Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rice Seedlings
2.2. AMF Inoculum Preparation
2.3. EPF Inoculum Preparation
2.4. Soil Preparation for Rice Cultivation
2.5. Experimental Design
2.6. Determination of Plant Growth and Photosynthesis-Related Characters
2.7. Assessment of AMF Spore and AMF, EPF Root Colonization
2.8. Phytochemical Analysis of Rice Seeds
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yawen, Z.; Shiquan, S.; Zichao, L.; Zhongyi, Y.; Xiangkun, W.; Hongliang, Z.; Guosong, W. Ecogeographic and Genetic Diversity Based on Morphological Characters of Indigenous Rice (Oryza sativa L.) in Yunnan, China. Genet. Resour. Crop Evol. 2003, 50, 567–577. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Y.; Cao, Y. Determination of Myo-Inositol and d-Chiro-Inositol in Black Rice Bran by Capillary Electrophoresis with Electrochemical Detection. J. Food Compos. Anal. 2008, 21, 501–504. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and Antioxidative Properties of Red and Black Rice Varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Sripanidkulchai, B.; Junlatat, J.; Tuntiyasawasdikul, S.; Fangkrathok, N.; Sanitchon, J.; Chankaew, S. Phytochemical and Bioactivity Investigation of Thai Pigmented-Upland Rice: Dam-Mong and Ma-Led-Fy Varieties. Agric. Nat. Resour. 2021, 55, 889–898. [Google Scholar] [CrossRef]
- Asem, I.D.; Imotomba, R.K.; Mazumder, P.B.; Laishram, J.M. Anthocyanin Content in the Black Scented Rice (Chakhao): Its Impact on Human Health and Plant Defense. Symbiosis 2015, 66, 47–54. [Google Scholar] [CrossRef]
- Khan, Z.I.; Hussain, A.; Ashraf, M.; McDowell, L.R. Mineral Status of Soils and Forages in Southwestern Punjab-Pakistan: Micro-Minerals. Asian-Australas. J. Anim. Sci. 2006, 19, 1139–1147. [Google Scholar] [CrossRef]
- Bezbaruha, R.; Sharma, R.C.; Banik, P. Effect of Nutrient Management and Planting Geometry on Productivity of Hybrid Rice (Oryza sativa L.) Cultivars. Am. J. Plant Sci. 2011, 2, 297–302. [Google Scholar] [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 01357. [Google Scholar] [CrossRef]
- Meena, V.S.; Improvement, C. Role of Rhizospheric Microbes in Soil; Springer: Berlin/Heidelberg, Germany, 2018; Volume 2, ISBN 9789811300431. [Google Scholar]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Kuyper, T.W.; Boonlue, S. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Nacoon, S.; Ekprasert, J.; Riddech, N.; Mongkolthanaruk, W.; Jogloy, S.; Vorasoot, N.; Cooper, J.; Boonlue, S. Growth Enhancement of Sunchoke by Arbuscular Mycorrhizal Fungi under Drought Condition. Rhizosphere 2021, 17, 100308. [Google Scholar] [CrossRef]
- Nacoon, S.; Seemakram, W.; Ekprasert, J.; Mongkolthanaruk, W.; Riddech, N. Promoting Growth and Production of Sunchoke (Helianthus tuberosus) by Co-Inoculation with Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi under Drought. Front Plant Sci. 2022, 13, 1022319. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J. Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.). J. Fungi 2023, 7, 44. [Google Scholar] [CrossRef]
