Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Products
2.2. Sampling and Extraction Methods
2.3. Determination of Phenolic Content
2.4. Determination of Antioxidant Capacity
2.5. Antibacterial Activity
- % RIZD: percentage of the relative diameter of the inhibition zone, measured in mm.
- IZD: inhibition zone diameter measured in mm [40].
2.6. Statistical Analysis
3. Results
3.1. Phenolic Content
3.2. Antioxidant Capacity
3.3. Antibacterial Activity
3.4. Correlation and Principal Components Analysis
3.4.1. Phenolic Content and Antioxidant Capacity
3.4.2. Phenolic Content and Antibacterial Activity
4. Discussion
4.1. Phenolic Content
4.1.1. Total Phenols
4.1.2. Ortho-Diphenols
4.1.3. Flavonoids
4.2. Antioxidant Capacity
4.2.1. ABTS
4.2.2. DPPH
4.2.3. FRAP
4.3. Antibacterial Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a Potential Source of Prebiotics: A Review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.Y.; Hsieh, Y.C.; Lee, T.T. The Effects of Fungal Feed Additives in Animals: A Review. Animals 2020, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, P.E.; Boa, E.; Hyde, K.D.; Li, H. Macrofungi as Food. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 405–417. ISBN 9780323851800. [Google Scholar]
- Subramaniam, S.; Jiao, S.; Zhang, Z.; Jing, P. Impact of Post-Harvest Processing or Thermal Dehydration on Physiochemical, Nutritional and Sensory Quality of Shiitake Mushrooms. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2560–2595. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kamal, S.; Sharma, V. Status and Trends in World Mushroom Production-III-World Production of Different Mushroom Species in 21st Century. Mushroom Res. 2021, 29, 75. [Google Scholar] [CrossRef]
- Ahmad, I.; Arif, M.; Xu, M.; Zhang, J.; Ding, Y.; Lyu, F. Therapeutic Values and Nutraceutical Properties of Shiitake Mushroom (Lentinula edodes): A Review. Trends Food Sci. Technol. 2023, 134, 123–135. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.W.; Chang, J.S.; Yang, F.C. Recent Advances and Future Directions on the Valorization of Spent Mushroom Substrate (SMS): A Review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Dhar, B.L. Mushrooms and Human Civilization. In Edible and Medicinal Mushrooms; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Pandey, A.K.; Rajan, S.; Sarsaiya, S.; Jain, S.K. Mushroom for the National Circular Economy. Int. J. Sci. Res. Biol. Sci. 2020, 7, 61–69. [Google Scholar]
- Dessie, W.; Luo, X.; Tang, J.; Tang, W.; Wang, M.; Tan, Y.; Qin, Z. Valorisation of Industrial Hemp and Spent Mushroom Substrate with the Concept of Circular Economy. Chem. Eng. Trans. 2021, 89, 631–636. [Google Scholar] [CrossRef]
- Kumar, R. Marketing and Distribution of Mushroom. In Cases in Management; ATTRA: Box Hill, Australia, 2020; pp. 57–60. [Google Scholar]
- Atallah, E.; Zeaiter, J.; Ahmad, M.N.; Leahy, J.J.; Kwapinski, W. Hydrothermal Carbonization of Spent Mushroom Compost Waste Compared against Torrefaction and Pyrolysis. Fuel Process. Technol. 2021, 216, 106795. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, W.; Shen, Y.; Wang, Y.; Dai, Y.C. Edible Mushroom Cultivation for Food Security and Rural Development in China: Bio-Innovation, Technological Dissemination and Marketing. Sustainability 2014, 6, 2961–2973. [Google Scholar] [CrossRef]
