Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species
Abstract
:1. Introduction
2. Yeasts as Attractive Biological Models for Adaptive Laboratorial Evolution
3. Current Status and Applications of ALE in Biotechnology
3.1. Experimental Approaches of ALE
3.1.1. Serial Batch Cultures
Main Applications | Advantages | Disadvantages | References | |
---|---|---|---|---|
Serial Batch |
|
|
| [3,29,30,31] |
Continuous culture |
|
|
| [3,29,31,32,33,34] |
Automated methods |
|
|
| [28,29,31] |
3.1.2. Continuous Culture
3.2. Automated Methods for ALE: High-Throughput Adaptive Evolution
4. Evolution of Non-Conventional Yeast Species through ALE
5. ALE Versus Genome Editing
6. What Is Next for ALE? The Growing Compromise between Evolution and Technology
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, A.F.; Hughes, B.S. Microbial experimental evolution. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, R17–R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettman, J.R.; Rodrigue, N.; Melnyk, A.H.; Wong, A.; Bailey, S.F.; Kassen, R. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol. Ecol. 2012, 21, 2058–2077. [Google Scholar] [CrossRef] [PubMed]
- Dragosits, M.; Mattanovich, D. Adaptive laboratory evolution–principles and applications for biotechnology. Microb. Cell Factories 2013, 12, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozhayskiy, V.; Tagkopoulos, I. Microbial evolution in vivo and in silico: Methods and applications. Integr. Biol. 2013, 5, 262–277. [Google Scholar] [CrossRef]
- Horinouchi, T.; Furusawa, C. Understanding metabolic adaptation by using bacterial laboratory evolution and trans-omics analysis. Biophys. Rev. 2020, 12, 677–682. [Google Scholar] [CrossRef]
- McCloskey, D.; Xu, S.; Sandberg, T.E.; Brunk, E.; Hefner, Y.; Szubin, R.; Feist, A.M.; Palsson, B.Ø. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system. Metab. Eng. 2018, 48, 233–242. [Google Scholar]
- Vasconcellos, V.M.; Farinas, C.S.; Ximenes, E.; Slininger, P.; Ladisch, M. Adaptive laboratory evolution of nanocellulose-producing bacterium. Biotechnol. Bioeng. 2019, 116, 1923–1933. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Drumonde-Neves, J.; Fernandes, T.; Lima, T.; Pais, C.; Franco-Duarte, R. Learning from 80 years of studies: A comprehensive catalogue of non-Saccharomyces yeasts associated with viticulture and winemaking. FEMS Yeast Res. 2021, 21, foab017. [Google Scholar] [CrossRef]
- Fernandes, T.; Silva-Sousa, F.; Pereira, F.; Rito, T.; Soares, P.; Franco-Duarte, R.; Sousa, M.J. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J. Fungi 2021, 7, 712. [Google Scholar] [CrossRef]
- Silva-Sousa, F.; Fernandes, T.; Pereira, F.; Rodrigues, D.; Rito, T.; Camarasa, C.; Franco-Duarte, R.; Sousa, M.J. Torulaspora delbrueckii Phenotypic and Metabolic Profiling towards Its Biotechnological Exploitation. J. Fungi 2022, 8, 569. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Mendes, I.; Umek, L.; Drumonde-Neves, J.; Zupan, B.; Schuller, D. Computational models reveal genotype–phenotype associations in Saccharomyces cerevisiae. Yeast 2014, 31, 265–277. [Google Scholar] [CrossRef]
- Zheng, Y.; Hong, K.; Wang, B.; Liu, D.; Chen, T.; Wang, Z. Genetic diversity for accelerating microbial adaptive laboratory evolution. ACS Synth. Biol. 2021, 10, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Coulon, J.; Husnik, J.I.; Inglis, D.L.; van der Merwe, G.K.; Lonvaud, A.; Erasmus, D.J.; van Vuuren, H.J. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am. J. Enol. Vitic. 2006, 57, 113–124. [Google Scholar] [CrossRef]
- Grossmann, M.; Kießling, F.; Singer, J.; Schoeman, H.; Schröder, M.B.; von Wallbrunn, C. Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process. Ann. Microbiol. 2011, 61, 103–115. [Google Scholar] [CrossRef]
- Husnik, J.I.; Volschenk, H.; Bauer, J.; Colavizza, D.; Luo, Z.; Van Vuuren, H.J. Metabolic engineering of malolactic wine yeast. Metab. Eng. 2006, 8, 315–323. [Google Scholar] [CrossRef] [PubMed]