- Paper, C.; Islam, T.; Sheikh, B.; Rahman, M. Application of Phosphate Solubilizing Rhizoplane Bacteria Improves Growth and Nutrient Uptake by Rice (Oryza sativa L.) Metadata of the Chapter That Will Be Visualized Online. In Bacteria in Agrobiology: Plant Probiotics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–45. ISBN 9783642275159. [Google Scholar]
- Bernaola, L.; Cosme, M.; Schneider, R.W.; Stout, M. Belowground Inoculation with Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms. Front. Plant Sci. 2018, 9, 747. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Kumar, U.; Sugitha, T.C.K.; Parameswaran, C.; Sahoo, S.; Binodh, A.K.; Jahan, A.; Anandan, A. Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production. In Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction; Springer: Berlin/Heidelberg, Germany, 2017; Volume 99–126. [Google Scholar]
- Bao, X.; Zou, J.; Zhang, B.; Wu, L.; Yang, T.; Huang, Q. Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere. Agronomy 2022, 12, 1277. [Google Scholar] [CrossRef]
- Campo, S.; Martín-Cardoso, H.; Olivé, M.; Pla, E.; Catala-Forner, M.; Martínez-Eixarch, M.; San Segundo, B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. Rice 2020, 13, 42. [Google Scholar] [CrossRef]
- Gul Jan, F.; Hamayun, M.; Hussain, A.; Jan, G.; Iqbal, A.; Khan, A.; Lee, I.J. An Endophytic Isolate of the Fungus Yarrowia lipolytica Produces Metabolites That Ameliorate the Negative Impact of Salt Stress on the Physiology of Maize 06 Biological Sciences 0607 Plant Biology 07 Agricultural and Veterinary Sciences 0703 Crop and Past. BMC Microbiol. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Bilal, L.; Asaf, S.; Hamayun, M.; Gul, H.; Iqbal, A.; Ullah, I.; Lee, I.J.; Hussain, A. Plant Growth Promoting Endophytic Fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 Produce Gibberellins and Regulates Plant Endogenous Hormones. Symbiosis 2018, 76, 117–127. [Google Scholar] [CrossRef]
- Numponsak, T.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Biosynthetic Pathway and Optimal Conditions for the Production of Indole-3-Acetic Acid by an Endophytic Fungus, Colletotrichum fructicola CMU-A109. PLoS ONE 2018, 13, e0205070. [Google Scholar] [CrossRef]
- Hammad, R.; Elbagory, M. Using Plant Growth-Promoting Fungi (PGPF), as a Biofertilizer and Biocontrol Agents against Tetranychus cucurbitacearum on Nubian Watermelon (CitrulluslLanatus L.). J. Adv. Microbiol. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Suebrasri, T.; Somteds, A.; Harada, H.; Kanokmedhakul, S.; Jogloy, S.; Ekprasert, J.; Lumyong, S.; Boonlue, S. Novel Endophytic Fungi with Fungicidal Metabolites Suppress Sclerotium Disease. Rhizosphere 2020, 16, 100250. [Google Scholar] [CrossRef]
