Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Sample Preparation
2.2. Inoculation
2.3. Transcriptomic Analysis of A. flavus
2.3.1. Total RNA Extraction and Quality Testing
2.3.2. RNA-Seq Library Construction and Sequencing
2.3.3. Mapping Reads and Sequence Assembly
2.3.4. Differential Expression Analysis and Functional Enrichment
2.4. Proteomic Analysis of A. flavus
2.4.1. Total Protein Extraction
2.4.2. Protein Digestion and iTRAQ Labelling
2.4.3. RPLC Separation
2.4.4. LC-MS/MS Analysis
2.4.5. Protein Identification and Annotation
3. Results
3.1. Transcriptomic Analysis of A. flavus Cultured in PDB with STC
3.1.1. Summary of RNA-Seq Data Sets
3.1.2. Identification and Analysis of DEGs
3.2. Proteomic Analysis of A. flavus Cultured in PDB with STC
3.2.1. Protein Concentration Protection in A. flavus
3.2.2. Differential Protein Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mottaghianpour, E.; Nazari, F.; Mehrasbi, M.R.; Hosseini, M.J. Occurrence of Aflatoxin B1 in Baby Foods Marketed in Iran. J. Sci. Food Agric. 2017, 97, 2690–2694. [Google Scholar] [CrossRef]
- Ehsani, A.; Barani, A.; Nasiri, Z. Occurrence of Aflatoxin B1 Contamination in Dairy Cows Feed in Iran. Toxin Rev. 2016, 35, 54–57. [Google Scholar] [CrossRef]
- Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Machinjiri, N.; Monyo, E.S. Aflatoxin B1 Levels in Groundnut Products from Local Markets in Zambia. Mycotoxin Res. 2017, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, S.A.; Attia, S.M.; Alwetaid, M.Y.; Ansari, M.A.; Zoheir, K.M.A.; Nadeem, A.; Al-Shabanah, O.A.; Al-Harbi, M.M.; Ahmad, S.F. β-1,3-Glucan Reverses Aflatoxin B1-Mediated Suppression of Immune Responses in Mice. Life Sci. 2016, 152, 1–13. [Google Scholar] [CrossRef]
- Mukumu, C.K.; Macharia, B.N. Effects of Aflatoxin b1 on Liver, Testis, and Epididymis of Reproductively Mature Male Pigs: Histopathological Evaluation. East Afr. Med. J. 2017, 94, 95–99. [Google Scholar]
- Mughal, M.J.; Peng, X.; Kamboh, A.A.; Zhou, Y.; Fang, J. Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc. Biol. Trace Elem. Res. 2017, 178, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Rieswijkab, L.; Claessena, S.M.H.; Bekersc, O.; van Herwijnena, M.; Theunissena, D.H.J.; Jennenab, D.G.J.; de Kok, T.M.C.M.; Kleinjansab, J.C.S.; van Breda, S.G.J. Aflatoxin B1 Induces Persistent Epigenomic Effects in Primary Human Hepatocytes Associated with Hepatocellular Carcinoma. Toxicology 2016, 350, 31–39. [Google Scholar] [CrossRef]
- Robens, J.F.; Richard, J.L. Aflatoxins in Animal and Human Health. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 69–94. [Google Scholar] [CrossRef]
- Chu, Y.J.; Yang, H.I.; Wu, H.C.; Liu, J.; Wang, L.Y.; Lu, S.N.; Lee, M.H.; Jen, C.L.; You, S.L.; Santella, R.M.; et al. Aflatoxin B1 Exposure Increases the Risk of Cirrhosis and Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers. Int. J. Cancer 2017, 141, 711–720. [Google Scholar] [CrossRef]
- IARC. Some Inorganic Substances, Chlorinated Hydrocarbons, Aromatic Amines, N-Nitroso Compounds and Natural Products. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man; 1972; Volume 1, pp. 1–184. [Google Scholar]
- Bertuzzi, T.; Romani, M.; Rastelli, S.; Mulazzi, A.; Pietri, A. Sterigmatocystin Occurrence in Paddy and Processed Rice Produced in Italy in the Years 2014–2015 and Distribution in Milled Rice Fractions. Toxins 2017, 9, 86. [Google Scholar] [CrossRef]
