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Abstract: Sporotrichosis is the main subcutaneous mycosis worldwide transmitted by animal or
plant vectors and often escalates to outbreaks or epidemics. The current cat-transmitted sporotri-
chosis driven by Sporothrix brasiliensis has become a significant public health issue in South America.
Transmission dynamics remain enigmatic due to the lack of development of polymorphic markers for
molecular epidemiological analysis. This study used a high-throughput mining strategy to character-
ize simple sequence repeat (SSR) markers from Sporothrix genomes. A total of 118,140–143,912 SSR
loci were identified (82,841–98,369 unique markers), with a 3651.55–3804.65 SSR/Mb density and
a majority of dinucleotides motifs (GC/CG). We developed a panel of 15 highly polymorphic SSR
markers suitable for genotyping S. brasiliensis, S. schenckii, and S. globosa. PCR amplification revealed
240 alleles in 180 Sporothrix isolates with excellent polymorphic information content (PIC = 0.9101),
expected heterozygosity (H = 0.9159), and discriminating power (D = 0.7127), supporting the effec-
tiveness of SSR markers in uncovering cryptic genetic diversity. A systematic population genetic
study estimated three clusters, corresponding to S. brasiliensis (population 1, n = 97), S. schenckii
(population 2, n = 49), and S. globosa (population 3, n = 34), with a weak signature of mixed ancestry
between populations 1 and 2 or 3 and 2. Partitioning of genetic variation via AMOVA revealed highly
structured populations (ΦPT = 0.539; Nm = 0.213; p < 0.0001), with approximately equivalent genetic
variability within (46%) and between (54%) populations. Analysis of SSR diversity supports Rio de
Janeiro (RJ) as the center of origin for contemporary S. brasiliensis infections. The recent emergence of
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cat-transmitted sporotrichosis in northeastern Brazil indicates an RJ-Northeast migration resulting
in founder effects during the introduction of diseased animals into sporotrichosis-free areas. Our
results demonstrated high cross-species transferability, reproducibility, and informativeness of SSR
genetic markers, helping dissect deep and fine-scale genetic structures and guiding decision making
to mitigate the harmful effects of the expansion of cat-transmitted sporotrichosis.

Keywords: zoonosis; microsatellite; simple sequence repeats; SSR; epidemiology; Ophiostomatales;
AMOVA; sporotrichosis; linkage disequilibrium; population genetics

1. Introduction

The genus Sporothrix (Ophiostomatales) includes 53 species [1]. Although most Sporothrix
species present little pathogenicity towards the warm-blooded vertebrate host and are
embedded in an environmental clade associated with soil, plant debris, and insects, a
clinical cluster has recently emerged. This cluster contains species such as S. brasiliensis,
S. schenckii, and S. globosa with increased virulence attributes, causing chronic cutaneous
and subcutaneous mycosis in humans and animals [2].

Classically, sporotrichosis is an implantation mycosis where Sporothrix propagules
present in the soil or decaying wood are traumatically inoculated into the host’s subcu-
taneous tissue [3]. The classical transmission route (environment–human) occurs as an
occupational disease among gardeners, rural workers, and loggers [4]. Outbreaks due
to S. globosa and S. schenckii occur worldwide, mainly via the classical sapronotic route
(acquisition from the environment). In Asia, especially in China, India, and Japan, the
leading agent is S. globosa [5]. In Africa and the Americas, especially in the USA, Mexico,
and part of South America (except Brazil), S. schenckii is the primary etiological agent [6].

Alternatively, the disease can occur in dogs, cats, horses, cows, camels, dolphins, goats,
mules, birds, pigs, rats, and armadillos [7,8]. Of relevance, epizootics among domestic
cats are common, leading to zoonotic sporotrichosis in endemic regions. In recent decades,
Brazil has been experiencing the most significant cat-transmitted sporotrichosis outbreaks
in urban areas (e.g., cat–cat and cat–human transmission) [9]. Sporothrix brasiliensis is the
prevalent etiologic agent during epizooties reported mainly in Brazil’s South and Southeast
regions. With the absence of adequate public policies to control the spread of the outbreaks,
cases have begun to emerge in Northeast Brazil [10–12] and, more recently, in Argentina,
Chile, Paraguay [13–18], and in the UK [19,20].