- DiCarlo, J.E.; Norville, J.E.; Mali, P.; Rios, X.; Aach, J.; Church, G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2013, 12, 258. [Google Scholar] [CrossRef]
- Gonzalez, R.; Tronchoni, J.; Quirós, M.; Morales, P. Genetic Improvement and Genetically Modified Microorganisms. In Wine Safety, Consumer Preference, and Human Health; Springer: Cham, Switzerland, 2016; pp. 71–96. [Google Scholar]
- Hass, J.W., Jr. The Reverend Dr William Henry Dallinger, F.R.S. (1839–1909). Notes Rec. R. Soc. London. 2000, 54, 53–65. [Google Scholar] [CrossRef]
- Bailey, L.A.; Hatton, D.; Field, R.; Dickson, A.J. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 2012, 109, 2093–2103. [Google Scholar] [CrossRef]
- Choe, D.; Lee, J.H.; Yoo, M.; Hwang, S.; Sung, B.H.; Cho, S.; Palsson, B.; Kim, S.C.; Cho, B.K. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 2019, 10, 935. [Google Scholar] [CrossRef]
- Kering, K.K.; Zhang, X.; Nyaruaba, R.; Yu, J.; Wei, H. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses 2020, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rios, E.; Lairon-Peris, M.; Muniz-Calvo, S.; Heras, J.M.; Ortiz-Julien, A.; Poirot, P.; Rozès, N.; Querol, A.; Guillamón, J.M. Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int. J. Food Microbiol. 2021, 342, 109077. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Kang, Y.; Ma, Z.; Hu, C.; Yang, Q.; Zhang, X.; Yang, S.; Dai, J.; Chen, X. Evolutionary and reverse engineering in Saccharomyces cerevisiae reveals a Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance. Microb. Cell Factories 2022, 21, 269. [Google Scholar] [CrossRef] [PubMed]
- Barten, R.; van Workum, D.J.M.; de Bakker, E.; Risse, J.; Kleisman, M.; Navalho, S.; Smit, S.; Wijffels, R.H.; Nijveen, H.; Barbosa, M.J. Genetic mechanisms underlying increased microalgal thermotolerance, maximal growth rate, and yield on light following adaptive laboratory evolution. BMC Biol. 2022, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yin, H.; Dong, J.; Yu, J.; Zhang, L.; Yan, P.; Wan, X.; Hou, X.; Zhao, Y.; Chen, R.; et al. Reduced sensitivity of lager brewing yeast to premature yeast flocculation via adaptive evolution. Food Microbiol. 2022, 106, 104032. [Google Scholar] [CrossRef]
- Lee, S.; Kim, P. Current status and applications of adaptive laboratory evolution in industrial microorganisms. J. Microbiol. Biotechnol. 2020, 30, 793–803. [Google Scholar] [CrossRef]
- Winkler, J.; Reyes, L.H.; Kao, K.C. Adaptive Laboratory Evolution for Strain Engineering. In Systems Metabolic Engineering; Humana Press: Totowa, NJ, USA, 2013; pp. 211–222. [Google Scholar]
- Gonzalez, A.; Bell, G. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120079. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.Ø.; Feist, A.M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 2019, 56, 1–16. [Google Scholar] [CrossRef]
- Gresham, D.; Dunham, M.J. The enduring utility of continuous culturing in experimental evolution. Genomics 2014, 104, 399–405. [Google Scholar] [CrossRef]
- Swamy, K.; Zhou, N. Experimental evolution: Its principles and applications in developing stress-tolerant yeasts. Appl. Microbiol. Biotechnol. 2019, 103, 2067–2077. [Google Scholar] [CrossRef]
- Ekkers, D.M.; Branco dos Santos, F.; Mallon, C.A.; Bruggeman, F.; van Doorn, G.S. The omnistat: A flexible continuous-culture system for prolonged experimental evolution. Methods Ecol. Evol. 2020, 11, 932–942. [Google Scholar] [CrossRef] [PubMed]
- López-Malo, M.; García-Rios, E.; Melgar, B.; Sanchez, M.R.; Dunham, M.J.; Guillamón, J.M. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genom. 2015, 16, 537. [Google Scholar] [CrossRef] [Green Version]
- Catrileo, D.; Acuña-Fontecilla, A.; Godoy, L. Adaptive Laboratory Evolution of Native Torulaspora delbrueckii YCPUC10 With Enhanced Ethanol Resistance and Evaluation in Co-inoculated Fermentation. Front. Microbiol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Patzschke, A.; Steiger, M.G.; Holz, C.; Lang, C.; Mattanovich, D.; Sauer, M. Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol. J. 2015, 10, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Voordeckers, K.; Kominek, J.; Das, A.; Espinosa-Cantú, A.; De Maeyer, D.; Arslan, A.; Van Pee, M.; van der Zande, E.; Meert, W.; Yang, Y.; et al. Adaptation to high ethanol reveals complex evolutionary pathways. PLoS Genet. 2015, 11, e1005635. [Google Scholar] [CrossRef]