- Rank, C.; Nielsen, K.F.; Larsen, T.O.; Varga, J.; Samson, R.A.; Frisvad, J.C. Distribution of Sterigmatocystin in Filamentous Fungi. Fungal Biol. 2011, 115, 406–420. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Human. In Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs; WHO: Geneva, Switzerland, 1987. [Google Scholar]
- EFSA CONTAM Panel. Scientific Opinion on the Risk for Public and Animal Health Related to the Presence of Sterigmatocystin in Food and Feed. EFSA J. 2013, 11, 3254. [Google Scholar] [CrossRef]
- Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered Pathway Genes in Aflatoxin Biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.J.; Dobson, A.D.W. Molecular Biology of Mycotoxin Biosynthesis. FEMS Microbiol. Lett. 1999, 175, 149–163. [Google Scholar] [CrossRef]
- Saxena, J.; Mehrotra, B.S. Screening of Spices Commonly Marketed in India for Natural Occurrence of Mycotoxins. J. Food Compos. Anal. 1989, 2, 286–292. [Google Scholar] [CrossRef]
- Yogendrarajah, P.; Deschuyffeleer, N.; Jacxsens, L.; Sneyers, P.J.; Maene, P.; De Saeger, S.; Devlieghere, F.; De Meulenaer, B. Mycological Quality and Mycotoxin Contamination of Sri Lankan Peppers (Piper nigrum L.) and Subsequent Exposure Assessments. Food Control 2014, 41, 219–230. [Google Scholar] [CrossRef]
- Yogendrarajah, P.; Jacxsens, L.; De Saeger, S.; De Meulenaer, B. Co-occurrence of Multiple Mycotoxins in Dry Chili (Capsicum Annum L.) Samples from Markets in Sri Lanka and Belgium. Food Control 2014, 46, 26–34. [Google Scholar] [CrossRef]
- Yoshinari, T.; Suzuki, Y.; Sugita-Konishi, Y.; Ohnishi, T.; Terajima, J. Occurrence of Beauvericin and Enniatins in Wheat Flour and Corn Grits on the Japanese Market, and Their Co-contamination with Type B Trichothecene Mycotoxins. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Walkiewicz, K.; Kozieł, P.; Muc-Wierzgoń, M. Aflatoxins: Characteristics and Impact on Human Health. Postepy Hig. Med. Dosw. Online 2017, 71, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhu, P.; Cui, F.; Pi, F.; Zhang, Y.; Li, Y.; Wang, J.; Sun, X. The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice. Toxins 2017, 9, 28. [Google Scholar] [CrossRef]
- Oswald, I.; Chou, T.; Cossalter, A.; Pinton, P.; Puel, O.; Alassane-Kpembi, I. Co-exposure to Low Doses of the Food Contaminants Deoxynivalenol and Nivalenol Has a Synergistic Inflammatory Effect on Intestinal Explants. Arch. Toxicol. 2017, 91, 2677–2687. [Google Scholar]
- Vejdovszky, K.; Hahn, K.; Braun, D.; Warth, B.; Marko, D. Synergistic Estrogenic Effects of Fusarium and Alternaria Mycotoxins In Vitro. Arch. Toxicol. 2017, 91, 1447–1460. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined Toxic Effects of Mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Jayaraj, A.; Richardson, A. Metabolic Activation of Aflatoxin B1 by Liver Tissue from Male Fischer F344 Rats of Various Ages. Mech. Ageing Dev. 1981, 17, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins Co-contamination: Methodological Aspects and Biological Relevance of Combined Toxicity Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.D.; Haseltine, W.A. Modification of DNA by Aflatoxin B1 Creates Alkali-Labile Lesions in DNA at Positions of Guanine and Adenine. Proc. Natl Acad. Sci. USA 1978, 75, 4120–4124. [Google Scholar] [CrossRef] [PubMed]