- Khaekhum, S.; Ekprasert, J.; Suebrasri, T.; Seemakram, W.; Mongkolthanaruk, W.; Riddech, N.; Jogloy, S.; Boonlue, S. Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. Under Field Condition. J. Fungi 2021, 7, 976. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.H.; Abd El-Megeed, F.H.; Hassanein, N.M.; Youseif, S.H.; Farag, P.F.; Saleh, S.A.; Abdel-Wahab, B.A.; Alsuhaibani, A.M.; Helmy, Y.A.; Abdel-Azeem, A.M. Native Rhizospheric and Endophytic Fungi as Sustainable Sources of Plant Growth Promoting Traits to Improve Wheat Growth under Low Nitrogen Input. J. Fungi 2022, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Turbat, A.; Rakk, D.; Vigneshwari, A.; Kocsubé, S.; Thu, H.; Szepesi, Á.; Bakacsy, L.; Škrbić, B.D.; Jigjiddorj, E.A.; Vágvölgyi, C.; et al. Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora Flavescens. Microorganisms 2020, 8, 683. [Google Scholar] [CrossRef]
- Green, H.; Larsen, J.; Olsson, P.A.; Jensen, D.F.; Jakobsen, I. Suppression of the Biocontrol Agent Trichoderma harzianum by Mycelium of the Arbuscular Mycorrhizal Fungus Glomus intraradices in Root-Free Soil. Appl. Environ. Microbiol. 1999, 65, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Sennoi, R.; Singkham, N.; Jogloy, S.; Boonlue, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Biological Control of Southern Stem Rot Caused by Sclerotium Rolfsii Using Trichoderma harzianum and Arbuscular Mycorrhizal Fungi on Jerusalem Artichoke (Helianthus tuberosus L.). Crop Prot. 2013, 54, 148–153. [Google Scholar] [CrossRef]
- Gateta, T.; Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Suwannarach, N.; Boonlue, S. The Potential of Endophytic Fungi for Enhancing the Growth and Accumulation of Phenolic Compounds and Anthocyanin in Maled Phai Rice (Oryza sativa L.). J. Fungi 2023, 9, 937. [Google Scholar] [CrossRef]
- Arnon, D. Plant Physiology. Kew Bulletin 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Koske, R.E.; Gemma, J.N. A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, P.V. Evaluation of VA Infection Levels in Root Systems. In Physiological and Genetical Aspect of Mycorrhiza; Institut National de la Recherche Agronomique: Paris, France, 1986. [Google Scholar]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In Vitro Production of IAA by Endophytic Fungus Aspergillus awamori and Its Growth Promoting Activities in Zea mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Kapcum, N.; Uriyapongson, J.; Alli, I.; Phimphilai, S. Anthocyanins, Phenolic Compounds and Antioxidant Activities in Colored Corn Cob and Colored Rice Bran. Int. Food Res. J. 2016, 23, 2347–2356. [Google Scholar]
- Lee, J.H. Identification and Quantification of Anthocyanins from the Grains of Black Rice (Oryza sativa L.) Varieties. Food Sci. Biotechnol. 2010, 19, 391–397. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Leong, L.P.; Shui, G. An Investigation of Antioxidant Capacity of Fruits in Singapore Markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Avio, L.; Turrini, A.; Giovannetti, M.; Sbrana, C. Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food. Front. Plant Sci. 2018, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Agnolucci, M.; Avio, L.; Palla, M.; Sbrana, C.; Turrini, A.; Giovannetti, M. Health-Promoting Properties of Plant Products: The Role of Mycorrhizal Fungi and Associated Bacteria. Agronomy 2020, 10, 1864. [Google Scholar] [CrossRef]
