Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi
Abstract
:1. Introduction
2. Plant Endophytic Fungi and Their Bioactive Compounds
2.1. Definition and Characteristics of Endophytic Fungi
2.2. Diversity of Endophytic Fungi in Different Plant Species
2.3. Extraction and Identification of Bioactive Compounds from Endophytic Fungi
2.4. Bioactive Compounds of Endophytic Fungi
2.5. Plant and Endophytic Fungal Interactions
3. Health-Promoting Properties of Bioactive Compounds of Plants Endophytic Fungi
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Effects
3.3. Antimicrobial Properties
3.4. Anticancer Potential
3.5. Immunomodulatory Effects
4. Mechanisms of Action
5. Potential Applications in Health and Medicine
5.1. Development of Pharmaceutical Drugs
5.2. Exploration of Novel Pharmaceuticals from Microbial Origins: Utilizing Bioactive Compounds of Endophytic Fungi in Functional Foods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Demain, A.L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 2014, 41, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and their potential in biotic stress management and crop production. Front. Microbiol. 2022, 13, 933017. [Google Scholar] [CrossRef]
- Choudhary, N.; Dhingra, N.; Gacem, A.; Yadav, V.K.; Verma, R.K.; Choudhary, M.; Bhardwaj, U.; Chundawat, R.S.; Alqahtani, M.S.; Gaur, R.K.; et al. Towards further understanding the applications of endophytes: Enriched source of bioactive compounds and bio factories for nanoparticles. Front. Plant Sci. 2023, 14, 1193573. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef]
- Kamran, M.; Imran, Q.M.; Ahmed, M.B.; Falak, N.; Khatoon, A.; Yun, B.W. Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement. Cells 2022, 11, 3292. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef]
- Maltz, M.R.; Treseder, K.K.; McGuire, K.L. Links between plant and fungal diversity in habitat fragments of coastal shrubland. PLoS ONE 2017, 12, e0184991. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Ateba, C.N. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms 2020, 8, 1934. [Google Scholar] [CrossRef]
- Pretsch, A.; Nagl, M.; Schwendinger, K.; Kreiseder, B.; Wiederstein, M.; Pretsch, D.; Genov, M.; Hollaus, R.; Zinssmeister, D.; Debbab, A.; et al. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS ONE 2014, 9, e97929. [Google Scholar] [CrossRef]
- Tewari, D.; Rawat, P.; Singh, P.K. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem. Toxicol. 2019, 123, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Vasundhara, M.; Kumar, A.; Reddy, M.S. Molecular approaches to screen bioactive compounds from endophytic fungi. Front. Microbiol. 2016, 7, 1774. [Google Scholar] [CrossRef]
- Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi 2022, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.H.; Attia, M.S.; Kandil, E.K.; Fawzi, M.M.; Abdelrahman, A.S.; Khader, M.S.; Khodaira, M.A.; Emam, A.E.; Goma, M.A.; Abdelaziz, A.M. Bioactive compounds and biomedical applications of endophytic fungi: A recent review. Microb. Cell Factories 2023, 22, 107. [Google Scholar] [CrossRef]
- Tiwari, P.; Bae, H. Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Berdi, J. Bioactive microbial metabolites. J. Antibiot. Antibiot. 2005, 58, 1–26. [Google Scholar]
- Chutulo, E.C.; Chalannavar, R.K. Endophytic mycoflora and their bioactive compounds from Azadirachta indica: A comprehensive review. J. Fungi 2018, 4, 42. [Google Scholar] [CrossRef]
- Venieraki, A.; Dimou, M.; Katinakis, P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Prot. J. 2017, 10, 51–66. [Google Scholar] [CrossRef]
- Patchett, A.; Newman, J.A. Comparison of plant metabolites in root exudates of lolium perenne infected with different strains of the fungal endophyte Epichloë festucae Var. Lolii. J. Fungi 2021, 7, 148. [Google Scholar] [CrossRef]