- Heins, Z.J.; Mancuso, C.P.; Kiriakov, S.; Wong, B.G.; Bashor, C.J.; Khalil, A.S. Designing automated, high-throughput, continuous cell growth experiments using eVOLVER. J. Vis. Exp. 2019, 147, e59652. [Google Scholar]
- Zhong, Z.; Wong, B.G.; Ravikumar, A.; Arzumanyan, G.A.; Khalil, A.S.; Liu, C.C. Automated Continuous Evolution of Proteins in Vivo. ACS Synth. Biol. 2020, 9, 1270–1276. [Google Scholar] [CrossRef]
- LaCroix, R.A.; Palsson, B.Ø.; Feist, A.M. A model for designing adaptive laboratory evolution experiments. Appl. Environ. Microbiol. 2017, 83, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Metabolism of lactic acid bacteria. In Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2017; Volume 1, pp. 129–148. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Bessa, D.; Gonçalves, F.; Martins, R.; Silva-Ferreira, A.C.; Schuller, D.; Sampaio, P.; Pais, C. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Res. 2017, 17, fox057. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.; Dahabieh, M.; Krogerus, K.; Jouhten, P.; Magalhães, F.; Pereira, R.; Siewers, V.; Vidgren, V. Adaptive Laboratory Evolution of Ale and Lager Yeasts for Improved Brewing Efficiency and Beer Quality. Annu. Rev. Food Sci. Technol. 2020, 11, 23–44. [Google Scholar] [CrossRef] [Green Version]
- McBryde, C.; Gardner, J.M.; De Barros Lopes, M.; Jiranek, V. Generation of novel wine yeast strains by adaptive evolution. Am. J. Enol. Vitic. 2006, 57, 423–430. [Google Scholar] [CrossRef]
- Mouret, J.R.; Cadiere, A.; Aguera, E.; Rollero, S.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S. Dynamics and quantitative analysis of the synthesis of fermentative aromas by an evolved wine strain of Saccharomyces cerevisiae. Yeast 2015, 32, 257–269. [Google Scholar]
- Pais, C.; Franco-Duarte, R.; Sampaio, P.; Wildner, J.; Carolas, A.; Figueira, D.; Ferreira, B.S. Production of dicarboxylic acid platform chemicals using yeasts: Focus on succinic acid. Biotransformation Agric. Waste By-Prod. 2016, 237–269. [Google Scholar] [CrossRef]
- Strucko, T.; Zirngibl, K.; Pereira, F.; Kafkia, E.; Mohamed, E.T.; Rettel, M.; Stein, F.; Feist, A.M.; Jouhten, P.; Patil, K.R.; et al. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab. Eng. 2018, 47, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wang, C.; Zhou, J.; Liu, Y.; Yang, M.; Xing, J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour. Technol. 2014, 156, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Kao, K.C. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution. Yeast 2018, 35, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randez-Gil, F.; Prieto, J.A.; Rodríguez-Puchades, A.; Casas, J.; Sentandreu, V.; Estruch, F. Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb. Biotechnol. 2020, 13, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
- Cadière, A.; Ortiz-Julien, A.; Camarasa, C.; Dequin, S. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab. Eng. 2011, 13, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Wei, Y.; Mohamed, E.; Radi, M.; Malina, C.; Herrgård, M.J.; Feist, A.M.; Nielsen, J.; Chen, Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab. Eng. 2019, 56, 130–141. [Google Scholar] [CrossRef]
- De Vero, L.; Solieri, L.; Giudici, P. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. Lett. Appl. Microbiol. 2011, 53, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Novo, M.; Gonzalez, R.; Bertran, E.; Martínez, M.; Yuste, M.; Morales, P. Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT-Food Sci. Technol. 2014, 58, 166–172. [Google Scholar] [CrossRef]
- Slininger, P.J.; Shea-Andersh, M.A.; Thompson, S.R.; Dien, B.S.; Kurtzman, C.P.; Sousa, L.D.C.; Balan, V. Techniques for the evolution of robust pentose-fermenting yeast for bioconversion of lignocellulose to ethanol. J. Vis. Exp. 2016, 116, e54227. [Google Scholar]
