Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Disease Development of Freshly Harvested C. pilosula during Different Storage Stages
2.3. Isolation and Purification of Pathogens Causing Disease of Freshly Harvested C. pilosula during Different Storage Stages
2.4. Identification of Pathogens Causing Disease in Freshly Harvested C. pilosula during Different Storage Stages
2.4.1. Morphological Identification
2.4.2. Molecular Identification
2.5. Pathogenicity Test
2.6. Effect of Ozone Treatment on the Development of C. pilosula Postharvest Disease
2.7. Effect of Ozone Treatment on the Mycotoxin Accumulation in the Rotten Tissue
2.8. Statistical Analysis
3. Results
3.1. Disease Development of Freshly Harvested C. pilosula during Different Storage Stages
3.2. The Isolation of Pathogen from C. pilosula with Postharvest Disease during Different Storage Stages
3.3. Morphological Identification of Pathogens at Different Storage Stages
3.4. Molecular Identification of Pathogens at Different Storage Stages
3.5. Pathogenicity Test
3.6. Ozone Fumigation Inhibited the Development of C. pilosula Postharvest Disease
3.7. Ozone Fumigation Inhibited the Mycotoxin Accumulation in the Rotten Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Y.E.; Lee, J.S.; Kim, H.M.; Ahn, J.; Jung, I.H.; Ryu, J.H.; Choi, J.; Jang, D.S. Chemical constituents of the roots of Codonopsis lanceolata. Arch. Pharm. Res. 2018, 41, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.M.; Liu, J.S.; Wang, M.; Cao, T.T.; Qi, Y.D.; Zhang, B.G.; Sun, X.B.; Liu, H.T.; Xiao, P.G. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.Z.; Zhang, C.; Jing, L.R.; Feng, M.; Li, R.; Yang, Y. The structural characterization and immune modulation activities comparison of Codonopsis pilosula polysaccharide (CPPS) and Selenizing cpps (sCPPS) on mouse in vitro and vivo. Int. J. Biol. Macromol. 2020, 160, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.J.; Bi, Q.M.; Jiang, S.R.; Tao, J.H.; Liu, L.Y.; Yue, H.L.; Zhao, X.H. Hypoglycemic activity of Codonopsis pilosula (Franch.) Nannf. in vitro and in vivo and its chemical composition identification by UPLC-Triple-TOF-MS/MS. Food Funct. 2022, 13, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Z. Study on the pharmacological effects and clinical application of Dangshen Tonic. China Health Stand. Manag. 2015, 22, 130–131. [Google Scholar]
- Zhong, Y.G.; Chen, L.Y.; Li, M.F.; Chen, L.; Qian, Y.F.; Chen, C.F.; Wang, Y.; Xu, Y.Z. Dangshen Erling decoction ameliorates myocardial hypertrophy via inhibiting myocardial inflammation. Front. Pharmacol. 2022, 12, 725816. [Google Scholar] [CrossRef]
- Tang, L.J.; Chen, J.H.; Yin, J.; Fang, M.L. Screening of active components and key targets of radix Codonopsis in the treatment of gastric cancer. J. Chem. 2021, 2021, 6056636. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, Y.; Constantine, U.; Yang, L.; Yuan, T.; Zhao, H.J.; Zhou, Q.; Zhang, Y.B.; Wang, R.Y. First report of root rot caused by the Fusarium oxysporum species complex on Codonopsis pilosula in China. Plant Dis. 2021, 105, 3742. [Google Scholar] [CrossRef]
- Yu, Z.L.; Lei, M.Y.; Pu, S.C.; Xiao, Z.; Cao, H.Q.; Yang, C.Q. Fungal disease survey and pathogen identification on Codonopsis tangshen in Chongqing. J. Chin. Med. Mater. 2015, 38, 1119–1122. [Google Scholar]
- Wang, Y.; Zeng, C.Y.; Cheng, H.G.; Zhu, T.T.; Chen, X.R. Pathogenic fungi and biological characteristics of Codonopsis pilosula spot blight. J. Plant Prot. 2016, 43, 928–934. [Google Scholar] [CrossRef]
- Chen, S.Z. Investigation on Botrytis cinerea of Codonopsis pilosula and its field control in Dingxi, Gansu Province. Grassl. Lawn 2017, 37, 94–97. [Google Scholar] [CrossRef]