- Heidrun, E.-Z.; Barry, S.; Brad, S.; Werner, B.; Hans-Jurgen, A. Characteristic Expression Profiles Induced by Genotoxic Carcinogens in Rat Liver. Toxicol. Sci. 2004, 1, 19–34. [Google Scholar]
- Essigmann, J.M.; Donahue, P.R.; Story, D.L.; Wogan, G.N.; Brunengraber, H. Use of the Isolated Perfused Rat Liver to Study Carcinogen-DNA Adduct Formation from Aflatoxin B1 and Sterigmatocystin. Cancer Res. 1980, 40, 4085–4091. [Google Scholar] [PubMed]
- Sivakumar, V.; Thanislass, J.; Niranjali, S.; Devaraj, H. Lipid Peroxidation as a Possible Secondary Mechanism of Sterigmatocystin Toxicity. Hum. Exp. Toxicol. 2001, 20, 398–403. [Google Scholar] [CrossRef]
- Ueno, Y.; Umemori, K.; Niimi, E.-C.; Tanuma, S.-I.; Nagata, S.; Sugamata, M.; Ihara, T.; Sekijima, M.; Kawai, K.-I.; Ueno, I. Induction of Apoptosis by T-2 Toxin and Other Natural Toxins in HL-60 Human Promyelotic Leukemia Cells. Nat. Toxins 1995, 3, 129–137. [Google Scholar] [CrossRef]
- Xing, X.; Wang, J.; Xing, L.X.; Li, Y.H.; Yan, X.; Zhang, X.H. Involvement of MAPK and PI3K Signaling Pathway in Sterigmatocystin-Induced G(2) Phase Arrest in Human Gastric Epithelium Cells. Mol. Nutr. Food Res. 2011, 55, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, X.; van der Hooft, J.J.; Medema, M.H.; Chen, Z.Y.; Yue, X.; Zhang, Q.; Li, P. Fungi Population Metabolomics and Molecular Network Study Reveal Novel Biomarkers for Early Detection of Aflatoxigenic Aspergillus species. J. Hazard. Mater. 2022, 424, 127173. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Y.; Qi, X.; Zhao, T.; Wang, X.; Ma, F.; Zhang, L.; Zhang, Q.; Li, P. Quantitative Analysis of Metabolites in the Aflatoxin Biosynthesis Pathway for Early Warning of Aflatoxin Contamination by UHPLC-HRMS Combined with QAMS. J. Hazard. Mater. 2022, 431, 128531. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, Y.; Yan, L.; Cheng, K.; Dai, X.; Wan, L.; Guo, W.; Cheng, L.; Liao, B. Deep Sequencing Analysis of Transcriptomes in Aspergillus flavus in Response to Resveratrol. BMC Microbiol. 2015, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Georgianna, D.R.; Fedorova, N.D.; Burroughs, J.L.; Dolezal, A.L.; Bok, J.W.; Horowitz-Brown, S.; Woloshuk, C.P.; Yu, J.; Keller, N.P.; Payne, G.A. Beyond Aflatoxin: Four Distinct Expression Patterns and Functional Roles Associated with Aspergillus flavus Secondary Metabolism Gene Clusters. Mol. Plant Pathol. 2010, 11, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, T.; Subramanyam, C. Oxidative Stress as a Prerequisite for Aflatoxin Production by Aspergillus parasiticus. Free Radic. Biol. Med. 2000, 29, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Adye, J.; Mateles, R.I. Incorporation of Labelled Compounds into Aflatoxins. Biochim. Biophys. Acta 1964, 86, 418–420. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Applebaum, R.S.; Conway, P. Effect of Theobromine on Growth and Aflatoxin Production by Aspergillus parasiticus. J. Food Saf. 1978, 1, 211–216. [Google Scholar] [CrossRef]
- Reddy, T.V.; Viswanathan, L.; Venkitasubramanian, T.A. Factors Affecting Aflatoxin Production by Aspergillus parasiticus in a Chemically Defined Medium. J. Gen. Microbiol. 1979, 114, 409–413. [Google Scholar] [CrossRef]
- Chang, P.K.; Hua, S.S.; Sarreal, S.B.; Li, R.W. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids. Toxins 2015, 7, 3887–3902. [Google Scholar] [CrossRef]
