A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Fermentation
2.2. Extraction and Purification of ASP-1
2.3. Purity and Molecular Weight of ASP-1
2.4. General Analysis of ASP-1
2.5. Analysis of the Glycosidic Bonds between Residues of ASP-1
2.6. NMR Spectrum Analysis of ASP-1
2.7. Immunomodulatory Activity of ASP-1
2.8. Metabolomics Analysis
2.9. Statistical Analysis
3. Results
3.1. Preparation and Physicochemical of ASP-1
3.2. Structural Characterization of ASP-1
3.3. Immunomodulatory Activity of ASP-1
3.4. Potential Immunomodulatory Mechanism of ASP-1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avhad, B.; Bhangale, C.J. Marine natural products and derivatives. RPS Pharm. Pharmacol. Rep. 2023, 2, 1–6. [Google Scholar] [CrossRef]
- Paul, V.J.; Puglisi, M.P. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep. 2004, 21, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Jia, X.; Wang, N.; Xiao, M.; Song, S.; Wu, S.; Li, Z.; Wang, S.; Cui, S.W.; Guo, Q. Insightsinto the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll. 2021, 123, 107049. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.; Yan, M.; Liu, X.; Wang, S.; Xia, Z.; Xiao, B.; Cao, S.; Yang, B.; Li, J. Purification, Chemical Characterization, and Bioactivity of an Extracellular Polysaccharide Produced by the Marine Sponge Endogenous Fungus Alternaria sp. SP-32. Mar. Biotechnol. 2016, 18, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, L.; Zhang, Y.; Yan, Y. Production, characterization and immunomodulatory activity of an extracellular polysaccharide from Rhodotorula mucilaginosa YL-1 isolated from sea salt field. Mar. Drugs 2020, 18, 595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Jiang, Y.; Chu, W. Prebiotic, antioxidant, and immunomodulatory properties of acidic exopolysaccharide from marine Rhodotorula RY1801. Front. Nutr. 2021, 8, 710688. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, Q.H.; Zhang, S.S.; Yang, K.; Chen, F.L.; Zhu, H.J.; Cao, F.; Liu, Y.F. (+/−)-Brevianamides Z and Z1, New Diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor. J. Mol. Struct. 2022, 1261, 132904. [Google Scholar] [CrossRef]
- Yang, X.; Yu, H.J.; Ren, J.W.; Cai, L.; Xu, L.J.; Liu, L. Sulfoxide-containing bisabolane sesquiterpenoids with antimicrobial and nematicidal activities from the marine-derived fungus Aspergillussydowii LW09. J. Fungi 2023, 9, 347. [Google Scholar] [CrossRef]
- Youssef, D.T.A.; Shaala, L.A.; Genta-Jouve, G. Asperopiperazines A and B: Antimicrobial and cytotoxic dipeptides from a tunicate-derived fungus Aspergillus sp. DY001. Mar. Drugs 2022, 20, 451. [Google Scholar] [CrossRef]
- Neuhaus, G.F.; Adpressa, D.A.; Bruhn, T.; Loesgen, S. Polyketides from marine-derived Aspergillus porosus: Challenges and opportunities for determining absolute configuration. J. Nat. Prod. 2019, 82, 2780–2789. [Google Scholar] [CrossRef]
- Wu, C.J.; Cui, X.; Xiong, B.; Yang, M.S.; Zhang, Y.X.; Liu, X.M. Terretonin D1, a new meroterpenoid from marine-derived Aspergillus terreus ML-44. Nat. Prod. Res. 2019, 33, 2262–2265. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.T.; Hung, L.N.V.; Minh, L.T.H.; Lien, H.T.H.; Chae, J.W.; Yun, H.; Kim, Y.H.; Pham, V.C.; Hung, T.M.H. A new indole glucoside and other constituents from the sea cucumber-derived Aspergillus fumigatus M580 and their biological activities. Rec. Nat. Prod. 2022, 16, 633–638. [Google Scholar]
- Wu, K.Y.; Li, Y.Y.; Lin, Y.Q.; Xu, B.J.; Yang, J.J.; Mo, L.; Huang, R.M.; Zhang, X.Y. Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141. Int. J. Biol. Macromol. 2023, 227, 329–339. [Google Scholar] [CrossRef]