- Beckers, S.J.; Dallo, I.A.; Del Campo, I.; Rosenauer, C.; Klein, K.; Wurm, F.R. From Compost to Colloids—Valorization of Spent Mushroom Substrate. ACS Sustain. Chem. Eng. 2019, 7, 6991–6998. [Google Scholar] [CrossRef]
- Mohd Hanafi, F.H.; Rezania, S.; Mat Taib, S.; Md Din, M.F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J.; Ebrahimi, S.S. Environmentally Sustainable Applications of Agro-Based Spent Mushroom Substrate (SMS): An Overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Elsakhawy, T.; Tawfik, W. Evaluation of Spent Mushroom Substrate Extract as Biofertilizer for Growth Improvement of Rice (Oriza sativa). Egypt. J. Soil Sci. 2019, 60, 31–42. [Google Scholar] [CrossRef]
- He, P.; Li, F.; Huang, L.; Xue, D.; Liu, W.; Xu, C. Chemical Characterization and Antioxidant Activity of Polysaccharide Extract from Spent Mushroom Substrate of Pleurotus Eryngii. J. Taiwan Inst. Chem. Eng. 2016, 69, 48–53. [Google Scholar] [CrossRef]
- Phan, C.W.; Sabaratnam, V. Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef]
- Brekke, T. The Circular Economy. In Foundations of a Sustainable Economy; Routledge: London, UK, 2021; pp. 35–52. [Google Scholar] [CrossRef]
- Chiaraluce, G.; Bentivoglio, D.; Finco, A. Circular Economy for a Sustainable Agri-Food Supply Chain: A Review for Current Trends and Future Pathways. Sustainability 2021, 13, 9294. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and Its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Polat, E.; Uzun, H.I.; Topçuoǧlu, B.; Önal, K.; Onus, A.N.; Karaca, M. Effects of Spent Mushroom Compost on Quality and Productivity of Cucumber (Cucumis sativus L.) Grown in Greenhouses. Afr. J. Biotechnol. 2009, 8, 176–180. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Changes in Physical, Chemical, and Microbiological Properties during the Two-Stage Co-Composting of Green Waste with Spent Mushroom Compost and Biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef]
- Pérez-Chávez, A.M.; Mayer, L.; Albertó, E. Mushroom Cultivation and Biogas Production: A Sustainable Reuse of Organic Resources. Energy Sustain. Dev. 2019, 50, 50–60. [Google Scholar] [CrossRef]
- Baptista, F.; Almeida, M.; Paié-Ribeiro, J.; Barros, A.N.; Rodrigues, M. Unlocking the Potential of Spent Mushroom Substrate (SMS) for Enhanced Agricultural Sustainability: From Environmental Benefits to Poultry Nutrition. Life 2023, 13, 1948. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wu, S.; He, J.; Pang, C.; Deng, Y.; Dong, R. Fungal Pretreatment by Phanerochaete Chrysosporium for Enhancement of Biogas Production from Corn Stover Silage. Appl. Biochem. Biotechnol. 2014, 174, 1907–1918. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and Mechanics of Fungal Mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.B.; Wösten, H.A.B.; Krijgsheld, P. Hydrophobin Gene Deletion and Environmental Growth Conditions Impact Mechanical Properties of Mycelium by Affecting the Density of the Material. Sci. Rep. 2018, 8, 4703. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; González-Marcos, A.; Vergara-González, E.P.; Alba-Elías, F. Bioremediation of Waste Water to Remove Heavy Metals Using the Spent Mushroom Substrate of Agaricus Bisporus. Water 2019, 11, 454. [Google Scholar] [CrossRef]
