Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Spawn Preparation
2.2. Experimental Set-Up
2.3. Chemical Analyses
2.4. Protein and Carbohydrate Fractionation
2.5. Electron Microscopy for Structural Characterization of Fungal Fermented Highland Barley Straw
2.6. Response Surface Methodology (RSM)
2.7. In Vitro Fermentation
2.8. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition
3.2. Protein and Carbohydrate Fractionation
3.3. Electron Microscopy for Structural Characterization of Fungally Fermented Highland Barley Straw
3.4. Response Surface Methodology (RSM)
3.5. In Vitro Rumen Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, T.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food. Sci. Technol. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Tuyen, V.D.; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresour. Technol. 2012, 111, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.S.; Sharma, R.K.; Chandra, P. Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Int. Biodeterior. Biodegrad. 2011, 65, 352–358. [Google Scholar] [CrossRef]
- Arora, D.S.; Gill, P.K. Production of ligninolytic enzymes by Phlebia floridensis. World. J. Microb. Biotechnol. 2005, 21, 1021–1028. [Google Scholar] [CrossRef]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal decay of wood: Soft rot-brown rot-white-rot. In Development of Commercial Wood Preservatives: Efficacy, Environmental, and Health Issues; Schultz, T., Nicholas, D., Militz, H., Freeman, M.H., Goodell, B., Eds.; ACS Symposium Series, c982; ACS Publications: Washington, DC, USA, 2008; pp. 9–31. [Google Scholar]
- Meehnian, H.; Jana, A.K. Cotton stalk pretreatment using Daedalea flavida, Phlebia radiata, and Flavodon flavus: Lignin degradation, cellulose recovery, and enzymatic saccharification. Appl. Biochem. Biotechnol. 2017, 181, 1465–1484. [Google Scholar] [CrossRef]
- Shabtay, A.; Hadar, Y.; Eitam, H.; Brosh, A.; Orlov, A.; Tadmor, Y.; Izhaki, I.; Kerem, Z. The potential of Pleurotus treated olive mill solid waste as cattle feed. Bioresour. Technol. 2009, 100, 6457–6464. [Google Scholar] [CrossRef]
- Fazaeli, H. Nutritive value index of treated wheat straw with Pleurotus fungi fed to sheep. Biotechnol. Anim. Husb. 2007, 23, 169–180. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Luo, L.; Zhang, H.; Liao, Y.; Gou, C. Enhancement of the nutritional value of fermented corn stover as ruminant feed using the fungi Pleurotus spp. Sci. Rep. 2021, 11, 11961. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC: Arlington, VA, USA, 2000. [Google Scholar]
- Goering, H.K.; Soest, P.J.V. Forage fiber analyses: Apparatus, reagents, procedures, and some applications. In Agriculture Handbook; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1970; Volume 379, pp. 1–20. [Google Scholar]
- Van, S.P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3598. [Google Scholar]
- Licitra, G.; Harnandez, T.M.; Van Soest, P.J. Standardizations of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- American Association of Cereal Chemistry (AACC). Approved Methods of the AACC; American Association of Cereal Chemistry: St. Paul, MN, USA, 1976. [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; Soest, P.J.V.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle 339 diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some new three level design for study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Tang, S.X.; Tan, Z.L.; Zhou, C.S.; Han, X.F.; Kang, J.H. Comparisons of manual and automated incubated systems: Effects of venting procedures on in vitro ruminal fermentation. Livest. Sci. 2016, 184, 41–45. [Google Scholar] [CrossRef]