- Wang, C.; Mao, W.; Chen, Z.; Zhu, W.; Guo, T. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2013, 48, 1395–1401. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.J.; Gao, Y.; Teng, X.C.; Zhu, W.M.; Chen, Y.R.; Zhao, C.Q.; Li, N.; Wang, C.Y.; Yan, M.X.; et al. Structural elucidation of an extracellular polysaccharide produced by the marine fungus Aspergillus versicolor. Carbohydr. Polym. 2013, 93, 478–483. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.J.; Tao, H.W.; Zhu, W.M.; Qi, X.H.; Chen, Y.R.; Li, H.Y.; Zhao, C.Q.; Yang, Y.P.; Hou, Y.J.; et al. Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp Y16. Bioresour. Technol. 2011, 102, 8179–8184. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, J.; Zhou, Z.; Wu, J.; Xu, D.; Yang, Q.; Zhong, S.; Zhang, X. Diversity and antimicrobial activity of intestinal fungi from three species of coral reef fish. J. Fungi 2023, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mao, W.; Yang, Y.; Teng, X.; Zhu, W.; Qi, X.; Chen, Y.; Zhao, C.; Hou, Y.; Wang, C.; et al. Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydr. Polym. 2012, 87, 218–226. [Google Scholar] [CrossRef]
- Hao, H.; Han, Y.; Yang, L.; Hu, L.; Duan, X.; Yang, X.; Huang, R. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int. J. Biol. Macromol. 2019, 134, 891–900. [Google Scholar] [CrossRef]
- Staub, A.M. Removal of proteins-Sevag method. In Methods in Carbohydrate Chemistry; Academic Press: New York, NY, USA, 1956. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Yan, M.; Mao, W.; Liu, X.; Wang, S.; Xia, Z.; Cao, S.; Li, J.; Qin, L.; Xian, H. Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc. Carbohydr. Polym. 2016, 147, 272–281. [Google Scholar] [CrossRef]
- Terho, T.; Hartiala, K. Method for determination of the sulfate content of glycosaminoglycans. Anal. Biochem. 1971, 41, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Stoscheck, C.M. Quantitation of protein. Methods Enzymol. 1990, 182, 50–68. [Google Scholar] [PubMed]
- Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 1964, 55, 205–208. [Google Scholar] [PubMed]
- Lin, Y.; Yang, J.; Luo, L.; Zhang, X.; Deng, S.; Chen, X.; Li, Y.; Bekhit, A.E.D.A.; Xu, B.; Huang, R. Ferroptosis related immunomodulatory effect of a novel extracellular polysaccharides from marine fungus Aureobasidium melanogenum. Mar. Drugs 2022, 20, 332. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2021, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, T.; Zhang, X.; Zhang, F.; Linhardt, R.J. Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydr. Polym. 2021, 254, 117462. [Google Scholar] [CrossRef]
- Sen, M.; Erboz, E.N. Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses. Food Res. Int. 2010, 43, 1361–1364. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, A.; Sun, P. Structural investigation of a novel water-soluble heteropolysaccharide from the fruiting bodies of Phellinus baumii Pilat. Food Chem. 2009, 114, 391–395. [Google Scholar] [CrossRef]
- Teng, S.S.; Zhang, Y.F.; Jin, X.H.; Zhu, Y.F.; Li, L.Z.; Huang, X.W.; Wang, D.; Lin, Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr. Polym. 2023, 303, 120453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Mao, G.H.; Feng, W.W.; Mao, R.W.; Gu, X.Y.; Li, T.; Li, Q.; Bao, Y.T.; Yang, L.Q.; Wu, X.Y. Isolation, characterization and antioxidant activity of polysaccharide from Schisandra sphenanthera. Carbohydr. Polym. 2014, 105, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wang, F.; Guo, Y.C.; Ji, H.C.; Zhang, W.J.; Mao, G.H.; Feng, W.W.; Chen, Y.; Yang, L.Q.; Wu, X.Y. Structural characterization of a novel Schisandra polysaccharides and nutritional intervention in immunotoxicity to PCBs. Carbohydr. Polym. 