Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Persistence of the Pathogen in Seed Material
2.2. Impacts of Kilning on D. septosporum Survival in Needle Material
2.2.1. Preliminary Tests of D. septosporum Viability in Needle Material
2.2.2. Impacts of Forest Industry Cone-Kilning Processes on D. septosporum Viability
2.3. Effect of Controlled Dry Heat Treatments on D. septosporum and Seed Viability
2.3.1. Dothistroma septosporum Viability in Needles (Dry Heat)
2.3.2. Seed Viability (Dry Heat)
2.4. Effect of Wet Heat Treatments on D. septosporum and Seed Viability
2.4.1. Dothistroma septosporum Viability in Needles (Wet Heat)
2.4.2. Seed Viability (Wet Heat)
2.5. Statistical Analysis
2.5.1. Analysis of D. septosporum Survival in Infected Needles
2.5.2. Analysis of Seed Viability following Treatments
3. Results
3.1. Persistence of D. septosporum in Seeds
3.2. Impacts of Kilning and Dry Heat Treatments on D. septosporum Survival and Seed Viability
3.2.1. Dothistroma septosporum Viability in Needles—Kilning and Dry Heat
3.2.2. Seed Viability—Kilning and Dry Heat
3.3. Impacts of Wet Heat Exposure on D. septosporum Survival in Needles and Seed Viability
3.3.1. Dothistroma septosporum Survival in Needles—Wet Heat
3.3.2. Seed Survival—Wet Heat
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Pergl, J.; Pyšek, P.; Bacher, S.; Essl, F.; Genovesi, P.; Harrower, C.A.; Hulme, P.E.; Jeschke, J.M.; Kenis, M.; Kühn, I.; et al. Troubling travellers: Are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 2017, 32, 1–20. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013, 197, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Shirley, S.M.; Kark, S. Amassing efforts against alien invasive species in Europe. PLoS Biol. 2006, 4, e279. [Google Scholar] [CrossRef]
- Wingfield, M.J.; Brockerhoff, E.G.; Wingfield, B.D.; Slippers, B. Planted forest health: The need for a global strategy. Science 2015, 349, 832–836. [Google Scholar] [CrossRef]
- European Union. Council Directive 2000/29/EC of 8 May 2000 on Protective Measures against the Introduction into the Community of Organisms Harmful to Plants or Plant Products and against Their Spread within the Community; European Union: Brussels, Belgium, 2000. [Google Scholar]
- Hulme, P.E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 2021, 4, 666–679. [Google Scholar] [CrossRef]
- Klapwijk, M.J.; Hopkins, A.J.; Eriksson, L.; Pettersson, M.; Schroeder, M.; Lindelöw, Å.; Rönnberg, J.; Keskitalo, E.C.H.; Kenis, M. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness. Ambio 2016, 45, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Roques, A.; Rabitsch, W.; Rasplus, J.Y.; Lopez-Vaamonde, C.; Nentwig, W.; Kenis, M. Alien terrestrial invertebrates of Europe. In Handbook of Alien Species in Europe; Hulme, P.E., Nentwig, W., Pysek, P., Vila, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 63–79. [Google Scholar]
- Desprez-Loustau, M.L. Alien fungi of Europe. In Handbook of Alien Species of Europe; Hulme, P.E., Nentwig, W., Pysek, P., Vila, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 15–28. [Google Scholar]
- Liebhold, A.M.; Brockerhoff, E.G.; Garrett, L.J.; Parke, J.L.; Britton, K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 2012, 10, 135–143. [Google Scholar] [CrossRef]
- Roques, A. Alien forest insects in a warmer world and a globalised economy: Impacts of changes in trade, tourism and climate on forest biosecurity. N. Z. J. For. Sci. 2010, 40, 77–94. [Google Scholar]
- Evira-Recuenco, M.; Iturritxa, E.; Raposo, R. Impact of Seed Transmission on the Infection and Development of Pitch Canker Disease in Pinus radiata. Forests 2015, 6, 3353–3368. [Google Scholar] [CrossRef]
- Mittal, R.K.; Anderson, R.L.; Mathur, S.B. Microorganisms Associated with Tree Seeds: World Checklist 1990; Information Report PI-X-96; Forestry Canada, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1990; 57p. [Google Scholar]
- Cleary, M.; Oskay, F.; Doğmuş, H.T.; Lehtijärvi, A.; Woodward, S.; Vettraino, A.M. Cryptic risks to forest biosecurity associated with the global movement of commercial seed. Forests 2019, 10, 459. [Google Scholar] [CrossRef]
- Franić, I.; Prospero, S.; Hartmann, M.; Allan, E.; Auger-Rozenberg, M.A.; Grünwald, N.J.; Kenis, M.; Roques, A.; Schneider, S.; Sniezko, R.; et al. Are traded forest tree seeds a potential source of nonnative pests? Ecol. Appl. 2019, 29, e01971. [Google Scholar] [CrossRef]
- James, R.L. Effects of Water Rinse Treatments on Occurrence of Fungi on Spruce Seed from the Towner Nursery, North Dakota; United States Department of Agriculture Forest Service Northern Region: Missoula, MT, USA, 1987; 4p.