- Gassler, T.; Sauer, M.; Gasser, B.; Egermeier, M.; Troyer, C.; Causon, T.; Hann, S.; Mattanovich, D.; Steiger, M.G. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 2020, 38, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Gassler, T.; Baumschabl, M.; Sallaberger, J.; Egermeier, M.; Mattanovich, D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab. Eng. 2022, 69, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wang, M.; Zhan, R.; Yu, Y.; He, Y.; Lu, H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- da Silveira, F.A.; de Oliveira Soares, D.L.; Bang, K.W.; Balbino, T.R.; de Moura Ferreira, M.A.; Diniz, R.H.S.; de Lima, L.A.; Brandão, M.M.; Vilas-Bôas, S.G.; da Silveira, W.B. Assessment of ethanol tolerance of Kluyveromyces marxianus CCT 7735 selected by adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 2020, 104, 7483–7494. [Google Scholar] [CrossRef]
- Nouri, H.; Azin, M.; Mousavi, S.L. Enhanced ethanol production from sugarcane bagasse hydrolysate with high content of inhibitors by an adapted Barnettozyma californica. Environ. Prog. Sustain. Energy 2018, 37, 1169–1175. [Google Scholar] [CrossRef]
- Bonturi, N.; Crucello, A.; Viana, A.J.C.; Miranda, E.A. Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem. 2017, 57, 16–25. [Google Scholar] [CrossRef]
- Kukurudz, R.J.; Chapel, M.; Wonitowy, Q.; Adamu Bukari, A.R.; Sidney, B.; Sierhuis, R.; Gerstein, A.C. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to Posaconazole. G3 2022, 12, jkac156. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, L.; Lu, M.; Zhang, Y.; Perveen, S.; Zhou, H.; Wen, Z.; Xu, Z.; Jin, M. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl. Microbiol. Biotechnol. 2021, 105, 1745–1758. [Google Scholar] [CrossRef]
- Selmecki, A.M.; Dulmage, K.; Cowen, L.E.; Anderson, J.B.; Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 2009, 5, e100070. [Google Scholar] [CrossRef]
- Phommachan, K.; Keo-oudone, C.; Nurcholis, M.; Vongvilaisak, N.; Chanhming, M.; Savanhnaly, V.; Bounphanmy, S.; Matsutani, M.; Kosaka, T.; Limtong, S.; et al. Adaptive Laboratory Evolution for Multistress Tolerance, including Fermentability at High Glucose Concentrations in Thermotolerant. Candida Trop. Energ. 2022, 15, 561. [Google Scholar] [CrossRef]
- Lopes, H.J.S.; Bonturi, N.; Miranda, E.A. Induction of resistance mechanisms in Rhodotorula toruloides for growth in sugarcane hydrolysate with high inhibitor content. Appl. Microbiol. Biotechnol. 2021, 105, 9261–9272. [Google Scholar] [CrossRef]
- Bartel, C.; Roach, M.; Onetto, C.; Curtin, C.; Varela, C.; Borneman, A. Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis. FEMS Yeast Res. 2021, 21, foab036. [Google Scholar] [CrossRef] [PubMed]
- Hemansi Himanshu Patel, A.K.; Saini, J.K.; Singhania, R.R. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresour. Technol. 2022, 344, 126247. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Ryu, S.; Trinh, C.T. Exceptional solvent tolerance in Yarrowia lipolytica is enhanced by sterols. Metab. Eng. 2019, 54, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, H.; Li, C.; Lin, C.S.K. Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy. J. Agric. Food Chem. 2017, 65, 4133–4139. [Google Scholar] [CrossRef]
- Ong, K.L.; Fickers, P.; Lin, C.S.K. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate. Sci. Total Environ. 2020, 702, 134911. [Google Scholar] [CrossRef]
- Pattanakittivorakul, S.; Tsuzuno, T.; Kosaka, T.; Murata, M.; Kanesaki, Y.; Yoshikawa, H.; Savitree, L.; Yamada, M. Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in Kluyveromyces marxianus DMKU 3-1042. Microorganisms 2022, 10, 798. [Google Scholar] [CrossRef]
- Pacheco, T.F.; Machado, B.R.; de Morais Júnior, W.G.; Almeida, J.R.; Gonçalves, S.B. Enhanced tolerance of Spathaspora passalidarum to sugarcane bagasse hydrolysate for ethanol production from xylose. Appl. Biochem. Biotechnol. 2021, 193, 2182–2197. [Google Scholar] [CrossRef]