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef]
- Noceto, P.A.; Bettenfeld, P.; Boussageon, R.; Hériché, M.; Sportes, A.; van Tuinen, D.; Courty, P.E.; Wipf, D. Arbuscular Mycorrhizal Fungi, a Key Symbiosis in the Development of Quality Traits in Crop Production, Alone or Combined with Plant Growth-Promoting Bacteria. Mycorrhiza 2021, 31, 655–669. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular Mycorrhizal Fungi and Production of Secondary Metabolites in Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2022; Volume 32, ISBN 0123456789. [Google Scholar]
- Tisarum, R.; Theerawitaya, C.; Samphumphuang, T.; Phisalaphong, M.; Singh, H.P.; Cha-um, S. Promoting Water Deficit Tolerance and Anthocyanin Fortification in Pigmented Rice Cultivar (Oryza Sativa L. Subsp. Indica) Using Arbuscular Mycorrhizal Fungi Inoculation. Physiol. Mol. Biol. Plants 2019, 25, 821–835. [Google Scholar] [CrossRef]
- Wangiyana, W.; Farida, N.; Aryana, I.G.P.M. Yield Performance of Several Promising Lines of Black Rice as Affected by Application of Mycorrhiza Biofertilizer and Additive Intercropping with Soybean under Aerobic Irrigation System on Raised-Beds. IOP Conf. Ser. Earth Environ. Sci. 2021, 913, 012005. [Google Scholar] [CrossRef]
- Etesami, H.; Alikhani, H.A. Co-Inoculation with Endophytic and Rhizosphere Bacteria Allows Reduced Application Rates of N-Fertilizer for Rice Plant (Oryza sativa L.). Rhizosphere 2016, 2, 5–12. [Google Scholar] [CrossRef]
- Isawa, T.; Yasuda, M.; Awazaki, H.; Minamisawa, K.; Shinozaki, S.; Nakashita, H. Azospirillum sp. Strain B510 Enhances Rice Growth and Yield. Microbes Environ. 2010, 25, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, R.; Latif, A.; Bilal, S.; Waqas, M.; Kang, S.; Lee, I. Inoculation of Abscisic Acid-Producing Endophytic Bacteria Enhances Salinity Stress Tolerance in Oryza Sativa. Environ. Exp. Bot. 2017, 136, 68–77. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. NBU J. Plant Sci. 2003, 9, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Tejo Prakash, N. Characterisation of Phosphate Solubilising Bacteria in Sandy Loam Soil Under Chickpea Cropping System. Indian J. Microbiol. 2012, 52, 167–173. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal Endophytes for Sustainable Crop Production. FEMS Microbiol. Ecol. 2016, 92, fiw194. [Google Scholar] [CrossRef] [PubMed]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef]
- da Silva, E.; Nogueira, R.; da Silva, M.; de Albuquerque, M. Drought Stress and Plant Nutrition. Plant Stress 2011, 5, 32–41. [Google Scholar]
- Saldajeno, M.G.B.; Naznin, H.A.; Elsharkawy, M.M.; Shimizu, M.; Hyakumachi, M. Enhanced Resistance of Plants to Disease Using; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595768. [Google Scholar]
- Mukherjee, P.K.; Mendoza-mendoza, A.; Zeilinger, S.; Horwitz, B.A. Mycoparasitism as a Mechanism of Trichoderma-Mediated Suppression of Plant Diseases. Fungal Biol. Rev. 2021, 39, 15–33. [Google Scholar] [CrossRef]
- Zaidi, N.W.; Dar, M.H.; Singh, S.; Singh, U.S. Trichoderma Species as Abiotic Stress Relievers in Plants; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595768. [Google Scholar]