- Wang, M.; Sun, X.Z.; Janssen, P.H.; Tang, S.X.; Tan, Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 2014, 194, 1–11. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Nie, H.T.; Wang, Z.Y.; You, J.H.; Zhu, G.; Wang, H.C.; Wang, F. Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus. Asian-Australas. J. Anim. Sci. 2018, 33, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Lange, L. Fungal enzymes and yeasts for conversion of plant biomass to bioenergy and high-value products. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Datsomor, O.; Zhao, G.Q.; Li, M. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci. Rep. 2022, 12, 1129. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Wang, X.; Li, M. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Appl. Microbiol. Biotechnol. 2019, 103, 5641–5652. [Google Scholar] [CrossRef]
- Bari, E.; Ohno, K.; Yilgor, N.; Singh, A.P.; Morrell, J.J.; Pizzi, A.; Ghanbary, M.A.T.; Ribera, J. Characterizing fungal decay of beech wood: Potential for biotechnological applications. Microbe 2021, 9, 247. [Google Scholar] [CrossRef]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal Fermentation. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Beussell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Shrivastava, B.; Jain, K.K.; Kalra, A.; Kuhad, R.C. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci. Rep. 2014, 1, 6360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, F.; Fang, Y.; Zhou, D.; Wang, S.; Wu, D.; Wang, L.X.; Zhong, R.Z. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed. Bioresour. Technol. 2020, 312, 123512. [Google Scholar] [CrossRef]
- Tekere, M.; Zvauya, R.; Read, J.S. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J. Basic Microbiol. 2011, 41, 115–129. [Google Scholar] [CrossRef]
- Lallo, R.; Maharajh, D.; Görgens, J.; Gardiner, N.; Görgens, J.F. High-density spore production of a B. cereus aquaculture biological agent by nutrient supplementation. Appl. Microbiol. Biotechnol. 2009, 83, 59–66. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, Y.; Sun, S.Y.; Hu, Y.Y. Interaction among multiple microorganisms and effects of nitrogen and carbon supplementations on lignin degradation. Bioresour. Technol. 2014, 155, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Sarria-Alfonso, V.; Sánchez-Sierra, J.; Aguirre-Morales, M.; Gutiérrez-Rojas, I.; Moreno-Sarmiento, N.; Poutou-Pinales, R.A. Culture media statistical optimization for biomass oroduction of a ligninolytic fungus for future rice straw degradation. Indian J. Microbiol. 2013, 53, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Fortina, M.G.; Acquati, A.; Rossi, P.; Manachini, P.L.; Di Gennaro, C. Production of laccase by Botrytis cinerea and fermentation studies with strain 226. J. Ind. Microbiol. 1996, 17, 69–72. [Google Scholar] [CrossRef]