- Hicks, R.H.; Sze, Y.; Chuck, C.J.; Henk, D.A. Enhanced inhibitor tolerance and increased lipid productivity through adaptive laboratory evolution in the oleaginous yeast Metshnikowia pulcherrima. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Daskalaki, A.; Perdikouli, N.; Aggeli, D.; Aggelis, G. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2019, 103, 8585–8596. [Google Scholar] [CrossRef] [PubMed]
- Park, G.W.; Shin, S.; Kim, S.J.; Lee, J.S.; Moon, M.; Min, K. Rice straw-derived lipid production by HMF/furfural-tolerant oleaginous yeast generated by adaptive laboratory evolution. Bioresour. Technol. 2023, 367, 128220. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, I.; Kwon, J.E.; Nguyen, T.H.; Jeong, G.T.; Kim, S.K. Ethanol production from water hyacinth (Eichhornia crassipes) hydrolysate by hyper-thermal acid hydrolysis, enzymatic saccharification and yeasts adapted to high concentration of xylose. Bioprocess Biosyst. Eng. 2019, 42, 1367–1374. [Google Scholar] [CrossRef]
- Fong, S.S.; Burgard, A.P.; Herring, C.D.; Knight, E.M.; Blattner, F.R.; Maranas, C.D.; Palsson, B.Ø. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 2005, 91, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, V.A.; Bezdan, D.; Zengler, K. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 2011, 22, 590–594. [Google Scholar] [CrossRef]
- Guo, Y.C.; Zhang, L.; Dai, S.X.; Li, W.X.; Zheng, J.J.; Li, G.H.; Huang, J.F. Independent evolution of winner traits without whole genome duplication in Dekkera Yeasts. PLoS ONE 2016, 11, e0155. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jameel, A.; Xing, X.H.; Zhang, C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 2021, 40, 38–59. [Google Scholar] [CrossRef]
- Narisetty, V.; Prabhu, A.A.; Bommareddy, R.R.; Cox, R.; Agrawal, D.; Misra, A.; Haider, M.A.; Bhatnagar, A.; Pandey, A.; Kumar, V. Development of Hypertolerant Strain of Yarrowia lipolytica Accumulating Succinic Acid Using High Levels of Acetate. ACS Sustain. Chem. Eng. 2022, 10, 10858–10869. [Google Scholar] [CrossRef]
- Baek, S.H.; Kwon, E.Y.; Kim, Y.H.; Hahn, J.S. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2016, 100, 2737–2748. [Google Scholar] [CrossRef]
- Lee, S.M.; Jellison, T.; Alper, H.S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 2014, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavitt, J.M.; Wagner, J.M.; Tu, C.C.; Tong, A.; Liu, Y.; Alper, H.S. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 2017, 12, 1600687. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Ishigami, M.; Terai, G.; Nakamura, Y.; Hashiba, N.; Nishi, T.; Nakazawa, H.; Hasunuma, T.; Asai, K.; Umetsu, M.; et al. A streamlined strain engineering workflow with genome-wide screening detects enhanced protein secretion in Komagataella phaffii. Commun. Biol. 2022, 5, 561. [Google Scholar] [CrossRef]
- Perli, T.; Borodina, I.; Daran, J.M. Engineering of molybdenum-cofactor-dependent nitrate assimilation in Yarrowia lipolytica. FEMS Yeast Res. 2021, 21, foab050. [Google Scholar] [CrossRef]
- Gan, Y.; Bai, M.; Lin, X.; Liu, K.; Huang, B.; Jiang, X.; Liu, Y.; Gao, C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb. Cell Factories 2022, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Godara, A.; Kao, K.C. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae. Microb. Cell Factories 2021, 20, 106. [Google Scholar] [CrossRef] [PubMed]
- Promdonkoy, P.; Mhuantong, W.; Champreda, V.; Tanapongpipat, S.; Runguphan, W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. J. Ind. Microbiol. Biotechnol. 2020, 47, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Z.; Bian, J.; Gao, Y.; Zhang, D.; Xu, G.; Zhang, X.; Li, H.; Shi, J.; Xu, Z. Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation 2022, 8, 299. [Google Scholar] [CrossRef]