Judging from the epidemiological scenarios above, the primary agents of sporotrichosis
are constantly on the move, causing outbreaks worldwide [21]. Moreover, studies related to
phylogeny [22], chromosomal polymorphism [23], virulence [24], epidemiology [25], and
drug susceptibility [26,27] have revealed significant differences among Sporothrix species.
Therefore, epidemiological surveillance studies require practical molecular tools to quickly
and reliably distinguish among related isolates and explore transmission dynamics during
outbreaks and epidemics. Classical typing methods, such as multilocus sequencing analysis
(MLSA) [28], DNA barcoding [29], restriction fragment length polymorphism (RFLP) [30],
and random amplified polymorphic DNA (RAPD) [31], have historically been essential
contributors to our understanding of the natural history and epidemiology of infections
caused by Sporothrix species. Although these methods are inexpensive, they usually lack
resolving power. On the other hand, a higher resolution can be achieved by sequencing
whole genomes [32,33], but the high cost associated is a limiting component to exploring a
significant number of specimens during outbreaks.

Molecular markers such as the amplified fragment length polymorphism (AFLP) [34,35]
and simple sequence repeats (SSRs, also known as microsatellites) [36] are valuable tools
for genetic surveillance due to low-cost, high-resolution, reproducibility, and easy imple-
mentation. Moreover, SSRs have several advantages over other molecular markers due to
their codominant inheritance and highly polymorphic nature, allowing the recognition of
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numerous alleles at a single locus. Nevertheless, microsatellite markers have not yet been
developed for all medically relevant Sporothrix species and are restricted to S. globosa [36].

Therefore, we used a high-throughput in silico mining strategy to characterize SSR
markers from available Sporothrix genomes [37–41]. Through extensive genome analysis,
we developed 15 new SSR markers covering all emerging species in the clinical clade to
test in vitro epidemiological and evolutionary hypotheses. Different SSR markers were
successfully combined in multiplex panels to minimize costs and achieve higher resolution
in population genetic applications.

2. Materials and Methods
2.1. Sporothrix Isolates and DNA Extraction

This study included 180 Sporothrix isolates (S. brasiliensis, n = 97; S. schenckii, n = 49;
S. globosa, n = 34) obtained from clinical lesions of patients with varying degrees of human
disease severity (n = 132), animals (n = 44) or environmental sources (n = 4). The isolates
were identified down to species level by comparison with the descriptions presented by
Rodrigues et al. [7,25,42,43] and were stored at room temperature in slant cultures on
Sabouraud dextrose agar (Difco Laboratories, Detroit, MI, USA) [44].

Fungal DNA was obtained and purified directly from 14-day-old monoconidial
colonies on Sabouraud slants by following the Fast DNA kit protocol (MP Biomedicals,
Irvine, CA, USA), as previously described [7]. We used a Sporothrix species-specific PCR
assay targeting the calmodulin-encoding gene, as previously described [45], or a multiplex
qPCR test targeting the β-tubulin [46] to characterize all isolates down to the species level.
All experiments included reference strains representing the major evolutionary groups in
Sporothrix (Supplementary Table S1).

2.2. In Silico Genomic Characterization of Simple Sequence Repeats

To predict SSR markers, the genome sequences of eight Sporothrix isolates (Supple-
mentary Table S2) were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/genome/)
(accessed on 15 March 2018) and analyzed in silico. Genomic characterization was per-
formed using Krait [47] and GMATA [48] and in silico mined for SSRs with thresholds
of a minimum length of 2 bp, maximum length of 10 bp, and minimum repeat times
of motif of three, four, or five times was considered. SSR-containing sequences were re-
trieved from Sporothrix genomes, as well as short 5′ and 3′ flanking regions (~500 bp each).
Retrieved sequences were used as templates for BLAST searches using a local BLAST
database containing Sporothrix genomes implemented in the CLC Genomics Workbench
v.9.0.1 (Supplementary Table S2).