- Kouipou, R.M.; Boyom, F.F. Endophytic fungi from Terminalia Species: A comprehensive review. J. Fungi 2019, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae Species. J. Fungi 2020, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the role of endophytic fungi against plant pathogens and their interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef]
- Jha, P.; Kaur, T.; Chhabra, I.; Panja, A.; Paul, S.; Kumar, V.; Malik, T. Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front. Microbiol. 2023, 14, 1227830. [Google Scholar] [CrossRef]
- Zuo, Y.; Hu, Q.; Zhang, K.; He, X. Host and tissue affiliations of culturable endophytic fungi associated with xerophytic plants in the desert region of northwest china. Agronomy 2022, 12, 727. [Google Scholar] [CrossRef]
- Xu, L.; Ling, X.; Zhao, S.; Wang, R.; Wang, Z. Distribution and diversity of endophytic fungi in gentiana rigescens and cytotoxic activities. Chin. Herb. Med. 2020, 12, 297–302. [Google Scholar] [CrossRef]
- Rashmi, M.; Kushveer, J.S.; Sarma, V.V. A Worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Galindo-Solís, J.M.; Fernández, F.J. Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms 2022, 10, 339. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Qiao, X.G.; Miao, C.P.; Liu, K.; Chen, Y.W.; Xu, L.H.; Zhao, L.X. Diversity, distribution and biotechnological potential of endophytic fungi. Ann. Microbiol. 2016, 66, 529–542. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, X.; Yang, J.; Liu, J.; Zhao, L.; He, X. Fungal Endophytic community and diversity associated with desert shrubs driven by plant identity and organ differentiation in extremely arid desert ecosystem. J. Fungi 2021, 7, 578. [Google Scholar] [CrossRef]
- Wenndt, A.J.; Evans, S.E.; van Diepeningen, A.D.; Logan, J.R.; Jacobson, P.J.; Seely, M.K.; Jacobson, K.M. Why Plants harbor complex endophytic fungal communities: Insights from perennial bunchgrass Stipagrostis sabulicola in the namib sand sea. Front. Microbiol. 2021, 12, 691584. [Google Scholar] [CrossRef]
- Fang, K.; Miao, Y.F.; Chen, L.; Zhou, J.; Yang, Z.P.; Dong, X.F.; Zhang, H.B. Tissue-specific and geographical variation in endophytic fungi of Ageratina adenophora and fungal associations with the environment. Front. Microbiol. 2019, 10, 2919. [Google Scholar] [CrossRef]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A Critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Fadhillah; Elfita; Muharni; Yohandini, H.; Widjajanti, H. Chemical Compound isolated from antioxidant active extract of endophytic fungus Cladosporium tenuissimum in Swietenia mahagoni leaf stalks. Biodiversitas 2019, 20, 2645–2650. [Google Scholar] [CrossRef]
- Dame, Z.T.; Silima, B.; Gryzenhout, M.; van Ree, T. Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat. Prod. Res. 2016, 30, 1301–1304. [Google Scholar] [CrossRef]
- Devi, N.; Prabakaran, J.J. Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Curr. Res. Environ. Appl. Mycol. 2014, 4, 34–43. [Google Scholar] [CrossRef]
- Malhadas, C.; Malheiro, R.; Pereira, J.A.; Guedes de Pinho, P.; Baptista, P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J. Microbiol. Biotechnol. 2017, 33, 46. [Google Scholar] [CrossRef]
- Ruzieva, D.; Gulyamova, T.; Nasmetova, S.; Mukhammedov, I.; Rasulova, G. Identification of bioactive compounds of the endophytic fungus Aspergillus egypticus-HT166S inhibiting the activity of pancreatic α-amylase. Turk. J. Pharm. Sci. 2022, 19, 630–635. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ghosh, R.; Mandal, N.C. Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A. Juss. PLoS ONE 2019, 14, e0214744. [Google Scholar] [CrossRef]