- Owens, F.N.; Sapienza, D.A.; Hassen, A.T. Effect of nutrient composition of feeds on digestibility of organic matter by cattle: A review. Anim. Sci. 2010, 88, 151–169. [Google Scholar] [CrossRef]
- Zheng, M.H.; Zuo, S.; Niu, D.; Jiang, D.; Tao, Y.; Xu, C.C. Effect of four species of white rot fungi on the chemical composition and in vitro rumen degradability of naked oat straw. Waste Biomass Valorization 2021, 12, 435–443. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A. Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. J Fungi 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pan, K.; Liu, C.; Qu, M.; Ouyang, K.; Song, X.; Zhao, X. Recombinant Lentinula edodes xylanase improved the hydrolysis and in vitro ruminal fermentation of soybean straw by changing its fiber structure. Int. J. Biol. Macromol. 2020, 151, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Qu, M.R.; Liu, C.J.; Xu, L.J.; Pen, K.; Song, X.Z.; OuYang, K.H.; Li, Y.J.; Zhao, X.H. Expression of a recombinant Lentinula edodes xylanase by Pichia pastoris and its effects on ruminal fermentation and microbial community in in vitro incubation of agricultural straws. Front. Microbiol. 2018, 30, 2944. [Google Scholar] [CrossRef]
Process Variables | Coded Level Variables | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature (°C) | 15 °C | 22 °C | 29 °C |
Carbon (%) | 1% | 1.5% | 2% |
Nitrogen (%) | 1% | 2% | 3% |
Item | Controls | Lentinus sajor-caju | Pleurotus ostreatus | Phyllotopsis rhodophylla | Pleurotus djamor | Pleurotus eryngii | Pleurotus citrinopileatus |
---|---|---|---|---|---|---|---|
CP | 4.51 ± 0.13 E | 6.52 ± 0.25 A | 5.46 ± 0.10 C | 4.77 ± 0.14 D | 4.82 ± 0.07 D | 5.41 ± 0.05 C | 5.69 ± 0.17 B |
EE | 1.36 ± 0.04 E | 2.27 ± 0.04 A | 1.83 ± 0.05 B | 1.67 ± 0.03 C | 1.55 ± 0.04 D | 1.80 ± 0.06 B | 1.78 ± 0.10 B |
Ash | 6.79 ± 0.14 A | 4.59 ± 0.31 D | 5.49 ± 0.23 B | 5.49 ± 0.17 B | 5.31 ± 0.08 BC | 5.43 ± 0.04 B | 5.11 ± 0.03 C |
NDF | 64.97 ± 1.62 A | 47.94 ± 0.29 F | 50.71 ± 0.97 E | 55.98 ± 0.59 B | 53.76 ± 0.40 C | 56.28 ± 0.31 B | 52.72 ± 0.59 D |
ADF | 39.83 ± 0.66 A | 31.55 ± 0.67 E | 35.29 ± 1.20 C | 35.21 ± 2.10 C | 37.47 ± 0.18 B | 34.48 ± 0.13 CD | 33.39 ± 0.49 D |
ADL | 19.01 ± 0.35 A | 10.21 ± 0.69 F | 12.92 ± 0.41 E | 15.96 ± 0.54 B | 13.61 ± 0.27 D | 14.51 ± 0.27 C | 15.53 ± 0.26 B |
Starch | 0.99 ± 0.07 F | 1.81 ± 0.10 A | 1.35 ± 0.07 B | 1.12 ± 0.07 E | 1.26 ± 0.03 C | 1.16 ± 0.02 DE | 1.23 ± 0.01 CD |
SP | 1.57 ± 0.04 G | 2.95 ± 0.06 A | 2.34 ± 0.06 B | 1.95 ± 0.02 E | 1.78 ± 0.02 F | 2.21 ± 0.03 D | 2.23 ± 0.03 C |
NPN | 0.67 ± 0.02 F | 1.48 ± 0.03 A | 1.17 ± 0.02 B | 0.78 ± 0.01 E | 0.89 ± 0.01 D | 1.04 ± 0.01 C | 1.17 ± 0.02 B |
NDFIP | 1.45 ± 0.05 A | 0.93 ± 0.01 E | 1.05 ± 0.02 D | 1.22 ± 0.02 C | 1.41 ± 0.02 A | 1.36 ± 0.06 B | 1.42 ± 0.04 A |
ADFIP | 1.26 ± 0.01 A | 0.47 ± 0.01 F | 0.72 ± 0.02 E | 1.11 ± 0.02 C | 1.19 ± 0.02 B | 1.17 ± 0.06 B | 1.16 ± 0.02 B |
Item | PA (%) | PB1 (%) | PB2 (%) | PB3 (%) | PC (%) |
---|---|---|---|---|---|
Controls | 14.91 ± 0.47 G | 19.79 ± 0.44 D | 33.17 ± 0.50 C | 4.18 ± 0.97 D | 27.94 ± 0.88 A |
Lentinus sajor-caju | 22.65 ± 0.74 A | 22.65 ± 0.89 B | 40.40 ± 2.10 A | 7.02 ± 0.30 A | 7.29 ± 0.45 F |
Pleurotus ostreatus | 21.45 ± 0.58 B | 21.44 ± 0.88 C | 37.84 ± 1.05 B | 6.11 ± 0.64 B | 13.17 ± 0.35 E |