2.3. Primer Design

Sequences retrieved from the BLAST search were aligned with MAFFT v7 [49], and
retrieved alignments were corrected manually with the MEGA v7 software [50] to avoid
mispairing bases. SSR flanking regions were used to identify conserved regions, which
could be used for primer design considering all emerging species in the clinical clade. We
chose short, informative regions with 18–25 nucleotide variations based on nucleotide
polymorphisms. The software Primer3 [51] (http://primer3.wi.mit.edu/) (accessed on
20 March 2018) was used to evaluate melting temperatures, %GC contents, dimer sequences,
and mismatches in candidate sequences. Next, candidate primers were assessed with the
Mfold software [52] for potential secondary structures, which could reduce amplification
efficiency. Finally, we selected primer sets that would generate different product sizes to
facilitate multiplex assays. For fluorescent SSR, we used forward primers labeled with
6-carboxyfluorescein (FAM; 520 nm), 2′-chloro-phenyl-1,4-dichloro-6-carboxyfluorescein
(VIC; 555 nm), or benzofluorotrichlorocarboxy-fluorescein (NED; 576 nm), and unlabeled
reverse primers.

https://www.ncbi.nlm.nih.gov/genome/
http://primer3.wi.mit.edu/
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2.4. PCR Optimization and Capillary Electrophoresis

Total DNA extracted from Sporothrix species was used as a PCR template. Each
multiplex PCR was performed with three primer sets (10 pmol/µL; Integrated DNA Tech-
nologies, San Diego, CA, USA) in a final volume of 25 µL (see Supplementary Figure S1),
including 12.5 µL of 2× PCR Master Mix buffer, which contained 3 mM MgCl2, 400 mM of
each dNTP, and 50 U/mL of Taq polymerase (Promega Corporation, Madison, WI, USA),
ultra-pure water, and 1 µL of target DNA (50 ng/µL). PCRs were performed in an Eppen-
dorf Mastercycler Pro system (Eppendorf, Hamburg, Germany). PCR conditions were as
follows: a first step of 5 min at 95 ◦C, followed by 35 cycles of 1 min at 94 ◦C, 1 min at 60 ◦C,
and 2 min at 72 ◦C, followed by one step of 15 min at 72 ◦C (Supplementary Figure S1).
Amplified SSR fragments were diluted (50×) and resolved by capillary electrophoresis
with a SeqStudio Analyzer alongside a LIZ600 internal size standard (Applied Biosystems,
Foster City, CA, USA) at the Laboratory of Emerging Fungal Pathogens (Federal University
of São Paulo, São Paulo, Brazil) under previously described conditions [34]. At least two
independent electropherograms were obtained for each SSR marker.

2.5. Bioinformatic Analysis

The sizes of the amplified fragments were determined using GeneMapper v6 soft-
ware (ThermoFisher Scientific, Waltham, MA, USA), and a matrix of codominant data
was then constructed. In addition, the raw data were imported into BioNumerics v7.6
software (Applied Maths, Sint-Martens-Latem, Belgium). To reduce scoring errors, each
electropherogram was carefully examined to exclude low confidence peaks (stutter peaks
and other artifacts, pull-up peaks, plus-adenine peaks), setting the minimum threshold at
100 relative fluorescence units (RFU) and considering only peaks with sizes in the expected
range. Automated fragment matching was implemented on all fingerprint profiles within
the comparison, disregarding uncertain bands, and with the optimization and position
tolerances for picking fragments established for 0.10%.