- Willis, R.; Littke, A.; Browning, J.E. Assaying for seed-borne fungi of Douglas-fir and true fir species. In Proceedings of the IUFRO Working Party S2.07-09 (Diseases and Insects in Forest Nurseries), Victoria, BC, Canada, 22–30 August 1990; pp. 251–258. [Google Scholar]
- Wingfield, M.J.; Slippers, B.; Roux, J.; Wingfield, B.D. Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere: This article examines the impact of fungal pathogens introduced in plantation forestry. Bioscience 2001, 51, 134–140. [Google Scholar] [CrossRef]
- Forestry Commission. Guidance for Seed Testing at Forestry Commission Approved Forest Tree Seed Testing Facilities. Internal Document. Forestry Commission: Edinburgh, UK, 2018; 55p, Unpublished Work. [Google Scholar]
- Drenkhan, R.; Tomešova-Haataja, V.; Fraser, S.; Bradshaw, R.E.; Vahalik, P.; Mullett, M.S.; Martin-Garcia, J.; Bulman, L.S.; Wingfield, M.J.; Kirisits, T.; et al. Global geographic distribution and host range of Dothistroma species: A comprehensive review. For. Pathol. 2016, 46, 408–442. [Google Scholar] [CrossRef]
- Mullett, M.S.; Tubby, K.V.; Webber, J.F.; Brown, A.V. A reconsideration of natural dispersal of the pine pathogen Dothistroma septosporum. Plant Pathol. 2016, 65, 1462–1472. [Google Scholar] [CrossRef]
- Tomšovský, M.; Tomešová, V.; Palovčíková, D.; Kostovčík, M.; Rohrer, M.; Hanáček, P.; Jankovský, L. The gene flow and mode of reproduction of Dothistroma septosporum in the Czech Republic. Plant Pathol. 2013, 62, 59–68. [Google Scholar] [CrossRef]
- Jankovský, L.; Bednářová, M.; Palovčíková, D. Dothistroma needle blight Mycosphaerella pini E. Rostrup, a new quarantine pathogen of pines in the CR. J. For. Sci. 2014, 50, 319–326. [Google Scholar] [CrossRef]
- Barnes, I.; Wingfield, M.J.; Carbone, I.; Kirisits, T.; Wingfield, B.D. Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecol. Evol. 2014, 4, 3642–3661. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Plant Health (PLH). European Food Safety Authority Scientific opinion on the risk to plant health posed by Dothistroma septosporum (Dorog.) M. Morelet (Mycosphaerella pini E. Rostrup, syn. Scirrhia pini) and Dothistroma pini Hulbary to the EU territory with the identification and evaluation of risk reduction options. EFSA Panel on Plant Health (PLH), Parma, Italy. EFSA J. 2013, 11, 3026. [Google Scholar]
- Mullett, M.S.; Brown, A.V.; Fraser, S.; Baden, R.; Tubby, K.V. Insights into the pathways of spread and potential origins of Dothistroma septosporum in Britain. Fungal Ecol. 2017, 26, 85–98. [Google Scholar] [CrossRef]
- Lines, R. Experiments on Lodgepole Pine Seed Origins in Britain; Technical Paper 10; Forestry Commission: Edinburgh, Scotland, 1996; 148p. [Google Scholar]
- Forest Research. Archived Seed Testing Certificates 1930s to Current Day. Forest Research, Alice Holt Lodge: Surrey, UK, Unpublished Data 1930–2023.
- Mullett, M.; Peace, A.; Brown, A. Persistence of Dothistroma septosporum on abscised pine needles and its implications for disease management. Plant Dis. 2016, 100, 1271–1277. [Google Scholar] [CrossRef]
- Ivory, M.H. Spore germination and growth in culture of Dothistroma pini var. Keniensis. Trans. Br. Mycol. Soc. 1967, 50, 563–572. [Google Scholar] [CrossRef]
- Escamilla, D.; Rosso, M.L.; Zhang, B. Identification of fungi associated with soybeans and effective seed disinfection treatments. Food Sci. Nutr. 2019, 7, 3194–3205. [Google Scholar] [CrossRef] [PubMed]
- Jaquette, C.B.; Beuchat, L.R.; Mahon, B.E. Efficacy of chlorine and heat treatment in killing Salmonella stanley inoculated onto alfalfa seeds and growth and survival of the pathogen during sprouting and storage. Appl. Environ. Microbiol. 1996, 62, 2212–2215. [Google Scholar] [CrossRef] [PubMed]
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Mangwende, E.; Chirwa, P.W.; Aveling, T.A.S. Evaluation of seed treatments against Colletotrichum kahawae subsp. cigarro on Eucalyptus spp. Crop Prot. 2020, 132, 105113. [Google Scholar] [CrossRef]
- Campbell, A. Conventional Spices Treated with Hazardous Chemicals, Natural Health; CDC, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2015; Volume 365. Available online: https://www.naturalhealth365.com/spices-irradiation-ethylene-oxide-1585.html (accessed on 10 March 2019).