- Redman, R.S.; Kim, Y.O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Sharon, L.; Rodriguez, R.J. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change. PLoS ONE 2011, 6, e14823. [Google Scholar] [CrossRef]
- Li, X.; Bu, N.; Li, Y.; Ma, L.; Xin, S.; Zhang, L. Growth, Photosynthesis and Antioxidant Responses of Endophyte Infected and Non-Infected Rice under Lead Stress Conditions. J. Hazard. Mater. 2012, 213–214, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Awasthi, R.P.; Rawat, L.; Kumar, J. Plant Physiology and Biochemistry Biochemical and Physiological Responses of Rice (Oryza sativa L.) as in Fl Uenced by Trichoderma harzianum under Drought Stress. Plant Physiol. Et Biochem. 2012, 54, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, A.L.; Shahzad, R.; Ullah, I.; Khan, A.R.; Lee, I. Mutualistic Fungal Endophytes Produce Phytohormones and Organic Acids That Promote Japonica Rice Plant Growth under Prolonged Heat Stress. J. Zhejiang Univ. SCIENCE B (Biomed. Biotechnol.) 2015, 16, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Andreo-jimenez, B.; Vandenkoornhuyse, P.; Van, A.L.; Heutinck, A.; Duhamel, M.; Kadam, N.; Jagadish, K.; Ruyter-spira, C.; Bouwmeester, H. Plant Host and Drought Shape the Root Associated Fungal Microbiota in Rice. PeerJ 2019, 7, 1–23. [Google Scholar] [CrossRef]
- Mathur, P.; Roy, S. Insights into the Plant Responses to Drought and Decoding the Potential of Root Associated Microbiome for Inducing Drought Tolerance. Physiol. Plant. 2021, 172, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Ripa, F.A.; Cao, W.D.; Tong, S.; Sun, J.G. Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. BioMed Res. Int. 2019, 2019, 6105865. [Google Scholar] [CrossRef]
- Rinu, K.; Sati, P.; Pandey, A. Trichoderma gamsii (NFCCI 2177): A Newly Isolated Endophytic, Psychrotolerant, Plant Growth Promoting, and Antagonistic Fungal Strain. J. Basic Microbiol. 2014, 54, 408–417. [Google Scholar] [CrossRef]
- Hassan, S.E.D. Plant Growth-Promoting Activities for Bacterial and Fungal Endophytes Isolated from Medicinal Plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef]
- Tyskiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A Multipurpose, Plant-Beneficial Microorganism for Eco-Sustainable Agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Azarmi, R.; Hajieghrari, B.; Giglou, A. Effect of Trichoderma Isolates on Tomato Seedling Growth Response and Nutrient Uptake. Afr. J. Biotechnol. 2011, 10, 5850–5855. [Google Scholar] [CrossRef]
- Fan, H.; Yao, M.; Wang, H.; Zhao, D.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y.; Chen, L. Isolation and Effect of Trichoderma citrinoviride Snef1910 for the Biological Control of Root-Knot Nematode, Meloidogyne Incognita. BMC Microbiol. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Chandra Mishra, R.; Yoon, S.; Kim, H.; Park, C.; Seo, S.T.; Bae, H. Endophytic Trichoderma citrinoviride Isolated from Mountain-Cultivated Ginseng (Panax ginseng) Has Great Potential as a Biocontrol Agent against Ginseng Pathogens. J. Ginseng Res. 2019, 43, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Sekmen Cetinel, A.H.; Gokce, A.; Erdik, E.; Cetinel, B.; Cetinkaya, N. The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia Solani Infection in Strawberry (Fragaria x Ananassa Duch.). Agronomy 2021, 11, 1589. [Google Scholar] [CrossRef]