Distance-based techniques were used to assess relationships among Sporothrix isolates
using BioNumerics v7.6. The band-based Dice similarity coefficient was used to compute
pairwise genetic distances [53] combined with a “Fuzzy logic” option. Dendrograms were
assumed using the unweighted pair group mean arithmetic method (UPGMA) [54]. To
assess the consistency of a given cluster, we used the cophenetic correlation coefficient and
its standard deviation [55]. The Pearson product-moment correlation coefficient (Pearson
correlation) [56] and the global similarity levels were used to calculate the presence of
topological congruence among SSR multiplexes.

Dimensionality reduction methods such as principal component analysis (PCA) and
multidimensional scaling (MDS) were applied to generate three-dimensional plots with
Sporothrix isolates scattered according to their relationship. A discriminant analysis (PCDA)
was used to calculate the best discriminating components for Sporothrix groups. Default
settings were applied for PCA, MDS, and PCDA, subtracting the average for characters.
Additionally, the Self-Organizing Map (SOM), a standard artificial neural network algo-
rithm in the unsupervised learning category, was employed to categorize SSR data in a
two-dimensional map corresponding to their relatedness [57]. The size of the Kohonen
map was set to 100 (i.e., the neural network nodes in each direction), using the alleles
information (characters) and the similarity matrix.

The evolutionary relations among all Sporothrix genotypes and the most likely trans-
mission network were investigated using SSR-derived Minimum Spanning Trees (MSTs) as
previously described [34,58]. All figures were exported and treated using Corel Draw X8
(Alludo, Ottawa, ON, Canada).

2.6. Genetic Diversity Analysis and Linkage Disequilibrium

To assess the efficiency of each SSR marker evaluated here, the following genetic
parameters for codominant markers were determined: polymorphic information content
(PIC) [59], expected heterozygosity (H) [60], effective multiplex ratio (E) [61], arithmetic
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mean heterozygosity (Havp) [61], marker index (MI) [61,62], and discriminating power
(D) [63]. The Simpson’s diversity index was used to measure the diversity of Sporothrix
genotypes in each group [64]. Additionally, linkage disequilibrium (LD) was assessed by the
standardized disequilibrium coefficient (D’), as well as squared allele-frequency correlations
(r2) between pairs of polymorphic loci using the software package TASSEL v5 [65]. A two-
sided Fisher’s Exact test determined p-values for each r2 estimate, and loci were considered
to be in significant LD when p < 0.001 [66].

2.7. Structure Analysis

Bayesian analysis of population genetic structure was assessed in STRUCTURE v2.3.4 [67]
applying the admixture model, allowing alpha to be inferred and assuming correlated
allele frequencies procedure, using a burn-in period of 10,000 Markov Chain Monte Carlo
(MCMC) replications followed by 100,000 sampling replications, with 20 independent
runs performed for K values one to fifteen. We calculated the posterior distribution of
alpha to ensure all chains for K values 2–15 converged. All data were evaluated using the
method of Evanno and colleagues as implemented in StructureHARVESTER v0.6.94 [68,69]
to establish the optimal number of clusters (K). Consensus population distributions were
obtained with CLUMPP v1.1.2 [70], and final plots were exported and treated using Corel
Draw X8.

2.8. Analysis of Molecular Variance (AMOVA)

A matrix of codominant data (codon-genotypic SSR) was employed to analyze molec-
ular variance using GenAlex v6.5 [71,72]. The genetic differentiation among populations
was determined using ΦPT (PhiPT), and the gene flow (Nm) between populations was
calculated. These measures allow intra-individual variation to be suppressed and are ideal
for comparing codominant data with 9999 permutations [73].