- Rane, B.; Bridges, D.F.; Wu, V.C. Gaseous antimicrobial treatments to control foodborne pathogens on almond kernels and whole black peppercorns. Food Microbiol. 2020, 92, 103576. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.F. Thermotherapy of planting material. Phytopathology 1962, 52, 1244–1255. [Google Scholar]
- Baker, K.F. Seed pathology—Concepts and methods of control. J. Seed Technol. 1979, 4, 57–67. [Google Scholar]
- Cram, M.M.; Fraedrich, S.W. Seed diseases and seedborne pathogens of North America. Tree Plant. Notes 2009, 53, 35–44. [Google Scholar]
- Dumroese, R.K.; James, R.L.; Wenny, D.L.; Gilligan, C.J. Douglas fir seed treatments: Effect on seed germination and seed—Borne organisms. In Proceedings of the Combined Meeting of the Western Forest Nursery Associations, Vernon, BC, Canada, 8–11 August 1988; Volume 167, pp. 155–160. [Google Scholar]
- Agustí-Brisach, C.; Pérez-Sierra, A.; Armengol, J.; García-Jimenez, J.; Berbegal, M. Efficacy of hot water treatment to reduce the incidence of Fusarium circinatum on Pinus radiata seeds. Forestry 2012, 85, 629–635. [Google Scholar] [CrossRef]
- Berbegal, M.; Landeras, E.; Sánchez, D.; Abad-Campos, P.; Pérez-Sierra, A.; Armengol, J. Evaluation of Pinus radiata seed treatments to control Fusarium circinatum: Effects on seed emergence and disease incidence. For. Pathol. 2015, 45, 525–533. [Google Scholar] [CrossRef]
- Clear, R.M.; Patrick, S.K.; Wallis, R.; Turkington, T.K. Effect of dry heat treatment on seed-borne Fusarium graminearum and other cereal pathogens. Can. J. Plant Pathol. 2002, 24, 489–498. [Google Scholar] [CrossRef]
- Gilbert, J.; Woods, S.M.; Turkington, T.K.; Tekauz, A. Effect of heat treatment to control Fusarium graminearum in wheat seed. Can. J. Plant Pathol. 2005, 27, 448–452. [Google Scholar] [CrossRef]
- Koch, E.; Schmitt, A.; Stephan, D.; Kromphardt, C.; Jahn, M.; Krauthausen, H.J.; Forsberg, G.; Werner, S.; Amein, T.; Wright, S.A.; et al. Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds. Eur. J. Plant Pathol. 2010, 127, 99–112. [Google Scholar] [CrossRef]
- Bari, M.L.; Inatsu, Y.; Isobe, S.; Kawamoto, S. Hot water treatments to inactivate Escherichia coli O157: H7 and Salmonella in mung bean seeds. J. Food Prot. 2008, 71, 830–834. [Google Scholar] [CrossRef]
- Crosse, J.E. Bacterial canker of stone-fruits. IV. Investigation of a method for measuring the inoculum potential of cherry trees. Ann. Appl. Biol. 1959, 47, 306–317. [Google Scholar] [CrossRef]
- Ioos, R.; Fabre, B.; Saurat, C.; Fourrier, C.; Frey, P.; Marçais, B. Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine. Phytopathology 2010, 100, 105–114. [Google Scholar] [CrossRef]
- Bradshaw, R.E.; Ganley, R.J.; Jones, W.T.; Dyer, P.S. High levels of dothistromin toxin produced by the forest pathogen Dothistroma pini. Mycol. Res. 2000, 104, 325–332. [Google Scholar] [CrossRef]
- Gosling, P.G. The effect of moist chilling on the subsequent germination of some temperate conifer seeds over a range of temperatures. J. Seed Technol. 1988, 12, 90–98. [Google Scholar]
- International Seed Testing Association (ISTA). International rules for seed testing. In Determination of Moisture Content; International Seed Testing Association: Basserdorf, Switzerland, 2009; Chapter 9; pp. 9.1–9.20. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 December 2023).
- Hartig, F. R Package ‘DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 1 December 2023).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 1 December 2023).