- Omomowo, I.O.; Amao, J.A.; Abubakar, A.; Ogundola, A.F.; Ezediuno, L.O.; Bamigboye, C.O. A review on the trends of endophytic fungi bioactivities. Sci. Afr. 2023, 20, e01594. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A.; Singh, R.; Pandey, K.D. Endophytic Bacteria: A new source of bioactive compounds. 3 Biotech 2017, 7, 315. [Google Scholar] [CrossRef]
- Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomedicine 2017, 7, 285–294. [Google Scholar]
- Gunasekaran, S.; Sundaramoorthy, S.; Anitha, U.; Sathiavelu, M.; Arunachalam, S. Endophytic fungi with antioxidant activity—A review. Res. J. Pharm. Technol. 2015, 8, 731–737. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, A. Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J. Appl. Microbiol. 2016, 120, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Babalola, O.O. Pharmacological potential of fungal endophytes associated with medicinal plants: A Review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef]
- Verma, V.C.; Singh, S.K.; Kharwar, R.N. Histological investigation of fungal endophytes in healthy tissues of Azadirachta indica A. Juss. Nat. Sci. 2012, 46, 229–237. [Google Scholar]
- Hondelmann, P.; Paul, C.; Schreiner, M.; Meyhöfer, R. Importance of antixenosis and antibiosis resistance to the cabbage whitefly (Aleyrodes proletella) in brussels sprout cultivars. Insects 2020, 11, 56. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Sahoo, S.; Sarangi, S.; Kerry, R.G. Bioprospecting of endophytes for agricultural and environmental sustainability. Microb. Biotechnol. 2018, 1, 429–458. [Google Scholar] [CrossRef]
- Vasundhara, M.; Baranwal, M.; Kumar, A. Fusarium tricinctum, an endophytic fungus exhibits cell growth inhibition and antioxidant activity. Indian J. Microbiol. 2016, 56, 433–438. [Google Scholar] [CrossRef]
- Ibrahim, M.; Oyebanji, E.; Fowora, M.; Aiyeolemi, A.; Orabuchi, C.; Akinnawo, B.; Adekunle, A.A. Extracts of endophytic fungi from leaves of selected nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement. Med. Ther. 2021, 21, 98. [Google Scholar] [CrossRef]
- Khiralla, A.; Mohamed, I.; Thomas, J.; Mignard, B.; Spina, R.; Yagi, S.; Laurain-Mattar, D. A pilot study of antioxidant potential of endophytic fungi from some sudanese medicinal plants. Asian Pac. J. Trop. Med. 2015, 8, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana lam. Asian Pac. J. Trop. Med. 2014, 7, S256–S261. [Google Scholar] [CrossRef] [PubMed]
- Elfita; Oktiansyah, R.; Mardiyanto; Widjajanti, H.; Setiawan, A. Antibacterial and antioxidant activity of endophytic fungi isolated from Peronema canescens leaves. Biodiversitas 2022, 23, 4783–4792. [Google Scholar] [CrossRef]
- Kumari, P.; Singh, A.; Singh, D.K.; Sharma, V.K.; Kumar, J.; Gupta, V.K.; Bhattacharya, S.; Kharwar, R.N. Isolation and purification of bioactive metabolites from an endophytic fungus Penicillium citrinum of Azadirachta indica. S. Afr. J. Bot. 2021, 139, 449–457. [Google Scholar] [CrossRef]
- da Silva, M.H.R.; Cueva-Yesquén, L.G.; Júnior, S.B.; Garcia, V.L.; Sartoratto, A.; de Angelis, D.d.F.; de Angelis, D.A. Endophytic fungi from Passiflora incarnata: An antioxidant compound source. Arch. Microbiol. 2020, 202, 2779–2789. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Sathiavelu, M.; Arunachalam, S. In vitro antioxidant and antibacterial activity of endophytic fungi isolated from Mussaenda luteola. J. Appl. Pharm. Sci. 2017, 7, 234–238. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.; Li, J.; Huang, X.; Yan, T.; Cao, W.; Liu, H.; Long, Y.; She, Z. Diaporindenes a-d: Four unusual 2,3-dihydro-1 h-indene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. J. Org. Chem. 2018, 83, 11804–11813. [Google Scholar] [CrossRef]
- Chen, S.; Ding, M.; Liu, W.; Huang, X.; Liu, Z.; Lu, Y.; Liu, H.; She, Z. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry 2018, 146, 8–15. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Mishra, P.D.; Kulkarni-Almeida, A.; Verekar, S.; Sahoo, M.R.; Periyasamy, G.; Goswami, H.; Khanna, A.; Balakrishnan, A.; Vishwakarma, R. Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem. Biodivers. 2009, 6, 784–789. [Google Scholar] [CrossRef]