- Fortin Faubert, M.; Hijri, M.; Labrecque, M. Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant. Plants 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Van Doan, H.; Hoseinifar, S.H.; Dawood, M.A.O.; Chitmanat, C.; Tayyamath, K. Effects of Cordyceps Militaris Spent Mushroom Substrate and Lactobacillus Plantarum on Mucosal, Serum Immunology and Growth Performance of Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 70, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhang, R.; Zicari, S. Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Steven, Z., Eds.; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128141397. [Google Scholar]
- Hu, H.; Zhang, Z.; Lei, Z.; Yang, Y.; Sugiura, N. Comparative Study of Antioxidant Activity and Antiproliferative Effect of Hot Water and Ethanol Extracts from the Mushroom Inonotus Obliquus. J. Biosci. Bioeng. 2009, 107, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Agcam, E.; Akyıldız, A.; Balasubramaniam, V.M. Optimization of Anthocyanins Extraction from Black Carrot Pomace with Thermosonication. Food Chem. 2017, 237, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and Antioxidant Analysis of Medicinal and Food Plants towards Bioactive Food and Pharmaceutical Resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, M.J.; Dias, C.S.P.; Martinez-Murcia, A.; Bennett, R.N.; Aires, A.; Rosa, E.A.S. Antibacterial Effects of Glucosinolate-Derived Hydrolysis Products against Enterobacteriaceae and Enterococci Isolated from Pig Ileum Segments. Foodborne Pathog. Dis. 2012, 9, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Aires, A.; Mota, V.R.; Saavedra, M.J.; Monteiro, A.A.; Simões, M.; Rosa, E.A.S.; Bennett, R.N. Initial in Vitro Evaluations of the Antibacterial Activities of Glucosinolate Enzymatic Hydrolysis Products against Plant Pathogenic Bacteria. J. Appl. Microbiol. 2009, 106, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Lin, M.J.; Chao, Y.P.; Chiang, C.J.; Jea, Y.S.; Lee, T.T. Effects of Spent Mushroom Compost Meal on Growth Performance and Meat Characteristics of Grower Geese. Rev. Bras. Zootec. 2016, 45, 281–287. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Muszyńska, B.; Motyl, P.; Pasko, P.; Ekiert, H. Phenolic Compounds and Antioxidant Activity in Some Species of Polyporoid Mushrooms from Poland. Int. J. Med. Mushrooms 2012, 14, 385–393. [Google Scholar] [CrossRef]
- Wu, X.J.; Hansen, C. Antioxidant Capacity, Phenolic Content, and Polysaccharide Content of Lentinus Edodes Grown in Whey Permeate-Based Submerged Culture. J. Food Sci. 2008, 73, M1–M8. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between In Vivo and In Vitro Samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Orhan, I.; Üstün, O. Determination of Total Phenol Content, Antioxidant Activity and Acetylcholinesterase Inhibition in Selected Mushrooms from Turkey. J. Food Compos. Anal. 2011, 24, 386–390. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Lavega, R.; Grifoll, V.; Pérez-clavijo, M. Comparative Evaluation of Antioxidant Activities in Mycelia, Fruiting Bodies and Spent Mushroom Substrate of Edible Mushrooms. Res. Sq. 2023, 1–25. [Google Scholar] [CrossRef]