- Zheng, Y.; Kong, S.; Luo, S.; Chen, C.; Cui, Z.; Sun, X.; Chen, T.; Wang, Z. Improving furfural tolerance of Escherichia coli by integrating adaptive laboratory evolution with crispr-enabled trackable genome engineering (CREATE). ACS Sustain. Chem. Eng. 2022, 10, 2318–2330. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, Y.; Guo, Y.; Li, X.; Qi, X.; Qi, Q.; Wang, Q. Development and genomic elucidation of hybrid yeast with improved glucose-xylose co-fermentation at high temperature. FEMS Yeast Res. 2019, 19, foz015. [Google Scholar] [CrossRef] [Green Version]
- Steensels, J.; Snoek, T.; Meersman, E.; Nicolino, M.P.; Voordeckers, K.; Verstrepen, K.J. Improving industrial yeast strains: Exploiting natural and artificial diversity. FEMS Microbiol. Rev. 2014, 38, 947–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Torrado, R.; Querol, A.; Guillamón, J.M. Genetic improvement of non-GMO wine yeasts: Strategies, advantages and safety. Trends Food Sci. Technol. 2015, 45, 1–11. [Google Scholar] [CrossRef]
- Gasch, A.P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 2007, 24, 961–976. [Google Scholar] [CrossRef] [PubMed]
- Conrad, T.M.; Lewis, N.E.; Palsson, B.Ø. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 2011, 7, 509. [Google Scholar] [CrossRef] [PubMed]
- Phaneuf, P.V.; Yurkovich, J.T.; Heckmann, D.; Wu, M.; Sandberg, T.E.; King, Z.A.; Tan, J.; Palsson, B.Ø.; Feist, A.M. Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity. BMC Genom. 2020, 21, 514. [Google Scholar] [CrossRef]
- Hardison, R.C. Comparative genomics. PLoS Biol. 2003, 1, e58. [Google Scholar] [CrossRef]
- Birkeland, S.R.; Jin, N.; Ozdemir, A.C.; Lyons, R.H., Jr.; Weisman, L.S.; Wilson, T.E. Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 2010, 186, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Wang, Q.; Dai, Z. Recent advances in directed yeast genome evolution. J. Fungi 2022, 8, 635. [Google Scholar] [CrossRef]
- Joyce, A.R.; Palsson, B.Ø. The model organism as a system: Integrating’ omics’ data sets. Nat. Rev. Mol. Cell Biol. 2006, 7, 198–210. [Google Scholar] [CrossRef]
- Culley, C.; Vijayakumar, S.; Zampieri, G.; Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. USA 2020, 117, 18869–18879. [Google Scholar] [CrossRef]
Aim of Study | Yeast Species | Outcome | Method | References |
---|---|---|---|---|
Develop the ability to use CO2 as carbon source | Komagataella pastoris | Growth rate increased from 0.008 to 0.018 h−1 | Serial batch cultivations using minimal YNB medium for 27 to 29 generations | [57,58] |
Enhance ethanol resistance | Torulaspora delbrueckii | Improved ethanol tolerance from 9% to 11.5% (v/v) and greater SO2 resistance | Serial batch cultivation in YPD medium supplemented with increasing ethanol contents (3, 6, 9, 10, 11, 12, and 14% (v/v)) for 114 days. Transfers of cells/mL when yeasts reached the mid-log phase | [36] |
Kluyveromyces marxianus | Ethanol tolerance increased up to 10% (v/v). | Cultures inoculated in increasingly ethanol concentrations (0, 4, 5, 6, 7, and 8% (v/v)) for 100 days, approximately 450 generations | [59] | |
Strains with a 122% higher specific growth rate in 4% (v/v) ethanol | Four different populations cultured in 4 % (v/v) ethanol up to reach ~300 generations. Passage cultures were performed under ethanol stress for 85 days, a period in which there was a significant increase (above 50%) in the specific growth rate. Chemostat cultivation was also evaluated | [60] | ||
Barnettozyma californica | Improved ethanol production (4× higher than parental strain) and growth ability, enhancement of total sugar from 34 to 51.8 g/L and a twofold increase in nonvolatile toxic compounds such as phenol (1.017–2.11 g/L) | Sequential transfers with gradually increasing concentrations of 25, 50, 75, and 100% (v/v) of bagasse hydrolysate. Adaptation in each step was repeated 4 times | [61] | |
Enhance oxidative stress tolerance | Candida glabrata | Faster detoxification of H2O2 and increased growth ability | Three parallel populations of GFP and YFP-labeled cells were cultured in YNB medium and evolved in serial batch transfers using a periodic challenge strategy with H2O2 as a selective pressure for more than 180 generations | [50] |