Phyllotopsis rhodophylla | 16.38 ± 0.64 F | 24.46 ± 0.69 A | 33.51 ± 1.70 C | 5.32 ± 0.48 C | 20.33 ± 0.46 D |
Pleurotus djamor | 18.36 ± 0.34 E | 18.64 ± 0.60 E | 33.69 ± 0.82 C | 4.56 ± 0.63 CD | 24.74 ± 0.67 B |
Pleurotus eryngii | 19.12 ± 0.37 D | 21.62 ± 0.69 C | 34.08 ± 0.50 C | 4.65 ± 0.40 CD | 23.00 ± 0.73 C |
Pleurotus citrinopileatus | 20.55 ± 0.52 C | 19.77 ± 0.74 D | 34.82 ± 1.81 C | 4.43 ± 0.70 CD | 24.27 ± 0.24 B |
Item | CHO/%DM | CA/%CHO | CB1/%CHO | CB2/%CHO | CC/%CHO | CNSC/%CHO |
---|---|---|---|---|---|---|
Controls | 87.33 ± 0.24 B | 26.71 ± 0.69 G | 1.13 ± 0.09 F | 19.91 ± 1.50 B | 52.26 ± 1.03 A | 27.84 ± 0.71 E |
Lentinus sajor-caju | 86.62 ± 0.54 C | 45.63 ± 0.37 A | 2.09 ± 0.13 A | 24.02 ± 1.95 A | 28.28 ± 1.77 F | 47.72 ± 0.29 A |
Pleurotus ostreatus | 87.23 ± 0.27 B | 42.62 ± 1.18 B | 1.55 ± 0.09 C | 20.28 ± 2.16 B | 35.54 ± 1.10 E | 44.18 ± 1.17 B |
Phyllotopsis rhodophylla | 88.07 ± 0.20 A | 37.07 ± 0.62 F | 1.27 ± 0.08 E | 18.18 ± 1.16 B | 43.48 ± 1.42 B | 38.34 ± 0.66 D |
Pleurotus diamor | 88.07 ± 0.57 A | 39.23 ± 0.39 D | 1.37 ± 0.04 D | 18.58 ± 0.27 B | 38.20 ± 0.39 D | 40.81 ± 0.99 C |
Pleurotus eryngii | 87.27 ± 0.26 B | 41.35 ± 0.48 C | 1.45 ± 0.02 D | 18.76 ± 0.46 B | 40.38 ± 0.21 C | 38.68 ± 0.55 D |
Pleurotus citrinopileatus | 87.38 ± 0.25 B | 38.39 ± 0.21 E | 1.71 ± 0.03 B | 19.44 ± 0.15 B | 44.72 ± 0.91 B | 41.67 ± 0.81 C |
Run | Variables | Degradation (%) | ||
---|---|---|---|---|
Temperature (°C) | Glucose (%) | Urea (%) | ||
1 | 0 | 1 | 1 | 46.90 |
2 | −1 | 1 | 0 | 37.33 |
3 | 1 | 0 | −1 | 41.00 |
4 | −1 | 0 | 1 | 39.35 |
5 | 0 | −1 | −1 | 43.75 |
6 | 1 | 1 | 0 | 39.02 |
7 | 0 | 0 | 0 | 49.99 |
8 | −1 | 0 | −1 | 36.39 |
9 | 1 | 0 | 1 | 42.24 |
10 | 0 | 0 | 0 | 50.01 |
11 | 0 | −1 | 1 | 44.17 |
12 | −1 | −1 | 0 | 35.23 |
13 | 0 | 0 | 0 | 49.86 |
14 | 1 | −1 | 0 | 40.86 |
15 | 0 | 0 | 0 | 49.88 |
16 | 0 | 0 | 0 | 49.85 |
17 | 0 | 1 | −1 | 42.16 |
Item | Controls | Lentinus sajor-caju |
---|---|---|
IVDMD (%) | 57.53 ± 0.19 B | 65.28 ± 0.64 A |
pH | 7.05 ± 0.02 | 7.05 ± 0.02 |
Total VFA (mM) | 83.21 ± 0.21 B | 89.52 ± 0.14 A |
Acetic acid (mM) | 68.22 ± 0.10 B | 70.33 ± 0.12 A |
Propionic acid (mM) | 17.38 ± 0.20 A | 16.79 ± 0.10 B |
Butyric acid (mM) | 10.26 ± 0.09 B | 11.01 ± 0.03 A |
Ammonia nitrogen (mg/L) | 65.13 ± 1.35 B | 86.67 ± 0.66 A |
Soluble protein (mg/L) | 85.43 ± 0.60 B | 103.34 ± 0.89 A |
Microbial protein nitrogen (mg/L) | 105.02 ± 1.14 B | 144.85 ± 1.67 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gou, C.; Chen, L.; Liao, Y.; Zhang, H.; Luo, L.; Ji, J.; Qi, Y. Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. J. Fungi 2023, 9, 1156. https://doi.org/10.3390/jof9121156
Wang Y, Gou C, Chen L, Liao Y, Zhang H, Luo L, Ji J, Qi Y. Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. Journal of Fungi. 2023; 9(12):1156. https://doi.org/10.3390/jof9121156
Chicago/Turabian StyleWang, Yuqiong, Changlong Gou, Liming Chen, Yangci Liao, Hang Zhang, Lilong Luo, Jiahang Ji, and Yu Qi. 2023. "Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility" Journal of Fungi 9, no. 12: 1156. https://doi.org/10.3390/jof9121156
APA StyleWang, Y., Gou, C., Chen, L., Liao, Y., Zhang, H., Luo, L., Ji, J., & Qi, Y. (2023). Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. Journal of Fungi, 9(12), 1156. https://doi.org/10.3390/jof9121156