- Zhang, R.; Miao, M.S. Application characteristics of fresh traditional Chinese medicine. In Proceedings of the 2017 2nd International Conference on Biological Sciences and Technology (BST 2017), Zhuhai City, China, 17–19 November 2017; Atlantis Press: Dordrecht, The Netherlands, 2017; pp. 287–291. [Google Scholar]
- Xu, H.; Zhou, Y.; Lei, T. Comparative analysis of volatile chemical constituents of fresh Astragalus and dried Astragalus. Food Sci. 2011, 32, 171–174. [Google Scholar]
- Wang, X.; Yuan, Q.; Sun, K.; Guo, Z.X.; Chi, X.; Huang, L.Q. Population characteristics and threatened of wild Angelica sinensis in Gansu province. Chin. J. Med. 2019, 44, 2987–2995. [Google Scholar]
- Han, Z.; Ren, Y.P.; Zhou, H.L.; Luan, L.J.; Cai, Z.X.; Wu, Y.J. A rapid method for simultaneous determination of zearalenone, α-zearalenol, β-zearalenol, zearalanone, α-zearalanol and β-zearalanol in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2011, 879, 411–420. [Google Scholar] [CrossRef]
- Oh, S.Y.; Nam, K.W.; Yoon, D.H. Identification of Acremonium acutatum and Trichothecium roseum isolated from grape with white stain symptom in Korea. Mycobiology 2015, 42, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Gibert, S.; Edel-Hermann, V.; Gautheron, E.; Gautheron, N.; Sol, J.M.; Capelle, G.; Galland, R.; Bardon-Debats, A.; Lambert, C.; Steinberg, C. First report of Fusarium avenaceum, Fusarium oxysporum, Fusarium redolens and Fusarium solani causing root rot in pea in France. Plant Dis. 2022, 106, 1297. [Google Scholar] [CrossRef]
- Li, L.; Xue, H.L.; Bi, Y.; Zhang, R.; Kouasseu, C.J.; Liu, Q.L.; Nan, M.N.; Pu, L.M.; Prusky, D. Ozone treatment inhibits dry rot development and diacetoxyscirpenol accumulation in inoculated potato tuber by influencing growth of Fusarium sulphureum and ergosterol biosynthesis. Postharvest Biol. Technol. 2022, 2022. 185, 111796. [Google Scholar] [CrossRef]
- Qin, P.W.; Xu, J.; Jiang, Y.; Hu, L.; van der Lee, T.; Waalwijk, C.; Zhang, W.M.; Xu, X.D. Survey for toxigenic Fusarium species on maize kernels in China. World Mycotoxin J. 2020, 13, 213–223. [Google Scholar] [CrossRef]
- Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef]
- Duan, Y.H.; Qu, W.W.; Chang, S.X.; Li, C.; Xu, F.F.; Ju, M.; Zhao, R.H.; Wang, H.L.; Zhang, H.Y.; Miao, H.M. Identification of pathogenicity groups and pathogenic molecular characterization of Fusarium oxysporum f. sp. sesami in China. Phytopathology 2020, 110, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Afroz, T.; Je, S.; Choi, H.W.; Kim, J.H.; Assefa, A.D.; Aktaruzzaman, M.; Hahn, B.S.; Lee, H.S. First report of Fusarium wilt caused by Fusarium equiseti on cabbage (Brassica oleracea var. capitate) in Korea. Plant. Dis. 2020, 105, 1198. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Tang, Y.H.; Qiao, N.; Zhang, D.Z.; Chi, W.J.; Liu, J.; Pan, H.Q.; Li, J.T. First report of Colletotrichum black leaf spot on strawberry caused by Colletotrichum siamense in China. J. Phytopathol. 2022, 170, 279–281. [Google Scholar] [CrossRef]
- Sha, C.; Yang, N.; Zhao, C.; Liu, J.; Han, C.; Wu, X. Diversity of Fusarium species associated with root rot of sugar beet in China. J. Gen. Plant Pathol. 2018, 84, 321–329. [Google Scholar] [CrossRef]
- Jimdjio, C.K.; Xue, H.L.; Bi, Y.; Nan, M.N.; Li, L.; Zhang, R.; Liu, Q.L.; Pu, L.M. Effect of ambient pH on growth, pathogenicity, and patulin production of Penicillium expansum. Toxins 2021, 13, 550. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.L.; Bi, Y.; Wei, J.M.; Tang, Y.M.; Zhao, Y.; Wang, Y. New Method for the simultaneous analysis of types A and B trichothecenes by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry in potato tubers inoculated with Fusarium sulphureum. J. Agric. Food Chem. 2013, 61, 9333–9338. [Google Scholar] [CrossRef] [PubMed]