Increase tolerance to inhibitor compounds presented in hydrolyzed lignocellulosic substrates | Rhodosporidium toruloides | Increased growth, tolerance, and lipids production | Successive cultivations in increasing concentrations (increments of 10% (v/v)) of sugarcane bagasse hydrolysate in supplemental media | [62] |
Acquisition of drug resistance to posaconazole | Candida albicans | Increases in drug tolerance to posaconazole, cross-tolerance to other azoles and widespread increases in genome size | Serial dilutions to fresh medium every 24 h for 4 days, at a ratio of 1:1000, for a total of ~50 generations of evolution. Performed for 12 replicate lines of each of the 8 strains understudy | [63] |
Increase stress tolerance in response to lignocellulose-derived inhibitors | Yarrowia lipolytica | Strains with increased ferulic acid tolerance | Sequential transfers, every 48 h, of cells into a fresh medium with increased ferulic acid concentrations (0.5, 0.75, 1.0, and 1.5 g/L). Domestication lasted for 86 days, with approximately 57 generations | [64] |
Acquisition of aneuploidy in the presence and absence of fluconazole | Candida glabrata | Exposure to fluconazole induced genome reorganization, some of which provided a fitness increase in the presence of the antifungal drug | A single colony was seeded in liquid culture for one round, overnight to grow, and then divided into 12 independent populations: half in the absence of fluconazole and the other half in the presence of the drug. Serial cultures were propagated for 330 generations of growth | [65] |
Improve the sensitivity to high glucose concentrations | Candida tropicalis | Increased tolerance to ethanol, furfural, and hydroxymethylfurfural at high temperatures and improved xylose-fermenting ability and fermentation ability at high glucose concentrations | Long-term cultivation with increasing temperatures from 40 °C to 44.5 °C. Cultivation was performed two or three times at each temperature and lasted 7 days each. The culture which survived at 44.5 °C was transferred from low to high glucose concentration media several times | [66] |
Comparative analysis of two ALE strategies (heterologous and colony, ALEh and ALEc, respectively) using hemicellulose hydrolysate as a selective pressure medium | Rhodotorula toruloides | Fitness gaining of 55%; lipid content of 64.3% in eucalyptus hemicellulose hydrolysate; higher biomass production (6.51 g/L) and a decrease of 4 h in lag phase | Sequential culturing in media with 5 consecutive increases in sugarcane hemicellulose hydrolysate (10% (v/v) per stage) and the addition of a colony selection step at the end of each stage | [67] |
Sulphur dioxide resistance | Brettanomyces bruxellensis | Individual clones isolated from evolved populations exhibited enhanced sulphite tolerance (1.6 to 2.5 times higher than the corresponding parental strains) | Cultures that reached OD600 of 1.5–2.0 (∼7 generations) were subcultured (1 mL) into fresh media containing higher concentrations of sulphite. Sulphite content was increased by 0.03–0.06 mg/L mSO2 with every population subculture. | [68] |
Biotethanol production | Kluyveromyces marxianus | Evolved strain showed a 3.3-fold higher specific growth rate; 56% reduced lag phase and 80% enhanced fermentation efficiency; ethanol titer and productivity obtained 54.8 g/L and 2.1 g/L/h, respectively. | Cultures were incubated at 42 ± 0.5 °C until log phase (OD600 of 0.6–0.8) with a gradual increase in inhibitor concentrations during repetitive batch cultures (acetic acid (A): 3.5–6; furfural (F): 2–3.2; vanillin (V): 2–3; cocktail (A + F + V): 3 + (0.3–1) + (0.3–0.8)). | [69] |
Develop tolerance to ionic liquids (ILs) | Yarrowia lipolytica | Increased tolerance to high concentrations of ILs | Serial cultivation in 6-well plates with cells being transferred during mid-exponential phase into a fresh medium with sequential increasing concentrations of [EMIM] [OAc] to obtain a specific growth rate ≥ 0.02 1/h, during 200 generations | [70] |