- Saleh, A.; Negm, W.A.; El-Masry, T.A.; Eliwa, D.; Alotaibi, B.; Alosaimi, M.E.; Alotaibi, K.N.; Magdeldin, S.; Mahgoub, S.; Elekhnawy, E. Anti-inflammatory potential of Penicillium brefeldianum endophytic fungus supported with phytochemical profiling. Microb. Cell Fact. 2023, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Jiang, T.; Zhou, J.; Xu, L.; Gao, Z.M. Evaluation of antimicrobial activity of endophytic fungi from Camptotheca acuminata (Nyssaceae). Genet. Mol. Res. 2010, 9, 2104–2112. [Google Scholar] [CrossRef] [PubMed]
- Shaker, K.H.; Zohair, M.M.; Hassan, A.Z.; Sweelam, H.-T.M.; Ashour, W.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch. Microbiol. 2022, 204, 661. [Google Scholar] [CrossRef]
- Sette, L.D.; Passarini, M.R.Z.; Delarmelina, C.; Salati, F.; Duarte, M.C.T. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J. Microbiol. Biotechnol. 2006, 22, 1185–1195. [Google Scholar] [CrossRef]
- Elfita; Mardiyanto; Fitrya; Eka Larasati, J.; Julinar; Widjajanti, H. Muharni Antibacterial activity of cordyline fruticosa leaf extracts and its endophytic fungi extracts. Biodiversitas 2019, 20, 3804–3812. [Google Scholar] [CrossRef]
- Kamel, R.A.; Abdel-Razek, A.S.; Hamed, A.; Ibrahim, R.R.; Stammler, H.G.; Frese, M.; Sewald, N.; Shaaban, M. Isoshamixanthone: A new pyrano xanthone from endophytic Aspergillus sp. ASCLA and absolute configuration of epiisoshamixanthone. Nat. Prod. Res. 2020, 34, 1080–1090. [Google Scholar] [CrossRef]
- Wu, H.; Yan, Z.; Deng, Y.; Wu, Z.; Xu, X.; Li, X.; Zhou, X.; Luo, H. Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. Acta Ecol. Sin. 2020, 40, 383–387. [Google Scholar] [CrossRef]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the yellow river delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef]
- Teixeira, T.R.; Dos Santos, G.S.; Armstrong, L.; Colepicolo, P.; Debonsi, H.M. Antitumor potential of seaweed derived-endophytic fungi. Antibiotics 2019, 8, 205. [Google Scholar] [CrossRef]
- Sadananda, T.S.; Nirupama, R.; Chaithra, K.; Govindappa, M.; Chandrappa, C.P.; Vinay Raghavendra, B. Antimicrobial and Antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J. Med. Plants Res. 2011, 5, 3643–3652. [Google Scholar]
- Khan, M.I.H.; Sohrab, M.H.; Rony, S.R.; Tareq, F.S.; Hasan, C.M.; Mazid, M.A. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol. Rep. 2016, 3, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N.; et al. Endophytic fungi-alternative sources of cytotoxic compounds: A Review. Front. Pharmacol. 2018, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First report of isolation from an endophytic fungus and its inhibitory activity on cyclin dependent kinases. Nat. Prod. Res. 2020, 34, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, A.; Cieniecka-Rosłonkiewicz, A.; Cholewińska, M. Plant endophytic fungi as a source of paclitaxel. Herba Pol. 2015, 60, 22–33. [Google Scholar] [CrossRef]
- Kaur, H.P.; Singh, B.; Thakur, A.; Kaur, A.; Kaur, S. Studies on immunomodulatory effect of endophytic fungus Alternaria alternata on Spodoptera litura. J. Asia Pac. Entomol. 2015, 18, 67–75. [Google Scholar] [CrossRef]
- Rauf, M.; Ur-Rahman, A.; Arif, M.; Gul, H.; Ud-Din, A.; Hamayun, M.; Lee, I.J. Immunomodulatory molecular mechanisms of Luffa cylindrica for downy mildews resistance induced by growth-promoting endophytic fungi. J. Fungi 2022, 8, 689. [Google Scholar] [CrossRef]
- Salini, T.S.; Divakaran, D.; Shabanamol, S.; Rebello, S.; Jisha, M.S. antimicrobial and immunomodulatory potential of endophytic fungus Fusarium solani isolated from Withania somnifera. World J. Pharm. Res. 2014, 3, 879–890. [Google Scholar]
