Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Localities
2.2. Water Quality Analyses
2.3. The Host Plant and Collection of Leaf Samples
2.4. Surface Sterilization, Isolation, and Colonization/Isolation Rates
2.5. Diversity Assessment
2.5.1. Morphospecies Identification
2.5.2. Colonization and Isolation Rates
2.5.3. Species Accumulation Curve and Sampling Effort
2.5.4. Taxonomic Diversity
2.5.5. Species Diversity
2.5.6. Community Analysis
2.6. Assessment of Functional Traits
2.6.1. Selection of Representative Fungi
2.6.2. Functional Traits
3. Results
3.1. Physicochemical Water Parameters
3.2. Isolated Mangrove Fungal Endophytes
3.3. Taxonomic and Species Diversity
3.4. Mineral Solubilization on Elevated Nutrient Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D. The Energetics of Mangrove Forests; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–216. [Google Scholar]
- Lai, J.; Cheah, W.; Palaniveloo, K.; Suwa, R.; Sharma, S. A systematic review of the physicochemical and microbial diversity of well-preserved, restored, and disturbed mangrove forests: What is known and what is the way forward? Forests 2022, 13, 2160. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Casey, D. Creation of a high spatiotemporal resolution global database of continuous mangrove forest cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Chandra, G.; Ochieng, E.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forest of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef]
- Donato, D.; Kauffman, J.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Yin, C.S.; Yee, J.; Danielle, C.; Yusup, Y.; Gallagher, J.B. Anthropogenic marine debris accumulation in mangroves on Penang Island, Malaysia. J. Sustain. Sci. Manag. 2020, 15, 36–60. [Google Scholar]
- Monika, A.; Yadav, A. A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 265–284. [Google Scholar]
- Ashton, E.C. The impact of shrimp farming on mangrove ecosystems. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–13. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- Damastuti, E.; de Groot, R.; Debrot, A.; Silviusd, M. Effectiveness of community-based mangrove management for biodiversity conservation: A case study from Central Java, Indonesia. Trees For. People 2022, 7, 100202. [Google Scholar] [CrossRef]
- Primavera, J.; Sadaba, R.B.; Lebata, M.; Altamirano, J. Handbook of Mangroves in the Philippines: Panay; SEAFDEC Aquaculture Department: Iloilo, Philippines, 2004; p. 106. [Google Scholar]
- Bai, S.; Li, J.; He, Z.; Van Nostrand, J.D.; Tian, Y.; Lin, G.; Zhou, J.; Zheng, T. GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Appl. Microbiol. Biotechnol. 2013, 97, 7035–7048. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.; Sam, C.-K.; Yin, W.-F.; Chan, K.-G. Tropical mangrove swamp metagenome reveals unusual abundance of ecologically important microbes. Curr. Sci. 2017, 112, 1698–1703. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Eck, J.L.; Stump, S.M.; Delavaux, C.S.; Mangan, S.A.; Comita, L.S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 7371–7376. [Google Scholar] [CrossRef]
- Chapin, F.S. Integrated responses of plants to stress. BioScience 1991, 41, 29–36. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ball, M.C.; Martin, K.C.; Feller, I.C. Nutrient enrichment increases mortality of mangroves. PLoS ONE 2009, 4, e5600. [Google Scholar] [CrossRef]
- Lew, S.; Lew, M.; Biedunkiewicz, A.; Szarek, J. Impact of pesticide contamination on aquatic microorganism populations in the littoral zone. Arch. Environ. Contam. Toxicol. 2013, 64, 399–409. [Google Scholar] [CrossRef]
- Queiroz, L.; Rossi, S.; Meireles, J.; Coelho, C. Shrimp aquaculture in the federal state of Cear. 1970–2012: Trends after mangrove forest privatization in Brazil. Ocean Coast. Manag. 2013, 73, 54–62. [Google Scholar] [CrossRef]