- Archibald, S. Red Band Needle Blight of Conifers in Britain. Ph.D. Thesis, Imperial College London, London, UK, 2009. [Google Scholar]
- Kais, A.G. Environmental factors affecting brown spot infection on longleaf pine. Phytopathology 1975, 65, 1389–1392. [Google Scholar] [CrossRef]
- Gordon, A.G. The processing of cones and seeds. In Seed Manual for Forest Trees; Bulletin 83; Forestry Commission: Edinburgh, UK, 1992; pp. 86–97. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Walters, C.; Hill, L.M.; Wheeler, L.J. Dying while dry: Kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 2005, 45, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, I. Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scand. J. For. Res. 1996, 11, 122–128. [Google Scholar] [CrossRef]
- Barnett, J.P. Sterilizing southern pine seeds with peroxide. Tree Plant. Notes 1976, 27, 17–19. [Google Scholar]
- McCartan, S.A.; Forster, J.; Jinks, R.L.; Rampart, M.P.; Cahalan, C.M. The effect of temperature during cone and seed development on primary dormancy of Scots pine (Pinus sylvestris L.) seeds. New For. 2022, 53, 935–946. [Google Scholar] [CrossRef]
- Enomoto, K.; Takizawa, T.; Ishikawa, N.; Suzuki, T. Hot-water treatments for disinfecting alfalfa seeds inoculated with Escherichia coli Atcc 25922. Food Sci. Technol. Res. 2002, 8, 247–251. [Google Scholar] [CrossRef]
- Núñez, M.R.; Calvo, L. Effect of high temperatures on seed germination of Pinus sylvestris and Pinus halepensis. For. Ecol. Manag. 2000, 131, 183–190. [Google Scholar] [CrossRef]
- Hellum, A.K.; Pelchat, M. Temperature and time affect the release and quality of seed from cones of lodgepole pine from Alberta. Can. J. For. Res. 1979, 9, 154–159. [Google Scholar] [CrossRef]
- Bulman, L.S.; Bradshaw, R.E.; Fraser, S.; Martín-García, J.; Barnes, I.; Musolin, D.L.; La Porta, N.; Woods, A.J.; Diez, J.J.; Koltay, A.; et al. A worldwide perspective on the management and control of Dothistroma needle blight. For. Pathol. 2016, 46, 472–488. [Google Scholar] [CrossRef]
- Tubby, K.; Adamcikova, K.; Adamson, K.; Akiba, M.; Barnes, I.; Boroń, P.; Bragança, H.; Bulgakov, T.; Burgdorf, N.; Capretti, P.; et al. The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola. For. Ecol. Manag. 2023, 536, 120847. [Google Scholar] [CrossRef]
- Ogris, N.; Drenkhan, R.; Vahalík, P.; Cech, T.; Mullett, M.; Tubby, K. The potential global distribution of an emerging forest pathogen, Lecanosticta acicola, under a changing climate. Front. For. Glob. Chang. 2023, 6, 1221339. [Google Scholar] [CrossRef]
Kilning Process | SE1 | SE2 | SE3 | |
---|---|---|---|---|
Heating: step 1 | Time (h) | 74 | 30 | 48 |
Temperature (°C) during heating cycle | Mean: 49.9 Min: 46.6 Max: 51.6 s.e. = 0.09 (25.0 overnight min *) | Mean: 48.5 Min: 47.0 Max: 49.8 s.e. = 0.07 (24.6 overnight min *) | Mean: 39.0 Min: 37.5 Max: 40.2 s.e. = 0.014 | |
Heating: step 2 | Time (h) | N/A | N/A | 17 |
Temperature min/max (°C) | N/A | N/A | 34.3–34.8 Mean = 34.6 s.e. = 0.007 | |
Seed cleaning | Time (h) | 1 ** | 1 ** | N/A *** |
Mean temperature (°C) (min/max) | Mean: 37.6 Min: 35.0 Max: 38.7 s.e. = 0.34 | Mean: 35.3 Min: 32.1 Max: 36.9 s.e. = 0.43 | N/A *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tubby, K.; Forster, J.; Mullett, M.; Needham, R.; Smith, O.; Snowden, J.; McCartan, S. Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock. J. Fungi 2023, 9, 1190. https://doi.org/10.3390/jof9121190
Tubby K, Forster J, Mullett M, Needham R, Smith O, Snowden J, McCartan S. Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock. Journal of Fungi. 2023; 9(12):1190. https://doi.org/10.3390/jof9121190
Chicago/Turabian StyleTubby, Katherine, Jack Forster, Martin Mullett, Robert Needham, Olivia Smith, James Snowden, and Shelagh McCartan. 2023. "Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock" Journal of Fungi 9, no. 12: 1190. https://doi.org/10.3390/jof9121190
APA StyleTubby, K., Forster, J., Mullett, M., Needham, R., Smith, O., Snowden, J., & McCartan, S. (2023). Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock. Journal of Fungi, 9(12), 1190. https://doi.org/10.3390/jof9121190