2.9. Characterization of the Mating-Type Idiomorphs and Mitochondrial DNA Typing

A duplex PCR using primers targeting the MAT1-1 or MAT1-2 region was used to
determine the mating-types idiomorphs, as described before [74]. Sporothrix DNA (50 ng)
was used as a template for PCRs including two sets of primers: SPMAT1-1F and SPMAT1-
1R, which selectively amplify a 673 bp portion from the α box region of the MAT1-1 locus,
or SPMAT1-2F and SPMAT1-2R, which selectively amplify a 291 bp fragment from the
HMG domain gene, present in the MAT1-2 idiomorph. Mitochondrial DNA (mtDNA)
typing in Sporothrix was achieved using the primers pair 975–8038F and 975–9194R that
amplify an intergenic region between the ATP9 and COX2 genes [75]. Amplicons were
resolved using 1.2% agarose gel in 1× TBE buffer at 100V for 1 h at room temperature in
the presence of GelRed (Biotium, Hayward, CA, USA) [76]. Amplicon size was estimated
based on a comparison with 100 bp GeneRuler DNA Ladders (ThermoFisher Scientific).

3. Results
3.1. In Silico Mining of SSR Markers

The first step of our study relied on the in silico characterization of eight clinically
relevant Sporothrix genomes (Table 1). We estimated the total number of repeats con-
sidering a range of motifs composed of 2–10 bp and with a minimum of three, four, or
five repetitions per motif, finding values ranging between 118,140 and 143,912 SSR loci
(mean = 124,158 ± 8.347; coefficient of variation = 6.72%) for the most tolerant scenario
(minimum 3×). As expected, the simplest elements, such as dinucleotides, are the most
abundant SSR in Sporothrix regardless of the evaluated genome (Figure 1). Increasing the
motif’s complexity (composition and size) significantly reduces the frequency of these ele-
ments in the genomes considering a minimum of 4× (14,599–17,289; mean = 15,298 ± 986.7;
coefficient of variation = 6.45%) and 5× (3506–4341; mean = 3707 ± 263.6; coefficient of
variation = 7.10%) (Table 1).
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Figure 1. SSR markers with a minimum of 3, 4, or 5 repeats and motifs of 2–10 bp in the Sporothrix
genomes were analyzed in GMATA using the default settings: (A) S. brasiliensis 5110; (B) S. schenckii
1099-18; (C) S. schenckii ATCC 58251; (D) S. schenckii SsEM7; (E) S. schenckii SsMS1; (F) S. globosa CBS
120340; (G) S. globosa SS01; (H) S. pallida SPA8.
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Table 1. Statistics for genome-wide retrieved SSRs in Sporothrix species.

Strains Total SSR Loci Frequency
(SSRs/Mb) *

Total SSR Loci with
Primer Pair Designed

Total SSR Loci Without
Primer Pair Designed

Total Number of
Unique Markers

5110 126,286 3803.12 124,525 (98.60%) 1761 (1.39%) 86,689
1099-18 119,583 3693.67 118,265 (98.89%) 1318 (1.10%) 83,104

ATCC58251 118,140 3670.30 117,648 (99.58%) 492 (0.41%) 82,841
SsEM7 120,585 3668.41 119,435 (99.04%) 1150 (0.95%) 83,825
SsMS1 120,118 3676.89 119,136 (99.18%) 982 (0.81%) 83,891

CBS120340 122,335 3654.67 121,189 (99.06%) 1146 (0.93%) 85,279
SS01 122,302 3651.55 121,251 (99.14%) 1051 (0.85%) 85,487
SPA8 143,912 3804.65 141,266 (98.16%) 2646 (1.83%) 98,369

* Microsatellite density (SSRs/Mb) including SSR minimum motif length = 2; maximum motif length = 10; and
minimum repeat times = 3.

The genomes of S. brasiliensis and S. pallida show the highest density of SSR/Mb
(3803.12–3804.65). Among the species of clinical interest, S. brasiliensis had the highest num-
ber of SSR loci (126,286 loci), followed by S. globosa (122,302–122,335 loci) and S. schenckii
(118,140–120,585 loci). Between 68 and 70% of SSR markers are documented as unique
sequences, showing a large diversity of these elements. Primers were successfully designed
for 98.16–99.58% of the characterized loci (Table 1). Nevertheless, our criteria for composing
an SSR panel considered that (i) the markers should be polymorphic intra and interspecies;
(ii) primers were designed to promote cross-species transferability; (iii) amplicons should
not exceed 600 bp; (iv) forward primers were designed to be labeled in the 5’-region;
therefore, sequences containing G in the 5’ region were avoided; and (v) the annealing
temperature of the primers should be 60 ± 2 ◦C, and primers that presented secondary
structures or interactions were eliminated to prioritize multiplex reactions.