- Dubost, N.J.; Ou, B.; Beelman, R.B. Quantification of Polyphenols and Ergothioneine in Cultivated Mushrooms and Correlation to Total Antioxidant Capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Liu, C.L.; Tsai, C.F.; Lin, W.C.; Chang, S.C.; Der Shih, H.; Shy, Y.M.; Lee, T.T. Evaluation of Waste Mushroom Compost as a Feed Supplement and Its Effects on the Fat Metabolism and Antioxidant Capacity of Broilers. Animals 2020, 10, 445. [Google Scholar] [CrossRef]
- Reis, F.S.; Pereira, E.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Biomolecule Profiles in Inedible Wild Mushrooms with Antioxidant Value. Molecules 2011, 16, 4328–4338. [Google Scholar] [CrossRef]
- Dimitrijevic, M.V.; Mitic, V.D.; Stankov-Jovanovic, V.P.; Nikolic, J.S.; Stojanovic, G.S. Comprehensive Evaluation of the Antioxidant Activity of Six Wild Edible Mushroom Species. Adv. Technol. 2016, 5, 53–59. [Google Scholar] [CrossRef]
- Garcia, J.; Afonso, A.; Fernandes, C.; Nunes, F.M.; Marques, G.; Saavedra, M.J. Comparative Antioxidant and Antimicrobial Properties of Lentinula edodes Donko and Koshin Varieties against Priority Multidrug-Resistant Pathogens. S. Afr. J. Chem. Eng. 2021, 35, 98–106. [Google Scholar] [CrossRef]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogoń, K.; Bernaś, E.; Duda-Chodak, A. Nutraceuticals and Antioxidant Activity of Prepared for Consumption Commercial Mushrooms Agaricus Bisporus and Pleurotus Ostreatus. J. Food Qual. 2015, 38, 111–122. [Google Scholar] [CrossRef]
- Sudha, G.; Vadivukkarasi, S.; Shree, R.B.I.; Lakshmanan, P. Antioxidant Activity of Various Extracts from an Edible Mushroom Pleurotus Eous. Food Sci. Biotechnol. 2012, 21, 661–668. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic Profiles, Antioxidant Capacities and Metal Chelating Ability of Edible Mushrooms Commonly Consumed in China. LWT 2016, 72, 423–431. [Google Scholar] [CrossRef]
- Tel, G.; Apaydın, M.; Duru, M.E.; Öztürk, M. Antioxidant and Cholinesterase Inhibition Activities of Three Tricholoma Species with Total Phenolic and Flavonoid Contents: The Edible Mushrooms from Anatolia. Food Anal. Methods 2012, 5, 495–504. [Google Scholar] [CrossRef]
- Yap, H.Y.Y.; Aziz, A.A.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Tan, N.H. Energy and Nutritional Composition of Tiger Milk Mushroom (Lignosus tigris Chon S. Tan) Sclerotia and the Antioxidant Activity of Its Extracts. Int. J. Med. Sci. 2014, 11, 602–607. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Wang, L.; Walid, E.; Zhang, H. In Vitro Antioxidant and Anti-Proliferation Activities of Polysaccharides from Various Extracts of Different Mushrooms. Int. J. Mol. Sci. 2012, 13, 5801–5817. [Google Scholar] [CrossRef]
- Morales, D.; Piris, A.J.; Ruiz-Rodriguez, A.; Prodanov, M.; Soler-Rivas, C. Extraction of Bioactive Compounds against Cardiovascular Diseases from Lentinula edodes Using a Sequential Extraction Method. Biotechnol. Prog. 2018, 34, 746–755. [Google Scholar] [CrossRef]
- Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, Purification and Antibacterial Activities of a Polysaccharide from Spent Mushroom Substrate. Int. J. Biol. Macromol. 2012, 50, 840–843. [Google Scholar] [CrossRef]
- Asri, R.M.; Yahya, H.; Rehan, M.M.; Yahya, H.N. Antibacterial Properties of Ethanolic Extract of Mushrooms Solid in Malaysian Local Market. East Afr. Sch. J. Agric. Life Sci 2019, 2, 516–523. [Google Scholar] [CrossRef]
- Erdoğan Eliuz, E.A. Antibacterial Activity and Antibacterial Mechanism of Ethanol Extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (Button Mushroom). Int. J. Environ. Health Res. 2022, 32, 1828–1841. [Google Scholar] [CrossRef]
- Jeon, Y.-M. Effects of Shiitake Mushroom Extract on Antimicrobial Activity against Periodontopathogens and Inflammatory Condition of Human Gingival Fibroblast. J. Dent. Rehabil. Appl. Sci. 2022, 38, 90–96. [Google Scholar] [CrossRef]
- Rao, J.R.; Millar, B.C.; Moore, J.E. Antimicrobial Properties of Shiitake Mushrooms (Lentinula edodes). Int. J. Antimicrob. Agents 2009, 33, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Van Ba, H.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kim, J.H.; Ham, J.S.; Park, B.Y.; Pil Nam, S. Antioxidant and Anti-Foodborne Bacteria Activities of Shiitake by-Product Extract in Fermented Sausages. Food Control 2016, 70, 201–209. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef] [PubMed]
Method | Solvent | Tmax (°C) | Ref. | |
---|---|---|---|---|
SE | w | Distilled water | 50 | [36] |
et | 50% (v/v) ethanol | |||
LE | w | Distilled water | 40 | [36] |
et | 50% (v/v) ethanol | |||
LE-HT | w | Distilled water | 50 | [36] |
et | 50% (v/v) ethanol | |||
UE | w | Distilled water | 40 | [37] |
et | 50% (v/v) ethanol | |||
COMB | w | Distilled water | 40 | [36,37] |
et | 50% (v/v) ethanol | |||
COMB-HT | w | Distilled water | 50 | [36,37] |
et | 50% (v/v) ethanol |
Samples | Total Phenols (mg GA g−1) | Ortho-Diphenols (mg GA g−1) | Flavonoids (mg CAT g−1) |
---|---|---|---|
w-SE | 108.22 ± 3.88 d | 271.09 ± 9.61 ef | 43.40 ± 5.86 c |
et-SE | 97.99 ± 9.60 de | 214.52 ± 16.68 g | 29.93 ± 2.23 de |
w-LE | 88.17 ± 7.05 e | 282.22 ± 8.49 e | 25.80 ± 3.56 e |
et-LE | 108.86 ± 10.26 d | 239.56 ± 3.13 fg | 35.70 ± 0.98 cde |
w-LE-HT | 130.30 ± 11.99 c | 375.95 ± 15.27 cd | 38.91 ± 0.52 cd |
et-LE-HT | 250.92 ± 13.00 a | 658.19 ± 15.11 a | 90.93 ± 10.82 a |
w-UE | 85.54 ± 9.33 e | 294.77 ± 6.37 e | 36.47 ± 4.16 cd |
et-UE | 137.21 ± 11.17 c | 399.57 ± 15.65 c | 62.80 ± 6.65 b |
w-COMB | 63.91 ± 1.83 f | 298.02 ± 6.05 e | 36.89 ± 4.17 cd |
et-COMB | 143.13 ± 5.35 c | 348.30 ± 25.22 d | 58.20 ± 2.70 b |
w-COMB-HT | 109.46 ± 2.31 d | 397.53 ± 32.94 c | 59.72 ± 0.91 b |
et-COMB-HT | 203.81 ± 8.73 b | 514.30 ± 2.54 b | 67.62 ± 2.49 b |
Samples | ABTS•+ (mmol Trolox g−1) | DPPH• (mmol Trolox g−1) | FRAP (mmol Trolox g−1) |
---|---|---|---|
w-SE | 0.391 ± 0.033 g | 0.458 ± 0.036 e | 0.638 ± 0.049 de |
et-SE | 0.428 ± 0.016 fg | 0.592 ± 0.028 d | 0.500 ± 0.044 g |
w-LE | 0.533 ± 0.056 de | 0.276 ± 0.011 f | 0.711 ± 0.055 d |
et-LE | 0.486 ± 0.034 ef | 0.650 ± 0.041 c | 0.434 ± 0.021 g |
w-LE-HT | 0.619 ± 0.019 bc | 0.261 ± 0.007 f | 0.866 ± 0.059 bc |
et-LE-HT | 0.906 ± 0.030 a | 1.449 ± 0.028 a | 1.197 ± 0.036 a |