- Yeşilyurt, A.M.; Pehlivan, N.; Durmuş, N.; Karaoğlu, S.A. Trichoderma citrinoviride: A Potent Biopriming Agent for the Alleviation of Salt Stress in Maize. Hacet. J. Biol. Chem. 2018, 1, 101–111. [Google Scholar] [CrossRef]
- Toppo, P.; Kagatay, L.L.; Gurung, A.; Singla, P.; Chakraborty, R.; Roy, S.; Mathur, P. Endophytic Fungi Mediates Production of Bioactive Secondary Metabolites via Modulation of Genes Involved in Key Metabolic Pathways and Their Contribution in Different Biotechnological Sector; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; Volume 13, ISBN 0123456789. [Google Scholar]
- Verma, S.K.; Sahu, P.K.; Kumar, K.; Pal, G.; Gond, S.K.; Kharwar, R.N. Endophyte Roles in Nutrient Acquisition, Root System Architecture Development and Oxidative Stress Tolerance. J. Appl. Microbiol. 2021, 131, 2161–2177. [Google Scholar] [CrossRef]
- Larimer, A.L.; Bever, J.D.; Clay, K. The Interactive Effects of Plant Microbial Symbionts: A Review and Meta-Analysis. Symbiosis 2010, 51, 139–148. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.; Ge, X.; Shi, X.; Fan, X.; Dong, K.; Chen, L.; Zhao, N.; Gao, Y.; Ren, A. The Beneficial Effect of Epichloë Endophytes on the Growth of Host Grasses was Affected by Arbuscular Mycorrhizal Fungi, Pathogenic Fungi and Nitrogen Addition. Environ. Exp. Bot. 2022, 201, 104979. [Google Scholar] [CrossRef]
- Vignale, M.V.; Iannone, L.J.; Scervino, J.M.; Novas, M.V. Epichloë Exudates Promote in Vitro and in vivo Arbuscular Mycorrhizal Fungi Development and Plant Growth. Plant Soil 2018, 422, 267–281. [Google Scholar] [CrossRef]
- Zhong, R.; Zhang, L.; Zhang, X. Allelopathic Effects of Foliar Epichloë Endophytes on Belowground Arbuscular Mycorrhizal Fungi: A Meta-Analysis. Agriculture 2022, 12, 1768. [Google Scholar] [CrossRef]
- Wężowicz, K.; Rozpądek, P.; Turnau, K. Interactions of Arbuscular Mycorrhizal and Endophytic Fungi Improve Seedling Survival and Growth in Post-Mining Waste. Mycorrhiza 2017, 27, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.J.; Song, S.L.; Ma, C.Y.; Zhang, W.; Sun, K.; Tang, M.J.; Xie, X.G.; Fan, K.K.; Dai, C.C. Endophytic Fungus Improves Peanut Drought Resistance by Reassembling the Root-Dwelling Community of Arbuscular Mycorrhizal Fungi. Fungal Ecol. 2020, 48, 100993. [Google Scholar] [CrossRef]
- Lalaymia, I.; Naveau, F.; Arguelles Arias, A.; Ongena, M.; Picaud, T.; Declerck, S.; Calonne-Salmon, M. Screening and Efficacy Evaluation of Antagonistic Fungi against Phytophthora Infestans and Combination with Arbuscular Mycorrhizal Fungi for Biocontrol of Late Blight in Potato. Front. Agron. 2022, 4, 8309. [Google Scholar] [CrossRef]