For all species, the GC, CG, GA, TC, CT, AG, CA, TG, AC, and GT are the most
abundant motifs representing 59.93–62.72% of the repeats in their genomes (Figure 2;
minimum 3×). Repeats with a size of 6 bp (72,627–88,745 loci), 9 bp (27,324–32,710 loci),
8 bp (7042–9174 loci), 12 bp (4899–6393 loci), 18 bp (1299–1710 loci), 15 bp (1311–1889 loci),
10 bp (909–1266 loci), 24 bp (428–821 loci), 27 bp (232–626 loci), and 21 bp (232–552 loci)
correspond to 98.8–99.32% of the loci characterized in Sporothrix (Figure 3).

The distribution of SSR loci is remarkably homogeneous throughout genomes. A
positive correlation between the size of the contigs and the number of microsatellites was
found for all evaluated genomes (Pearson correlation = 0.99–1.00; p < 0.0001) (Figure 4).

Therefore, to compose the panel of SSR markers for typing Sporothrix, we chose
polymorphic motifs of 3, 4, 5, 6, and 10 bp covering the main SSR characterized and
distributed among different contigs based on the reference genomes of the isolates 5110 of
S. brasiliensis and 1099-18 of S. schenckii. Altogether, 15 primer pairs were designed in this
study and are divided into five multiplexes (Table 2), named M1–M5, according to the
scheme shown in Supplementary Figure S1.

3.2. In Vitro Application of SSR Markers

A panel of 180 Sporothrix isolates was used to evaluate the success rate of marker
amplification. High cross-species transferability is reported with excellent performance
for all markers for S. brasiliensis (94.85–100%), S. schenckii (91.84–100%), and S. globosa
(91.18–100%), with overall amplification success rates ranging from 80.56 to 100%, overcom-
ing an important bottleneck in Sporothrix (Supplementary Figure S2). The exception was
marker SSR391 (M5), which did not amplify the DNA of S. globosa isolates (Supplementary
Table S3). In silico analyses revealed five polymorphisms in the SSR391 forward primer
(with two mismatches at the 3’ end), preventing their extension in S. globosa genomes.
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Figure 2. The top 10 motif distribution with a minimum of 3, 4, or 5 repeats and motifs of 2–10 bp
identifies that GC/CG is the major SSR in Sporothrix genomes: (A) S. brasiliensis 5110; (B) S. schenckii
1099-18; (C) S. schenckii ATCC58251; (D) S. schenckii SsEM7; (E) S. schenckii SsMS1; (F) S. globosa CBS
120340; (G) S. globosa SS01; (H) S. pallida SPA8.
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Figure 3. SSR length distribution with a minimum of 3 repeats and motifs of 2–10 bp shows that 6 bp,
9 bp, 8 bp, and 12 bp are the major SSR in Sporothrix: (A) S. brasiliensis 5110; (B) S. schenckii 1099-18;
(C) S. schenckii ATCC58251; (D) S. schenckii SsEM7; (E) S. schenckii SsMS1; (F) S. globosa CBS 120340;
(G) S. globosa SS01; (H) S. pallida SPA8.
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Figure 4. Pearson correlation analysis between SSR loci count (minimum of 3 repeats and motifs
of 2–10 bp) and each contig length shows a positive correlation (R = 0.99–1.00; p < 0.0001) for
all Sporothrix genomes analyzed: (A) S. brasiliensis 5110; (B) S. schenckii 1099-18; (C) S. schenckii
ATCC58251; (D) S. schenckii SsEM7; (E) S. schenckii SsMS1; (F) S. globosa CBS 120340; (G) S. globosa
SS01; (H) S. pallida SPA8.