- Suárez-Abelenda, M.; Ferreira, T.; Camps-Arbestain, M.; Rivera-Monroy, V.; Macías, F.; Nóbrega, G.N.; Otero, X. The effect of nutrient-rich effluents from shrimp farming on mangrove soil carbon storage and geochemistry under semi-arid climate conditions in northern. Brazil. Geoderma. 2014, 213, 551–559. [Google Scholar] [CrossRef]
- Molisani, M.; Lisieux, R.; Cavalcante, M.; Maia, L. Effects of water management on hydrology and water quality of a semi-arid watershed in the Northeast of Brazil. Braz. J. Aquat. Sci. Tech. 2007, 11, 43–49. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Molisani, M.; Sena, D.; Maia, L.P. Estimating the importance of natural and anthropogenic sources on N and P emission to estuaries along the Ceará State Coast NE Brazil. Environ. Monit. Assess 2008, 141, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, J.B.; Bernardino, A.F.; Ferreira, T.O.; Bolton, N.W.; Gomes, L.E.D.O.; Nobrega, G.N. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol. Evol. 2018, 8, 5530–5540. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.L.; Zhou, Y.K.; Sun, J.H.; Ma, J.H.; Zhao, H.Y.; Liu, X.F. Classes of dissolved and particulate phosphorus compounds and their spatial distributions in the water of a eutrophic lake: A 31 P NMR study. Biogeochemistry 2015, 126, 227–240. [Google Scholar] [CrossRef]
- Fernandes, I.; Pascoal, C.; Cássio, F. Intraspecifc traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 2011, 166, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, A.; Kiziewicz, B.; Muszyńska, E.; Mazalska, B. Aquatic fungi and heterotrophic straminipiles from fishponds. Polish J. Environ. Stud. 2012, 21, 615–625. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. American Public Health Association, American Water Works Association, Water Environment Federation. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Apurillo, C.C.S.; Cai, L.; dela Cruz, T.E.E. Diversity and bioactivities of mangrove fungal endophytes from Leyte and Samar, Philippines. Philipp. Sci. Lett. 2019, 12, 33–48. [Google Scholar]
- Solis, M.J.; Draeger, S.; dela Cruz, T.E.E. Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Bot. Mar. 2010, 53, 587–594. [Google Scholar] [CrossRef]
- Solis, M.J.L.; Yurkov, A.; dela Cruz, T.E.; Unterseher, M. Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol. Prog. 2015, 14, 1019. [Google Scholar] [CrossRef]
- Solis, M.J.L.; dela Cruz, T.E.; Schnittler, M.; Unterseher, M. The diverse community of leaf-inhabiting fungal endophytes from Philippine natural forests reflects phylogenetic patterns of their host plant species Ficus benjamina, F. elastica and F. religiosa. Mycoscience 2016, 57, 96–106. [Google Scholar] [CrossRef]
- Unterseher, M.; Schnittler, M.; Dormann, C. Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol. Lett. 2008, 282, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Dagamac, N.H.; Maminta, M.A.; Batungbacal, N.; Jung, S.H.; Bulang, C.R.; Cayago, A.G.; dela Cruz, T.E. Diversity of plasmodial slime molds (myxomycetes) in coastal, mountain, and community forests of Puerto Galera, Oriental Mindoro, the Philippines. J. Asia Pac. Biodivers. 2015, 8, 322–329. [Google Scholar] [CrossRef]
- Pecundo, M.H.; dela Cruz, T.E.E.; Chen, T.; Notarte, K.I.; Ren, H.; Li, N. Diversity, Phylogeny and antagonistic activity of fungal endophytes associated with endemic species of Cycas (Cycadales) in China. J. Fungi 2021, 7, 572. [Google Scholar] [CrossRef] [PubMed]
- dela Cruz, T.E.E.; Behr, J.H.; Geistlinger, J.; Grosch, R.; Witzel, K. Monitoring of an applied beneficial Trichoderma strain in root-associated soil of field-grown maize by MALDI-TOF MS. Microorganisms 2023, 11, 1655. [Google Scholar] [CrossRef]