- Tchameni, S.N.; Ngonkeu, M.E.L.; Begoude, B.A.D.; Wakam Nana, L.; Fokom, R.; Owona, A.D.; Mbarga, J.B.; Tchana, T.; Tondje, P.R.; Etoa, F.X.; et al. Effect of Trichoderma asperellum and Arbuscular Mycorrhizal Fungi on Cacao Growth and Resistance against Black Pod Disease. Crop Prot. 2011, 30, 1321–1327. [Google Scholar] [CrossRef]
- Matrood, A.A.A.; Rhouma, A. Bioprotection of Cucumis Melo from Alternaria Leaf Spot by Glomus mosseae and Trichoderma harzianum. Tropicultura 2022, 40, 1–11. [Google Scholar] [CrossRef]
- Díaz-Urbano, M.; Goicoechea, N.; Velasco, P.; Poveda, J. Development of Agricultural Bio-Inoculants Based on Mycorrhizal Fungi and Endophytic Filamentous Fungi: Co-Inoculants for Improve Plant-Physiological Responses in Sustainable Agriculture. Biol. Control 2023, 182, 105223. [Google Scholar] [CrossRef]
Treatments | AMF Colonization (%) | EPF Colonization (%) |
---|---|---|
T1: Non-inoculated (Control) | 0.0 d | 0 f |
T2: R. variabilis (AMF) | 23.7 a | 1 f |
T3: T. zelobreve | 0.0 d | 73 ab |
T4: T. pinophilus | 0.1 d | 48 d |
T5: A. flavus | 0.0 d | 56 c |
T6: T. harzianum | 0.1 d | 69 b |
T7: AMF + T. zelobreve | 18.3 b | 79 a |
T8: AMF + T. pinophilus | 3.2 c | 39 e |
T9: AMF + A. flavus | 2.5 c | 42 de |
T10: AMF + T. harzianum | 2.5 c | 38 e |
T11: Mineral fertilizer | 0.0 d | 5 f |
% CV | 15 | 11 |
F-test | ** | ** |
Treatments | Height (cm) | Shoot Biomass (g) | Root Biomass (g) | Root Diameter (mm) | Panicle Number | Grain Yield (g) |
---|---|---|---|---|---|---|
T1: Non-inoculated (Control) | 98 f | 30.7 d | 9.0 ef | 0.36 ab | 7.8 bcd | 7.2 d |
T2: R. variabilis (AMF) | 104 bcd | 42.7 bc | 17.2 a | 0.35 abc | 9.5 ab | 16.5 a |
T3: T. zelobreve | 104 bc | 51.6 ab | 11.6 c–f | 0.36 a | 11.0 a | 15.5 ab |
T4: T. pinophilus | 106 b | 46.6 ab | 9.7 def | 0.33 b-e | 8.3 bc | 13.3 ab |
T5: A. flavus | 99 ef | 35.5 cd | 8.5 f | 0.32 cde | 7.8 bcd | 12.3 c |
T6: T. harzianum | 110 a | 46.5 ab | 9.9 def | 0.34 a-d | 7.3 bcd | 14.8 ab |
T7: AMF + T. zelobreve | 112 a | 55.4 a | 13.5 bc | 0.31 e | 11.5 a | 16.7 a |
T8: AMF + T. pinophilus | 101 cde | 45.5 b | 10.6 c-f | 0.33 b-e | 6.5 cd | 9.3 d |
T9: AMF + A. flavus | 104 bc | 44.5 bc | 12.7 cd | 0.31 e | 5.8 d | 7.4 d |
T10: AMF + T. harzianum | 102 b-e | 42.3 bc | 12.1 cde | 0.31 de | 8.0 bcd | 12.7 bc |
T11: Mineral fertilizer | 100 def | 48.0 ab | 16.0 ab | 0.32 cde | 9.3 ab | 14.3 abc |
% CV | 2 | 15 | 19 | 7 | 20 | 15 |
F-test | ** | ** | ** | ** | ** | ** |
Two-way ANOVA (F-value) | ||||||
AMF (df = 1) | 2.63 ns | 3.72 ns | 49.42 ** | 8.76 ** | 0.07 ns | 0.01 ns |
EPF (df = 4) | 10.11 ** | 7.81 ** | 6.76 ** | 3.36 * | 7.86 ** | 10.90 ** |
AMF × EPF (df = 4) | 11.40 ** | 2.18 ns | 4.70 ** | 1.91 ns | 1.99 ns | 18.49 ** |
Treatments | Nitrogen (g/Plant) | Phosphorus (g/Plant) | Potassium (g/Plant) |
---|---|---|---|
T1: Non-inoculated (Control) | 0.178 d | 0.028 d | 0.300 d |
T2: R. variabilis (AMF) | 0.268 bc | 0.033 cd | 0.423 bc |
T3: T. zelobreve | 0.385 a | 0.038 a–d | 0.510 ab |
T4: T. pinophilus | 0.355 a | 0.043 abc | 0.453 bc |
T5: A. flavus | 0.250 cd | 0.038 a-d | 0.395 cd |
T6: T. harzianum | 0.328 ab | 0.040 a-d | 0.488 abc |