- Karthika, M.; Rasmi, A.R. Pharmacological potential of fungal endophytes associated with the genus Ocimum L. Int. J. Second. Metab. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Ujam, N.T.; Eze, P.M.; Chukwunwejim, C.R.; Okoye, F.B.C.; Esimone, C.O. Antimicrobial and immunomodulatory activities of secondary metabolites of an endophytic fungus isolated from Ageratum conyzoides. Curr. Life Sci. 2019, 5, 19–27. [Google Scholar] [CrossRef]
- Zhao, K.; Penttinen, P.; Guan, T.; Xiao, J.; Chen, Q.; Jun Xu, J.; Lindström, K.; Lili Zhang, L.; Zhang, X.; Strobe, G.A. The diversity and antimicrobial activity of endophytic actinomycetes isolated from medicinal plants in panxi plateau, China. Curr. Microbiol. 2010, 62, 182–190. [Google Scholar]
- Godstime, O.C.; Felix, O.E.; Augustina, J.O.; Christopher, E.O. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens—A review. J. Pharm. Chem. Biol. Sci. 2014, 2, 77–85. [Google Scholar] [CrossRef]
- Giménez, C.; Cabrera, R.; Reina, M. González-Coloma Fungal endophytes and their role in plant protection. Curr. Org. Chem. 2007, 11, 707–720. [Google Scholar]
- Gurgel, R.S.; de Melo Pereira, D.Í.; Garcia, A.V.F.; Fernandes de Souza, A.T.; Mendes da Silva, T.; de Andrade, C.P.; Lima da Silva, W.; Nunez, C.V.; Fantin, C.; de Lima Procópio, R.E.; et al. Antimicrobial and antioxidant activities of endophytic fungi associated with Arrabidaea chica (Bignoniaceae). J. Fungi 2023, 9, 864. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Reen, F.J.; Gutiérrez-Barranquero, J.A.; Dobson, A.D.W.; Adams, C.; O’Gara, F. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar. Drugs 2015, 13, 2924–2954. [Google Scholar]
- Tsivileva, O.M.; Koftin, O.V.; Evseeva, N.V. Coumarins as fungal metabolites with potential medicinal properties. Antibiotics 2022, 11, 1156. [Google Scholar] [CrossRef]
- Pan, S.Y.; Pan, S.; Yu, Z.L.; Ma, D.L.; Chen, S.B.; Fong, W.F.; Han, Y.F.; Ko, K.M. New perspectives on innovative drug discovery: An Overview. J. Pharm. Pharm. Sci. 2010, 13, 450–471. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, B.; Thakur, V.; Thakur, A.; Thakur, N.; Pandey, D.; Chand, D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the northern himalayan region. Biotechnol. Rep. 2019, 24, e00395. [Google Scholar] [CrossRef]
- Prajapati, J.; Goswami, D.; Rawal, R.M. Endophytic Fungi: A treasure trove of novel anticancer compounds. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Alam, B.; Lǐ, J.; Gě, Q.; Khan, M.A.; Gōng, J.; Mehmood, S.; Yuán, Y.; Gǒng, W. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef]
- Nawrot-Chorabik, K.; Sułkowska, M.; Gumulak, N. Secondary metabolites produced by trees and fungi: Achievements so far and challenges remaining. Forests 2022, 13, 1338. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Dufossé, L.; Chhipa, H.; Saxena, S.; Mahajan, G.B.; Gupta, M.K. Fungal endophytes: A potential source of antibacterial compounds. J. Fungi 2022, 8, 164. [Google Scholar] [CrossRef]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the promise of endophytic fungi: A review of novel antimicrobial compounds. Microorganisms 2022, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesekara, T.; Xu, B. Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi. J. Fungi 2023, 9, 997. https://doi.org/10.3390/jof9100997
Wijesekara T, Xu B. Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi. Journal of Fungi. 2023; 9(10):997. https://doi.org/10.3390/jof9100997
Chicago/Turabian StyleWijesekara, Tharuka, and Baojun Xu. 2023. "Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi" Journal of Fungi 9, no. 10: 997. https://doi.org/10.3390/jof9100997
APA StyleWijesekara, T., & Xu, B. (2023). Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi. Journal of Fungi, 9(10), 997. https://doi.org/10.3390/jof9100997