- Djalali, F.K.; Witzel, K.; Graefe, J.; Grosch, R.; Zrenner, R. Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens 2020, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Y.; Yang, Y. Pestalotiopsis diversity: Species, dispositions, secondary metabolites, and bioactivities. Molecules 2022, 27, 8088. [Google Scholar] [CrossRef]
- Kayalvizhi, K.; Kathiresan, K. Microbes from wastewater treated mangrove soil and their heavy metal accumulation and Zn solubilization. Bio Catal. Agric. Biotechnol. 2019, 22, 101379. [Google Scholar] [CrossRef]
- Beulah, J.; Sharmila, S.; Kathiresan, K.; Kayalvizhi, K. Zinc solubilizing bacteria from rhizospheric soil of mangroves. Int. J. Microbiol. Biotechnol. 2017, 2, 148–155. [Google Scholar]
- Bhattacharya, P.N.; Sarmah, S.R.; Sarma, B.; Madhab, M.; Tanti, A.; Borgohain, K. Zinc-solubilization potential of putative microorganisms isolated from tea [Camellia sinensis (L.) O. Kuntze] rhizosphere. Res. J. Microbiol. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Toulec, T.; Lhota, S.; Soumarova, H.; Sariyanto Putera, A.K.; Kustiawan, W. Shrimp farms, fire, or palm oil? Changing causes of the proboscis monkey habitat loss. Glob. Energy Conserv. 2019, 21, e00863. [Google Scholar] [CrossRef]
- Talbot, C.; Hole, R. Fish diets and the control of eutrophication resulting from aquaculture. J. Appl. Ichthyol. 1994, 10, 258–270. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, Y.; Zhao, D.; Huang, R.; Xu, H.; Jiao, C. Seasonality overwhelms aquacultural activity in determining the composition and assembly of the bacterial community in Lake Taihu, China. Sci. Total Environ. 2019, 683, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Querijero, B.L.; Mercurio, A.L. Water quality in aquaculture and non-aquaculture sites in Taal Lake, Batangas, Philippines. J. Exp. Biol. Agric. Sci. 2016, 4, 1. [Google Scholar] [CrossRef]
- Oono, R.; Black, D.; Slessarev, E.; Sickler, B.; Strom, A.; Apigo, A. Species diversity of fungal endophytes across a stress gradient for plants. New Phytologist. 2020, 228, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.R. Mangrove fungi in India. Curr. Sci. 2004, 86, 1586–1587. [Google Scholar]
- Hamzah, T.; Lee, S.; Hidayat, A.; Terhem, R.; Faridah-Hanum, I.; Mohamed, R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol. 2018, 9, 1707. [Google Scholar] [CrossRef] [PubMed]
- Moron, L.S.; Lim, Y.W.; dela Cruz, T.E.E. Antimicrobial activities of crude culture extracts from mangrove fungal endophytes collected in Luzon Island, Philippines. Philipp. Sci. Lett. 2018, 11, 28–36. [Google Scholar]
- Ramirez, C.S.P.; Notarte, K.I.R.; dela Cruz, T.E.E. Antibacterial activities of mangrove leaf endophytic fungi from Luzon Island, Philippines. Stud. Fung 2020, 3, 320–331. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Sheikh, I.; Kumar, V.; Dhaliwal, H.S. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by Z-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ. Sustain. 2020, 3, 23–34. [Google Scholar] [CrossRef]
- MacFarlane, G.R.; Pulkownik, A.; Burchett, M.D. Accumulation and distribution of heavy metals in the Grey Mangrove, Avicennia marina (Forsk.) Vierh: Biological indication potential. Environ. Pollut. 2003, 123, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.; Pandey, J. An ecological response index for simultaneous prediction of eutrophication and metal pollution in large rivers. Water Res. 2019, 161, 423–438. [Google Scholar] [CrossRef]
- Hoostal, M.J.; Bidart-Bouzat, M.G.; Bouzat, J.L. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiol. Ecol. 2008, 65, 156–168. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, J.; Wang, J. Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective. Environ. Pollut. 2021, 285, 117501. [Google Scholar] [CrossRef] [PubMed]