- Vidal, G.S.; Hahn, M.H.; Pereira, W.V.; Pinho, D.B.; May-De-Mio, L.L.; Duarte, H.D.S.S. A molecular approach reveals Tranzschelia discolor as the causal agent of rust on plum and peach in Brazil. Plant Dis. 2021, 6, 1855. [Google Scholar] [CrossRef]
- Li, J.S.; Yan, Z.Y.; Lan, Y.; Shen, X.F.; Wang, H.; He, D.M. Identification of pathogens causing root rot disease on Ligusticum chuanxiong in Sichuan. J. Chin. Med. Mater. 2015, 38, 443–446. [Google Scholar] [CrossRef]
- Zhou, M.; Bai, R.Q. Isolation and identification of root rot pathogen of Astragalus membranaceus in Moqi, Inner Mongolia. J. Northeast Agric. Sci. 2021, 46, 52–55. [Google Scholar] [CrossRef]
- Wu, X.L.; Wang, Y.; Liu, F.; Chen, D.X.; Li, L.Y. Identification of Coptis Chinensis root rot disease pathogenic Fusarium spp. fungi. Chin. J. Med. 2020, 45, 1323–1328. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chen, X.M.; Liu, X.; Xiao, R.F.; Liu, B. Pathogen identification of the new disease of Pseudostellariae Radix sour rot. Acta Phytopathol. Sin. 2021, 51, 464–468. [Google Scholar] [CrossRef]
- Chen, J.; Gao, W.W.; Tang, D.; Cai, F.; Yang, M.H. Analysis of fungi in seven kinds of root medicines contaminated by Ochratoxin A. Chin. Med. J. 2010, 35, 2647–2651. [Google Scholar] [CrossRef]
- Mahmud, A.; Lee, R.; Munfus-McCray, D.; Kwiatkowski, N.; Subramanian, A.; Neofytos, D.; Carroll, K.; Zhang, S.X. Actinomucor elegans as an emerging cause of mucormycosis. J. Clin. Microbiol. 2012, 50, 1092–1095. [Google Scholar] [CrossRef]
- Yao, D.; Xu, L.; Wu, M.N.; Wang, X.Y.; Wang, K.; Li, Z.J.; Zhang, D.J. Microbial Community succession and metabolite changes during fermentation of BS Sufu, the fermented black soybean curd by Rhizopus microsporus, Rhizopus oryzae, and Actinomucor elegans. Front. Microbiol. 2021, 12, 665826. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Michailides, T.J.; Xiao, C.L. Mucor rot-an emerging postharvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. in California. Plant Dis. 2016, 100, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Ignjatov, M.; Bjelic, D.; Nikolic, Z.; Milosevic, D.; Gvozdanovic-Varga, J.; Marinkovic, J.; Ivanovic, Z. First report of Fusarium acuminatum causing garlic bulb rot in Serbia. Plant Dis. 2017, 101, 1047–1048. [Google Scholar] [CrossRef]
- Tan, D.C.; Flematti, G.R.; Ghisalberti, E.L.; Sivasithamparam, K.; Chakraborty, S.; Obanor, F.; Jayasena, K.; Barbetti, M.J. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia. Mycotoxin Res. 2012, 28, 89–96. [Google Scholar] [CrossRef]
- Mincuzzi, A.; Sanzani, S.M.; Palou, L.; Ragni, M.; Ippolito, A. Postharvest rot of pomegranate fruit in Southern Italy: Characterization of the main pathogens. J. Fungi 2022, 8, 475. [Google Scholar] [CrossRef]
- Alisaac, E.; Behmann, J.; Rathgeb, A.; Karlovsky, P.; Dehne, H.; Mahlein, A. Assessment of Fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins 2019, 11, 556. [Google Scholar] [CrossRef]
- Qi, H.X.; Duan, X.M.; Xu, W.H.; Zhou, Y.T.; Ma, H.X.; Ma, W.L.; Ma, G.H. First report disease of Clonostachys rosea causing root rot on Astragalus membranaceus in China. Plant Dis. 2022, 106, 1752. [Google Scholar] [CrossRef]
- Bahri, B.A.; Mechichi, G.; Rouissi, W.; Ben Haj, J.I.; Ghrabi-Gammar, Z. Effects of cold-storage facility characteristics on the virulence and sporulation of Penicillium expansum and the efficacy of essential oils against blue mold rot of apples. Folia Hortic. 2019, 31, 301–317. [Google Scholar] [CrossRef]