2021, 258, 117380. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, W.J.; Zhang, H.; Chen, C.; Liu, R.H.; Hou, H.W.; Luo, Q.; Yu, Q.L.; Ouyang, H.; Feng, Y.L.; et al. α-D-1,3-glucan from Radix Puerariae thomsonii improves NAFLD by regulating the intestinal flora and metabolites. Carbohydr. Polym. 2023, 299, 120197. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.T.; Yang, Y.; Gao, M.J.; Qu, Y.; Guo, X.X.; Liu, Y.; Cui, X.M.; Wang, C.X. Lepidium meyenii walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr. Polym. 2020, 250, 116904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Song, Z.T.; Li, Y.; Zhang, S.J.; Bao, J.H.; Wang, H.L.; Dong, C.X.; Ohizumi, Y.; Xu, J.; Guo, Y.Q. Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr. Polym. 2021, 265, 118080. [Google Scholar] [CrossRef]
- Huo, J.Y.; Lei, M.; Zhou, Y.; Zhong, X.C.; Liu, Y.M.; Hou, J.J.; Long, H.L.; Zhang, Z.J.; Tian, M.H.; Xie, C.; et al. Structural characterization of two novel polysaccharides from Gastrodia elata and their effects on Akkermansia muciniphila. Int. J. Biol. Macromol. 2023, 230, 123386. [Google Scholar] [CrossRef]
- Sun, C.; Wang, J.; Fang, L.; Gao, X.; Tan, R. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 2004, 75, 1063–1073. [Google Scholar] [CrossRef]
- Sun, C.; Shan, C.Y.; Gao, X.D.; Tan, R.X. Protection of PC12 cells from hydrogen peroxide-induced injury by EPS2, an exopolysaccharide from a marine filamentous fungus Keissleriella sp. YS4108. J. Biotechnol. 2005, 115, 137–144. [Google Scholar] [CrossRef]
- Li, H.; Cao, K.; Cong, P.; Liu, Y.; Cui, H.; Xue, C. Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohydr. Polym. 2018, 190, 87–94. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The antioxidant activity of polysaccharides derived from marine organisms: An overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.L.; Chen, Y.; Niu, Q.F.; Zhu, W.M.; Wang, B.; Li, P.P.; Ge, X.J. An exopolysaccharide isolated from a coral-associated fungus and its sulfated derivative activates macrophages. Int. J. Biol. Macromol. 2016, 82, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Tang, C.; Wang, X.; Zhang, X.; Xiao, L.; Li, W. Supramolecular structure features and immunomodulatory effects of exopolysaccharide from Paecilomyces cicadae TJJ1213 in RAW264.7 cells through NF-κB/MAPK signaling pathways. Int. J. Biol. Macromol. 2022, 207, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, Y.; Men, Y.; Zhang, J.; Liu, H.; Sun, Y. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. Int. J. Biol. Macromol. 2018, 115, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chi, Z.; Yu, L.; Jiang, F.; Liu, C. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from Enteromorpha prolifera. Int. J. Biol. Macromol. 2017, 105, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Lu, S.Y.; Tang, Q.L.; Zhang, K.; Yu, W.X.; Sun, H.C.; Yang, B. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 2017, 9, 7135–7142. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Renal arginine metabolism. J. Nutr. 2004, 134, 2791S–2795S. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Jiang, Y.; Wang, J.; Hwang, H.; Yang, X.; Wang, P. Structure characterization of low molecular weight sulfate Ulva polysaccharide and the effect of its derivative on iron deficiency anemia. Int. J. Biol. Macromol. 2019, 126, 747–754. [Google Scholar] [CrossRef]
- Cruzat, V.; Rogero, M.; Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Lindez, A.A.; Reith, W. Arginine-dependent immune responses. Cell. Mol. Life Sci. 2021, 78, 5303–5324. [Google Scholar] [CrossRef]