T7: AMF + T. zelobreve | 0.360 a | 0.048 ab | 0.568 a |
T8: AMF + T. pinophilus | 0.368 a | 0.048 ab | 0.500 ab |
T9: AMF + A. flavus | 0.373 a | 0.050 a | 0.468 bc |
T10: AMF + T. harzianum | 0.348 a | 0.045 abc | 0.445 bc |
T11: Mineral fertilizer | 0.253 c | 0.035 bcd | 0.453 bc |
% CV | 16 | 22 | 15 |
F-test | ** | * | ** |
Two-way ANOVA (F-value) | |||
AMF (df = 1) | 7.64 ** | 6.43 * | 5.62 * |
EPF (df = 4) | 21.32 ** | 3.40 * | 7.18 * |
AMF × EPF (df = 4) | 2.88 * | 0.29 ns | 1.52 ns |
Treatments | Chl a (mg g−1 DW) | Chl b (mg g−1 DW) | Total Chl (mg g−1 DW) | Pn (µmol CO2 m−2 s−1) | gs (mol H2O m−2 s−1) | Tr (mmol H2O m−2 s−1) | WUE (µmol CO2 mmol H2O−1) |
---|---|---|---|---|---|---|---|
T1: Non-inoculated (Control) | 7.2 f | 5.6 f | 12.7 d | 18.0 def | 0.28 e | 4.4 ef | 4.13 bc |
T2: R. variabilis (AMF) | 8.8 bc | 16.1 b | 24.8 b | 19.6 abc | 0.43 bc | 4.4 ef | 4.49 ab |
T3: T. zelobreve | 8.4 cd | 12.3 d | 20.7 c | 19.7 ab | 0.49 ab | 4.2 f | 4.66 a |
T4: T. pinophilus | 7.9 de | 5.9 f | 13.7 d | 18.6 bcd | 0.40 cd | 5.1 bc | 3.70 def |
T5: A. flavus | 5.0 h | 8.9 e | 13.9 d | 16.7 f | 0.38 cd | 4.9 bc | 3.46 ef |
T6: T. harzianum | 4.8 h | 8.9 e | 13.7 d | 18.3 cde | 0.34 de | 4.7 cde | 3.89 cd |
T7: AMF + T. zelobreve | 10.1 a | 16.2 b | 26.2 b | 20.6 a | 0.52 a | 4.4 def | 4.64 a |
T8: AMF + T. pinophilus | 7.6 ef | 14.3 c | 21.9 c | 19.4 abc | 0.27 e | 5.7 a | 3.43 f |
T9: AMF + A. flavus | 6.5 g | 14.3 c | 20.8 c | 17.3 def | 0.37 cd | 4.4 ef | 3.92 cd |
T10: AMF + T. harzianum | 9.2 b | 12.3 d | 21.5 c | 19.7 abc | 0.41 cd | 5.1 b | 3.87 cde |
T11: Mineral fertilizer | 10.7 a | 18.9 a | 29.5 a | 17.2 ef | 0.29 e | 4.8 bcd | 3.56 def |
% CV | 6 | 6 | 5 | 5 | 14 | 6 | 7 |
F-test | ** | ** | ** | ** | ** | ** | ** |
Two-way ANOVA (F-value) | |||||||
AMF (df = 1) | 161.35 ** | 800.93 ** | 675.00 ** | 10.19 ** | 1.45 ns | 3.32 ns | 0.14 ns |
EPF (df = 4) | 67.84 ** | 43.93 ** | 54.35 ** | 9.55 ** | 14.19 ** | 18.38 ** | 17.92 ** |
AMF × EPF (df = 4) | 28.09 ** | 37.96 ** | 12.64 ** | 0.35 ns | 8.46 ** | 3.86 * | 1.97 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nacoon, S.; Seemakram, W.; Gateta, T.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. J. Fungi 2023, 9, 1152. https://doi.org/10.3390/jof9121152
Nacoon S, Seemakram W, Gateta T, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S. Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. Journal of Fungi. 2023; 9(12):1152. https://doi.org/10.3390/jof9121152
Chicago/Turabian StyleNacoon, Sabaiporn, Wasan Seemakram, Thanawan Gateta, Piyada Theerakulpisut, Jirawat Sanitchon, Thomas W. Kuyper, and Sophon Boonlue. 2023. "Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi" Journal of Fungi 9, no. 12: 1152. https://doi.org/10.3390/jof9121152
APA StyleNacoon, S., Seemakram, W., Gateta, T., Theerakulpisut, P., Sanitchon, J., Kuyper, T. W., & Boonlue, S. (2023). Accumulation of Health-Promoting Compounds in Upland Black Rice by Interacting Mycorrhizal and Endophytic Fungi. Journal of Fungi, 9(12), 1152. https://doi.org/10.3390/jof9121152