- Mahunu, G.K.; Zhang, H.Y.; Yang, Q.Y.; Li, C.L.; Zheng, X.F. Biological control of patulin by antagonistic yeast: A case study and possible model. Crit. Rev. Microbiol. 2016, 42, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.O.; Choi, K.D.; Hahn, K.D.; Lee, J.H.; Hyun, I.H.; Lee, T.S.; Ko, K.; Lee, H.P.; Lee, M.W. Blue mold of pear caused by Penicillium aurantiogriseum in Korea. Mycobiology 2002, 30, 105–106. [Google Scholar] [CrossRef]
- Liu, C.H.; Hu, W.Z.; Wang, Y.Y.; Tian, M.X.; Sun, L. Isolation and identification of spoilage molds from fresh-cut lettuce. Sci. Technol. Food Ind. 2016, 37, 135–138. [Google Scholar] [CrossRef]
- Sharma, G.; Maymon, M.; Freeman, S. First detailed report of Trichothecium roseum causing post-harvest pink rot of avocado in Israel. Plant Dis. 2016, 100, 856. [Google Scholar] [CrossRef]
- Tang, Y.M.; Xue, H.L.; Bi, Y.; Li, Y.C.; Wang, Y.; Zhao, Y.; Shen, K.P. A method of analysis for T-2 toxin and neosolaniol by UPLC-MS/MS in apple fruit inoculated with Trichothecium roseum. Food Addit. Contam. Part A 2015, 32, 480–487. [Google Scholar] [CrossRef]
- Al-Haq, M.I.; Seo, Y.; Oshita, S.; Kawagoe, Y. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria be-rengeriana. Food Res. Int. 2002, 35, 657–666. [Google Scholar] [CrossRef]
- Xue, H.L.; Bi, Y.; Hussain, R.; Wang, H.J.; Pu, L.M.; Nan, M.N.; Cheng, X.Y.; Wang, Y.; Li, Y.C. Detection of NEO in muskmelon fruits inoculated with Fusarium sulphureum and its control by postharvest ozone treatment. Food Chem. 2018, 254, 193–200. [Google Scholar] [CrossRef]
Disease Rate | Symptom |
---|---|
0 | No disease |
1 | The diseased area accounts for 1–5% of the total area of C. pilosula |
2 | The diseased area accounts for 6–25% of the total area of C. pilosula |
3 | The diseased area accounts for 25–50% of the total area of C. pilosula |
4 | The diseased area accounts for 51–75% of the total area of C. pilosula |
5 | The diseased area accounts for 76–100% of the total area of C. pilosula |
Colony Morphology | Microscopic Morphology | |||||
---|---|---|---|---|---|---|
Strain Number | Front Color | Back Color | Texture | Growth Speed (mm/d) | Conidium | Conidiophore |
7-1 | White | White | Flocculent | 24.57 | Spherical or near spherical | Sporangium |
7-2 | Off-white | White | Flocculent | 21.5 | Spherical or near spherical | Sporangium |
14-1 | Rose-red | Rose-red | Fluffiness | 7.39 | Spindle shaped | Erect and branch |
14-2 | Light pink | Light pink | Fluffiness | 4.75 | Spindle shaped | Erect and branch |
14-3 | Dark purple | Dark purple | Fluffiness | 4.57 | Spindle shaped | Erect and branch |
21-1 | White | Light yellow | Fluffiness | 4.29 | Spherical or near spherical | Erect and branch |
28-1 | Grey-green | White | Powdery or grainy | 8.71 | Spherical or flat spherical | Erect, broom |
28-2 | Blue-green | Tan | Grainy | 6.50 | Spherical or flat spherical Pear shaped or obovate | Erect, broom |
56-1 | Orange | Orange | Grainy | 10.14 | Erect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, B.; Yang, X.; Xue, H.; Nan, M.; Zhang, Y.; Liu, Z.; Bi, Y.; Shang, S. Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation. J. Fungi 2023, 9, 146. https://doi.org/10.3390/jof9020146
Lv B, Yang X, Xue H, Nan M, Zhang Y, Liu Z, Bi Y, Shang S. Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation. Journal of Fungi. 2023; 9(2):146. https://doi.org/10.3390/jof9020146
Chicago/Turabian StyleLv, Bingyu, Xi Yang, Huali Xue, Mina Nan, Yuan Zhang, Zhiguang Liu, Yang Bi, and Suqin Shang. 2023. "Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation" Journal of Fungi 9, no. 2: 146. https://doi.org/10.3390/jof9020146
APA StyleLv, B., Yang, X., Xue, H., Nan, M., Zhang, Y., Liu, Z., Bi, Y., & Shang, S. (2023). Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation. Journal of Fungi, 9(2), 146. https://doi.org/10.3390/jof9020146