- Szefel, J.; Danielak, A.; Kruszewski, W.J. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv. Med. Sci. 2019, 64, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Sahana, T.; Rekha, P. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int. J. Biol. Macromol. 2019, 131, 10–18. [Google Scholar] [CrossRef]
- Lundberg, J.; Weitzberg, E.; Gladwin, M. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Morris, J.S.M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Pearce, E.L. Amino assets: How amino acids support immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef]
Peak | Retention Time (min) | Methylated Sugars | Deduced Residues | Molar Ratio (%) | Major Mass Fragments (m/z) |
---|---|---|---|---|---|
A | 17.036 | 2,3,4,6-Me4-Glcp | T-Glcp | 0.064 | 43,71,87,101,117,129,145, 161,205 |
B | 17.641 | 2,3,4,6-Me4-Manp | T-Manp | 0.031 | 43,71,87,101,117,129,145, 161,205 |
C | 18.108 | 2,3,4,6-Me4-Galp | T-Galp | 0.045 | 43,71,87,101,117,129,145, 161,205 |
D | 20.872 | 3,4,6-Me3-Manp | 1,2-Manp | 0.008 | 43,87,129,161,189 |
E | 21.13 | 2,4,6-Me3-Glcp | 1,3-Glcp | 0.014 | 43,87,99,101,117,129,161, 173,233 |
F | 21.485 | 2,3,6-Me3-Glcp | 1,4-Glcp | 0.657 | 43,87,99,101,113,117,129, 131,161,173,233 |
G | 23.773 | 2,3,4-Me3-Glcp | 1,6-Glcp | 0.013 | 43,87,99,101,117,129,161, 189,233 |
H | 24.528 | 2,6-Me2-Glcp | 1,3,4-Glcp | 0.021 | 43,87,97,117,159,185 |
I | 26.763 | 2,3-Me2-Glcp | 1,4,6-Glcp | 0.128 | 43,71,85,87,99,101,117,127, 159,161,201 |
J | 28.63 | 2,3-Me2-Galp | 1,4,6-Galp | 0.018 | 43,71,85,87,99,101,117,127, 159,161,201,261 |
Glycosyl Residues | ppm (H/C) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
A: T-α-Glcp | H | 4.89 | 3.52 | 3.58 | 3.34 | 3.58 | 3.69 |
C | 98.57 | 71.66 | 72.86 | 72.75 | 73.03 | 60.52 | |
B: T-β-Manp | H | 5.27 | 3.55 | 3.64 | 3.87 | 4.08 | 3.46 |
C | 99.98 | 77.92 | 72.63 | 69.98 | 70.55 | 61.87 | |
C: T-α-Galp | H | 5.29 | 3.58 | 3.83 | 4.19 | 3.93 | 3.72 |
C | 99.93 | 68.00 | 69.33 | 70.75 | 68.75 | 60.42 | |
D: 1,2-α-Manp | H | 5.27 | 3.56 | 3.92 | 3.79 | 3.64 | 3.75 |
C | 100.01 | 77.47 | 68.95 | 65.20 | 71.77 | 60.04 | |
E: 1,3-α-Glcp | H | 5.27 | 3.55 | 3.89 | 3.87 | 3.57 | 3.84/3.66 |
C | 99.20 | 73.31 | 78.74 | 71.5 | 71.15 | 60.43 | |
F: 1,4-α-Glcp | H | 5.33 | 3.55 | 3.73 | 3.58 | 3.93 | 3.69 |
C | 99.60 | 71.96 | 72.22 | 76.72 | 71.08 | 60.86 | |
G: 1,6-β-Glcp | H | 4.81 | 3.50 | 4.61 | 3.51 | 3.94 | 3.60 |
C | 99.32 | 70.70 | 73.40 | 70.40 | 71.33 | 73.07 | |
H: 1,3,4-α-Glcp | H | 4.91 | 3.51 | 3.87 | 3.51 | 3.83 | 3.88 |
C | 99.98 | 71.41 | 78.11 | 70.35 | 70.48 | 65.69 | |
I: 1,4,6-α-Glcp | H | 4.89 | 3.57 | 3.65 | 3.75 | 3.85 | 3.75 |
C | 98.57 | 75.73 | 74.02 | 73.28 | 74.60 | 70.30 | |
J: 1,4,6-α-Galp | H | 5.28 | 3.54 | 3.81 | 3.57 | 3.74 | 3.60 |
C | 98.60 | 74.53 | 76.24 | 73.86 | 74.50 | 60.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Liu, Y.; Lin, Y.; Kraithong, S.; Mo, L.; Gao, Z.; Huang, R.; Zhang, X. A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity. J. Fungi 2023, 9, 1057. https://doi.org/10.3390/jof9111057
Peng B, Liu Y, Lin Y, Kraithong S, Mo L, Gao Z, Huang R, Zhang X. A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity. Journal of Fungi. 2023; 9(11):1057. https://doi.org/10.3390/jof9111057
Chicago/Turabian StylePeng, Bo, Yongchun Liu, Yuqi Lin, Supaluck Kraithong, Li Mo, Ziqing Gao, Riming Huang, and Xiaoyong Zhang. 2023. "A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity" Journal of Fungi 9, no. 11: 1057. https://doi.org/10.3390/jof9111057
APA StylePeng, B., Liu, Y., Lin, Y., Kraithong, S., Mo, L., Gao, Z., Huang, R., & Zhang, X. (2023). A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity. Journal of Fungi, 9(11), 1057. https://doi.org/10.3390/jof9111057