w-UE | 0.408 ± 0.016 g | 0.259 ± 0.025 f | 0.600 ± 0.013 ef |
et-UE | 0.658 ± 0.072 b | 0.563 ± 0.012 d | 0.525 ± 0.046 fg |
w-COMB | 0.407 ± 0.030 g | 0.240 ± 0.011 f | 0.434 ± 0.033 g |
et-COMB | 0.670 ± 0.047 b | 0.709 ± 0.016 b | 0.609 ± 0.057 ef |
w-COMB-HT | 0.566 ± 0.056 cd | 0.472 ± 0.047 e | 0.802 ± 0.020 c |
et-COMB-HT | 0.841 ± 0.060 a | 0.696 ± 0.006 bc | 0.913 ± 0.085 b |
RIZD (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gram+ | Gram− | |||||||||||||||||
S. aureus (ATCC 23235) | S. aureus (C511) | S. aureus (C612) | E. faecium (C1) | E. faecium (C14) | E. coli (ATCC 25922) | A. hydrophila (C2GSPA1) | P. aeruginosa (C3GSPR1) | V. fluvialis (RimA1TCBS) | ||||||||||
Extracts | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN | SMS | S + CN |
w-SE | 0 | 88.9 | 0 | 86.7 | 0 | 97.1 | 0 | 88.2 | 0 | 93.8 | 0 | 0 | 44.4 | 88.9 | 66.7 | 75.0 | 30.4 | 89.1 |
et-SE | 38.9 | 94.4 | 0 | 86.7 | 0 | 91.2 | 0 | 88.2 | 0 | 93.8 | 0 | 87.5 | 0 | 88.9 | 75.0 | 75.0 | 0 | 87.0 |
w-LE | 0 | 88.9 | 0 | 93.3 | 0 | 97.1 | 0 | 94.1 | 0 | 100.0 | 0 | 0 | 50.0 | 94.4 | 75.0 | 83.3 | 30.4 | 87.0 |
et-LE | 38.9 | 94.4 | 0 | 86.7 | 0 | 97.1 | 0 | 97.1 | 0 | 103.1 | 0 | 87.5 | 44.4 | 83.3 | 66.7 | 75.0 | 0 | 91.3 |
w-LE-HT | 0 | 94.4 | 0 | 100.0 | 0 | 100.0 | 0 | 94.1 | 0 | 100.0 | 0 | 43.8 | 50.0 | 100.0 | 75.0 | 83.3 | 0 | 87.0 |
et-LE-HT | 38.9 | 88.9 | 0 | 93.3 | 0 | 97.1 | 0 | 94.1 | 0 | 100.0 | 0 | 75.0 | 55.6 | 77.8 | 83.3 | 108.3 | 34.8 | 87.0 |
w-UE | 38.9 | 94.4 | 0 | 93.3 | 0 | 97.1 | 0 | 97.1 | 0 | 100.0 | 0 | 100.0 | 44.4 | 88.9 | 66.7 | 75.0 | 30.4 | 87.0 |
et-UE | 0 | 94.4 | 0 | 86.7 | 0 | 94.1 | 0 | 100.0 | 0 | 106.3 | 0 | 93.8 | 0 | 83.3 | 75.0 | 75.0 | 0 | 87.0 |
w-COMB | 0 | 88.9 | 0 | 93.3 | 0 | 97.1 | 0 | 97.1 | 0 | 103.1 | 0 | 81.3 | 38.9 | 88.9 | 58.3 | 75.0 | 0 | 82.6 |
et-COMB | 0 | 94.4 | 0 | 86.7 | 0 | 94.1 | 0 | 94.1 | 0 | 100.0 | 0 | 75.0 | 0 | 83.3 | 66.7 | 75.0 | 0 | 87.0 |
w-COMB-HT | 0 | 94.4 | 0 | 93.3 | 0 | 97.1 | 0 | 97.1 | 0 | 103.1 | 0 | 81.3 | 44.4 | 88.9 | 66.7 | 75.0 | 30.4 | 87.0 |
et-COMB-HT | 38.9 | 100.0 | 0 | 100.0 | 0 | 97.1 | 0 | 102.9 | 0 | 109.4 | 0 | 56.3 | 38.9 | 88.9 | 66.7 | 100.0 | 66.7 | 75.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, F.; Campos, J.; Costa-Silva, V.; Pinto, A.R.; Saavedra, M.J.; Ferreira, L.M.; Rodrigues, M.; Barros, A.N. Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. J. Fungi 2023, 9, 1200. https://doi.org/10.3390/jof9121200
Baptista F, Campos J, Costa-Silva V, Pinto AR, Saavedra MJ, Ferreira LM, Rodrigues M, Barros AN. Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. Journal of Fungi. 2023; 9(12):1200. https://doi.org/10.3390/jof9121200
Chicago/Turabian StyleBaptista, Filipa, Joana Campos, Valéria Costa-Silva, Ana Rita Pinto, Maria José Saavedra, Luis Mendes Ferreira, Miguel Rodrigues, and Ana Novo Barros. 2023. "Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects" Journal of Fungi 9, no. 12: 1200. https://doi.org/10.3390/jof9121200
APA StyleBaptista, F., Campos, J., Costa-Silva, V., Pinto, A. R., Saavedra, M. J., Ferreira, L. M., Rodrigues, M., & Barros, A. N. (2023). Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. Journal of Fungi, 9(12), 1200. https://doi.org/10.3390/jof9121200