- Munir, E.; Yurnaliza, Y.; Lutfia, A.; Hartanto, A. Isolation and characterization of phosphate solubilizing activity of endophytic fungi from Zingiberaceous species. OnLine J. Biol. Sci. 2022, 22, 149–156. [Google Scholar] [CrossRef]
- Zheng, W.; Lehmann, A.; Ryo, M.; Vályi, K.K.; Rillig, M. Growth rate trades of with enzymatic investment in soil filamentous fungi. Sci. Rep. 2020, 10, 11013. [Google Scholar] [CrossRef] [PubMed]
- Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 2014, 505, 543–545. [Google Scholar] [CrossRef] [PubMed]
Sites | Chemical Parameters | Physical Parameters | |||||
---|---|---|---|---|---|---|---|
Phosphate | Zinc | Nitrates | pH | Dissolved Oxygen (DO) | Electrical Conductivity (EC) | Total Dissolved Solids | |
D | 26.40 ± 0.00 a | 15.41 ± 0.01 a | 78.84 ± 0.03 a | 8.30 ± 0.00 a | 8.00 ± 0.01 a | 1984.50 ± 0.27 a | 2461.00 ± 1.00 a |
ND | 4.30 ± 0.00 b | 5.12 ± 0.00 b | 8.02 ± 0.05 b | 7.40 ± 0.03 b | 20.00 ± 0.06 b | 850.51 ± 0.32 b | 915.00 ± 1.00 b |
Morphospecies | 1 Sample Source | |
---|---|---|
D | ND | |
Alternaria alternata (Fr.) Karst | 1 | 0 |
Aspergillus parasiticus Speare | 0 | 1 |
Aspergillus sp. | 1 | 0 |
Aspergillus terreus Thom | 4 | 0 |
Cladophialophora bantiana de Hoog, Kwon-Chung & McGinnis | 0 | 1 |
Cladophialophora sp. | 3 | 12 |
Cladosporium allicinum (Fr.) Bensch, U. Braun & Crous | 1 | 1 |
Cladosporium cladosporioides de Vries | 1 | 5 |
Cladosporium herbarum (Pers.) Link | 0 | 1 |
Cladosporium macrocarpum Preuss | 1 | 1 |
Cladosporium sp. | 0 | 1 |
Colletotrichum sp. | 1 | 3 |
Diaporthe sp. | 0 | 9 |
Exophiala sp. | 1 | 0 |
Fusarium sp. | 2 | 3 |
Fusarium proliferatum Gerlack & Nirenberg | 4 | 5 |
Fusarium solani Sacc. | 3 | 4 |
Leptosphaeria sp. | 1 | 0 |
Lophiostoma sp. | 1 | 0 |
Neopestalotiopsis clavispora Maharachch, Hyde & Crous | 0 | 5 |
Neopestalotiopsis egyptiaca Ismail, Perrone & Crous | 2 | 1 |
Neopestalotiopsis rhizophorae Norphanphoun, Wen & Hyde | 2 | 2 |
Neospestalotiopsis sp. | 4 | 7 |
Nigrospora oryzae (Berk. & Broome) Petch | 3 | 2 |
Penicillium oxalicum Currie & Thom | 0 | 2 |
Pestalotiopsis maculans (Corda) Nag Raj | 0 | 2 |
Pestalotiopsis microspora (Speg.) Zhao & Nan Li | 0 | 5 |
Pestalotiopsis protearum Maharachch, Hyde & Crous | 2 | 3 |
Pestalotiopsis sp. | 3 | 6 |
Phaeosphaeriopsis sp | 0 | 1 |
Phoma glomerata Chen & Cai | 4 | 2 |
Phoma sp. | 4 | 0 |
Phyllosticta sp. | 2 | 0 |
Pseudopestalotiopsis curvatispora Norphanphoun, Wen & Hyde | 1 | 4 |
Pseudopestalotiopsis sp. | 0 | 9 |
Ramichloridium biverticilliatum Arzanlou & Crous | 0 | 3 |
Schizophyllum commune Fr. | 3 | 7 |
Talaromyces sp. | 1 | 0 |
Ulocladium chartarum Preuss | 2 | 0 |
Ulocladium sp. | 2 | 0 |
Sample Source | 1 Records and Diversity Indices | ||||||||
---|---|---|---|---|---|---|---|---|---|
R | G | S | TDI | H’ | FA | 1-D | CR (%) | IR (%) | |
disturbed (D) | 60 | 18 | 28 | 1.56 a | 3.19 a | 20.43 a | 0.97 a | 39 | 23 |
non-disturbed (ND) | 108 | 15 | 29 | 1.93 b | 3.10 b | 13.42 b | 0.95 b | 23 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, J.K.S.; Witzel, K.; dela Cruz, T.E.E. Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem. J. Fungi 2023, 9, 1186. https://doi.org/10.3390/jof9121186
Jacob JKS, Witzel K, dela Cruz TEE. Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem. Journal of Fungi. 2023; 9(12):1186. https://doi.org/10.3390/jof9121186
Chicago/Turabian StyleJacob, James Kennard S., Katja Witzel, and Thomas Edison E. dela Cruz. 2023. "Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem" Journal of Fungi 9, no. 12: 1186. https://doi.org/10.3390/jof9121186
APA StyleJacob, J. K. S., Witzel, K., & dela Cruz, T. E. E. (2023). Comparative Diversity and Functional Traits of Fungal Endophytes in Response to Elevated Mineral Content in a Mangrove Ecosystem. Journal of Fungi, 9(12), 1186. https://doi.org/10.3390/jof9121186