- Wen Rui, C.; Guo Li, G.; Xin Li, L.; Wei, H.; Zhi Feng, L.; Hong, L.; Yue Zhong, L. Optimization of Epothilone B Production by Sorangium cellulosum Using Multiple Steps of the Response Surface Methodology. Afr. J. Biotechnol. 2011, 10, 11058–11070. [Google Scholar] [CrossRef]
- Turło, J.; Gajzlerska, W.; Klimaszewska, M.; Król, M.; Dawidowski, M.; Gutkowska, B.E. Enhancement of Tacrolimus Productivity in Streptomyces tsukubaensis by the Use of Novel Precursors for Biosynthesis. Enzyme Microb. Technol. 2012, 51, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Lafont, P.; Debeaupuis, J.P. Effect of Sterigmatocystin on the Toxinogenesis of the Aspergillus flavus Group. Mycopathologia. 1979, 69, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, D.; Ehrlich, K.C.; Cleveland, T.E. Oxidation-Reduction Reactions in Biosynthesis of Secondary Metabolites. In Handbook of Applied Mycology; Bhatnagar, D., Lillehoj, E.B., Arora, D.K., Eds.; Mycotoxins in Ecological Systems; Dekker: New York, NY, USA, 1992; Volume 5. [Google Scholar]
- Dutton, M.F. Enzymes and Aflatoxin Biosynthesis. Microbiol. Rev. 1988, 52, 274–295. [Google Scholar] [CrossRef]
- Kiser, R.C.; Niehaus, W.G. Purification and Kinetic Characterization of Mannitol-1-Phosphate Dehydrogenase from Aspergillus niger. Arch. Biochem. Biophys. 1981, 211, 613–621. [Google Scholar] [CrossRef]
- Woloshuk, C.P.; Prieto, R. Genetic Organization and Function of the Aflatoxin B1 Biosynthetic Genes. FEMS Microbiol. Lett. 1998, 160, 169–176. [Google Scholar] [CrossRef]
- Saxena, M.; Mukerji, K.G.; Raj, H.G. Positive Correlation Exists Between Glutathione S-transferase Activity and Aflatoxin Formation in Aspergillus flavus. Biochem. J. 1988, 254, 567–570. [Google Scholar] [CrossRef]
- Allameh, A.; Razzaghi Abyane, M.; Shams, M.R.; Rezaee, M.B.; Jaimand, K. Effects of Neem Leaf Extract on Production of Aflatoxins and Activities of Fatty Acid Synthetase, Isocitrate Dehydrogenase and Glutathione S-transferase in Aspergillus parasiticus. Mycopathologia 2002, 154, 79–84. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Proteome Discoverer version | 2.1 |
Protein Database | Aspergillus_flavus.JCVI-afl1-v2.0.pep.all.fasta |
Cys alkylation | Iodoacetamide |
Dynamic Modification | Oxidation (M), Acetyl (Protein N-Terminus), iTRAQ8 plex (Y) |
Static Modification | iTRAQ8 plex (K), iTRAQ8 plex (N-Terminus), Carbamidomethyl (C) |
Enzyme Name | Trypsin (Full) |
Max. Missed Cleavage Sites | 2 |
Precursor Mass Tolorance | 20 ppm |
Fragment Mass Tolorance | 0.1 Da |
Validation based on | q-value |
Gene_Id | Expression Values (RPKM) | Log2FC (TJ/CK) | Gene Function Description | Expression Regulation | |
---|---|---|---|---|---|
CK | TJ | ||||
AFLA_139200 | 152.1 | 0.089 | −9.792 | aflQ/ordA/ord-1/oxidoreductase/cytochrome P450 monooxigenase | down |
AFLA_139330 | 3153.503 | 1.854 | −9.854 | aflH/adhA/Short-chain alcohol dehydrogenase | down |
AFLA_125300 | 8.129 | 1.8 | −1.96 | aflD/nor-1/Norsolorinic acid ketoreductase | down |
AFLA_139240 | 1044.919 | 0.238 | −10.69 | aflLa/hypB/hypothetical protein | down |
AFLA_066940 | 8.593 | 0.134 | −5.037 | aflO/omtB/dmtA/O-methyltransferase | down |
AFLA_139320 | 1900.32 | 0.484 | −11.16 | aflJ/estA/esterase | down |
AFLA_139410 | 196.808 | 4.375 | −5.187 | aflC/pksA/pksL1/polyketide synthase | down |