Increase in succinic acid production | Succinic acid productivity increased by 2.3-fold | Serial cultivation with increasing glucose concentration (25, 50, 75, 100, and 150 g/L). Population transfers were performed after cell growth achieved the exponential phase, lasting for 14 generations | [71] | |
Improve glycerol uptake rate and succinic acid release | Glycerol uptake rate increased by 13.5% and succinic acid productivity increased by 10% | Culture performed in a bioreactor with all conditions controlling maintained. When biomass reached 20 g/L, the culture medium was replaced by fresh medium (with an initial glycerol concentration of 100 g/L) | [72] | |
Multi-stress tolerance and increased ethanol production | Kluyveromyces marxianus | Adapted isolates gained the capacity for ethanol fermentation at high temperatures andimproved tolerance to multi-stress. | Sequential transfers with a gradual increase in temperature from 40 °C to 45 °C, at 160 rpm for 7 days. Cultivations were performed twice at each temperature. | [73] |
Enhancement of ethanol production | Spathasporapassalidarum | Ethanol production (19.4 g/L) with productivity, yield, and xylose consumption rate of 0.8 g/L·h and 0.4 g/g, respectively, in a sugarcane bagasse hemicellulosic hydrolysate. | Serial batch cultivation with progressive increments of 10% (v/v) hydrolysate in each passage. Xylose concentration was maintained constant at 80 g/L for all combinations. Serial transfer of cell mass concentration to 5 g/L to the fresh medium was performed every 48 h until the medium was composed of hydrolysate only. | [74] |
Optimize lipid production | Metshnikowia pulcherrima | Enhanced growth rates, reduced lag time, and increased lipid production | Cultures growth started in NLB + 0.6 g/L formic acid and nitrogen-limited broth inhibitor cocktail, with five replicate lineages for each condition. Culture transfers were performed after 48 h with the experiment ending after 1000 h | [75] |
Yarrowia lipolytica | 30% higher lipid content | Two evolution experiments were performed in nitrogen and magnesium double-limiting medium, inoculating 3 cells. First: Growth at lipid storage until exhaustion and repeated for 3 rounds and 165 generations Second: Growth and lipid accumulation as the first set with the intermediate step of 2000 cells plated in carbon-free media with posterior transfer to PDB medium (repeated for 16 rounds and 105 generations) | [76] | |
Rhodosporidium toruloides | Evolved strain displayed a 2.5-fold higher specific growth rate than the wild-type isolate. | Cultivation in YM broth supplemented with HMF (1.0 g/L) and furfural (1.0 g/L) during 16 sequential subcultures. Each subculture was initiated with OD = 0.1 and transferred when OD reached 15–20 within 48 h. | [77] | |
Ethanol production | Scheffersomycesstipitis, Candida lusitaniae | Improvement of ethanol production by S. stipitis and C. lusitaniae from 19.5 and 22.7 g/L to 21.4 and 23.9 g/L, respectively. | Cells were cultured in ten subcultures on YPHX during adaptive evolution, and yeast strains were incubated with agitation at 150 rpm for 24 h at 30 °C. Adapted cells were washed with fresh medium and transferred to water hyacinth hydrolysate medium for ethanol production. | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, T.; Osório, C.; Sousa, M.J.; Franco-Duarte, R. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J. Fungi 2023, 9, 186. https://doi.org/10.3390/jof9020186
Fernandes T, Osório C, Sousa MJ, Franco-Duarte R. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. Journal of Fungi. 2023; 9(2):186. https://doi.org/10.3390/jof9020186
Chicago/Turabian StyleFernandes, Ticiana, Carolina Osório, Maria João Sousa, and Ricardo Franco-Duarte. 2023. "Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species" Journal of Fungi 9, no. 2: 186. https://doi.org/10.3390/jof9020186
APA StyleFernandes, T., Osório, C., Sousa, M. J., & Franco-Duarte, R. (2023). Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. Journal of Fungi, 9(2), 186. https://doi.org/10.3390/jof9020186