AmB | 1 | 16 | 8 |
VRC | 2 | 8 | 8 | |
PSC | 0.06 | 0.125 | 0.125 | |
A. terreus (no. 2) | AmB | 1 | 16 | 8 |
VRC | 1 | 2 | 2 | |
PSC | 0.125 | 0.125 | 0.06 | |
A. fumigatus (ATCC 204305) | AmB | 0.5 | 2 | 1 |
VRC | 1 | 4 | 2 | |
PSC | 0.125 | 0.25 | 0.125 | |
A. flavus (ATCC 204304) | AmB | 2 | 4 | 2 |
VRC | 1 | 2 | 2 | |
PSC | 0.25 | 0.125 | 0.125 |
Species | Media | MIC (mg/L) | ||
---|---|---|---|---|
RPMI 1640 | SDA 1 | CA 2 | ||
A. fumigatus (no. 1) | AmB | 0.125 | 0.5 | 0.5 |
VRC | 8 | 4 | 2 | |
PSC | 2 | 2 | 2 | |
A. fumigatus (no. 2) | AmB | 0.125 | 0.5 | 0.5 |
VRC | 2 | 4 | 1 | |
PSC | 1 | 2 | 0.5 | |
A. flavus (no. 1) | AmB | 0.5 | 2 | 1 |
VRC | 0.25 | 0.25 | 0.25 | |
PSC | 0.25 | 0.25 | 0.25 | |
A. flavus (no. 2) | AmB | 2 | 4 | 4 |
VRC | 0.5 | 0.125 | 0.125 | |
PSC | 0.125 | 0.06 | 0.125 | |
A. terreus (no. 1) | AmB | 0.25 | 1 | 2 |
VRC | 2 | 2 | 0.5 | |
PSC | 0.125 | 0.125 | 0.125 | |
A. terreus (no. 2) | AmB | 0.25 | 2 | 2 |
VRC | 1 | 1 | 0.25 | |
PSC | 0.125 | 0.25 | 0.125 | |
A. fumigatus (ATCC 204305) | AmB | 0.25 | 0.5 | 0.5 |
VRC | 0.125 | 0.25 | 0.125 | |
PSC | 0.125 | 0.25 | 0.06 | |
A. flavus (ATCC 204304) | AmB | 1 | 2 | 2 |
VRC | 0.5 | 0.25 | 0.25 | |
PSC | 0.125 | 0.125 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahedi-Shahandashti, R.; Stubenböck, M.M.; Lass-Flörl, C. The Influence of Medium Composition on EUCAST and Etest Antifungal Susceptibility Testing. J. Fungi 2023, 9, 973. https://doi.org/10.3390/jof9100973
Vahedi-Shahandashti R, Stubenböck MM, Lass-Flörl C. The Influence of Medium Composition on EUCAST and Etest Antifungal Susceptibility Testing. Journal of Fungi. 2023; 9(10):973. https://doi.org/10.3390/jof9100973
Chicago/Turabian StyleVahedi-Shahandashti, Roya, Melanie Maria Stubenböck, and Cornelia Lass-Flörl. 2023. "The Influence of Medium Composition on EUCAST and Etest Antifungal Susceptibility Testing" Journal of Fungi 9, no. 10: 973. https://doi.org/10.3390/jof9100973
APA StyleVahedi-Shahandashti, R., Stubenböck, M. M., & Lass-Flörl, C. (2023). The Influence of Medium Composition on EUCAST and Etest Antifungal Susceptibility Testing. Journal of Fungi, 9(10), 973. https://doi.org/10.3390/jof9100973