AFLA_139190 | 728.711 | 0.115 | −11.73 | aflK/vbs/VERB synthase | down |
AFLA_139220 | 2925.138 | 0.576 | −11.66 | aflO/omtB/dmtA/O-methyltransferase | down |
AFLA_139400 | 2940.438 | 1.016 | −10.62 | aflCa/hypC/hypothetical protein | down |
AFLA_139390 | 2307.841 | 5.638 | −7.266 | aflD/nor-1/reductase | down |
AFLA_139260 | 786.053 | 0.138 | −11.47 | aflG/avnA/ord-1/cytochrome P450 monooxygenase | down |
AFLA_139210 | 917.681 | 0.221 | −11.29 | aflP/omtA/omt-1/O-methyltransferase | down |
AFLA_046360 | 27.569 | 99.777 | 2.076 | acetyl-CoA carboxylase | up |
Gene | Product |
---|---|
Aflatoxin biosynthesis | |
AFLA_139210 | aflP/omtA/omt-1/O-methyltransferase A |
AFLA_139220 | aflO/omtB/dmtA/O-methyltransferase B |
AFLA_139190 | aflK/vbs/VERB synthase |
AFLA_139320 | aflJ/estA/esterase |
AFLA_139410 | aflC/pksA/pksL1/polyketide synthase |
AFLA_139260 | aflG/avnA/ord-1/cytochrome P450 monooxygenase |
AFLA_139330 | aflH/adhA/short-chain alcohol dehydrogenase |
Glutathione metabolism | |
AFLA_010790 | elongation factor 1 gamma, putative |
AFLA_010930 | glutathione S-transferase family protein, putative |
AFLA_016400 | glutathione-S-transferase, putative |
AFLA_086620 | glucose-6-phosphate 1-dehydrogenase |
AFLA_079910 | glutathione peroxidase Hyr1, putative |
AFLA_046620 | glutathione-S-transferase, putative |
AFLA_119330 | glutathione-S-transferase theta, GST, putative |
AFLA_031820 | glutathione-S-transferase GstA |
AFLA_083370 | glutathione oxidoreductase Glr1, putative |
Tryptophan metabolism | |
AFLA_10879 | aldehyde dehydrogenase AldA, putative |
0AFLA_034380 | catalase, putative |
AFLA_090690 | mycelial catalase Cat1 |
AFLA_050600 | betaine-aldehyde dehydrogenase, putative |
AFLA_056170 | spore-specific catalase CatA |
AFLA_122110 | bifunctional catalase-peroxidase Cat2 |
Starch and sucrose metabolism | |
AFLA_004660 | glycogen synthase Gsy1, putative |
AFLA_122400 | glucan 1,4-alpha-glucosidase, putative |
AFLA_018550 | glycogen phosphorylase GlpV/Gph1, putative |
AFLA_068300 | 1,3-beta-glucanosyltransferase Bgt1 |
AFLA_081340 | glycogen debranching enzyme Gdb1, putative |
AFLA_119670 | glycogen branching enzyme GbeA, putative |
Fructose and mannose metabolism | |
AFLA_015580 | sorbitol/xylulose reductase Sou1-like, putative |
AFLA_098700 | carbonyl reductase, putative |
AFLA_133940 | conserved hypothetical protein |
AFLA_027310 | fructose-1,6-bisphosphatase Fbp1, putative |
AFLA_073670 | fructose-1,6-bisphosphatase Fbp1, putative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zeng, R.; Chen, P.; Huang, C.; Xu, K.; Huang, X.; Wang, X. Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus. J. Fungi 2023, 9, 1193. https://doi.org/10.3390/jof9121193
Zhao Y, Zeng R, Chen P, Huang C, Xu K, Huang X, Wang X. Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus. Journal of Fungi. 2023; 9(12):1193. https://doi.org/10.3390/jof9121193
Chicago/Turabian StyleZhao, Yarong, Rui Zeng, Peirong Chen, Chulan Huang, Kaihang Xu, Xiaomei Huang, and Xu Wang. 2023. "Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus" Journal of Fungi 9, no. 12: 1193. https://doi.org/10.3390/jof9121193
APA StyleZhao, Y., Zeng, R., Chen, P., Huang, C., Xu, K., Huang, X., & Wang, X. (2023). Transcriptomic and Proteomic Insights into the Effect of Sterigmatocystin on Aspergillus flavus. Journal of Fungi, 9(12), 1193. https://doi.org/10.3390/jof9121193