Marker length was determined by capillary electrophoresis. The amplicons’ size and
alleles’ identification were performed using GeneMapper, revealing that all markers were
polymorphic using the group of 180 isolates. The most polymorphic markers were SSR661
(36 alleles; M4), followed by SSR235 (27 alleles; M1), SSR637 (21 alleles; M1), SSR343
(21 alleles; M3), SSR408 (16 alleles; M1), SSR538 (16 alleles; M2), and SSR11 (16 alleles;
M4) while the least polymorphic were SSR150 (7 alleles; M5), SSR50 (9 alleles; M5), and
SSR307 (9 alleles; M3). All SSRs presented marked interspecific variation. For example,
for S. brasiliensis, the greatest diversity was found with the marker SSR661, revealing
31 alleles among 97 isolates. For S. schenckii, the greatest diversity was found using the
marker SSR637, with 17 alleles among 49 isolates. For S. globosa, the highest number
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of alleles was found with the marker SSR646, with 10 alleles recognized in a group of
34 isolates (Supplementary Tables S3 and S4). The 15 SSR primer pairs amplified 240 alleles
from 180 isolates, revealing 151 unique genotypes (Hd = 0.9955) and a mean of 16 alleles
per locus. A total of 73 (Hd = 0.985; Simpson Index = 0.0146), 47 (Hd = 0.998; Simpson
Index = 0.001701), and 31 (Hd = 0.995; Simpson Index = 0.005348) genotypes were identified
in S. brasiliensis, S. schenckii, and S. globosa, respectively.

Table 2. Primer sequences, repeat motifs, primer annealing temperature (Tm) for each SSR loci.

SSR Loci 5′ Dye Primer Sequence (5′-3′)
F: Forward; R: Reverse Motif Tm (◦C) Expected Amplicon Size (bp) *

5110 1099-18 CBS 120340

SSR11 NED F: TGGAAGCAAAACCATGGTGCCTTTC CAGTCGCCCC 60.5 87 125 96
- R: GAGATCTGCCAAAACGACCGTC 58.2

SSR50 VIC F: TTCGACGCCACTAAAGAAGCCG TGTAAGTGGA 59.7 144 143 195
- R: ATTCATTTCTTTTCCAGCCTTGGT 55.4

SSR61 FAM F: TTTTCTCGTGAGAAGGTCCCTCCC TTCTTTTGCC 60.3 136 208 139
- R: CCAAAGACGGCGGGAACAAGCG 63.4

SSR150 FAM F: TGGAGCACGACACTCTACCTCACC CAACGG 62.0 389 383 389
- R: GTCGAGGCGGCAATACGAGATG 60.1

SSR181 NED F: AGGACTTGGACGCATCGGTG GAGCCA 59.8 167 167 209
- R: CAATGTGACCCAGACCACCTTTG 58.3

SSR199 NED F: CATGCTGTTGTAGATGGGCAGATG CGCTGC 58.1 570 543 579
- R: CAGGTGCAGCAAGAGTATGCGG 60.6

SSR235 FAM F: TTGGTCCCGAGAAAGCCCAG GATCCA 59.7 477 453 429
- R: CTGGTGGCGGTCGATGGTGTC 62.8

SSR307 VIC F: CTGTAAGGGTGTGTTGTACGTCGTTG AGCAGA 59.4 355 309 309
- R: GATCGCGCAGGTTGCCTATT 58.2

SSR343 FAM F: GTGGCCACTGTAGTACGCGAC TGC 60.1 268 235 230
- R: CATACTCGCGGAGTTTCGGATCTC 59.0

SSR391 NED F: ACTGTTCCATTCTCCCGACCGAG CTACAC 60.6 272 302 -
- R: GTGCTCAAGTCGTGCAAGGGC 61.5

SSR408 NED F: TTGGAAGAAGCGGCAACAAGTGG CTGGGA 60.4 273 292 265
- R: TAGGGCGGCAGGACGGGAAG 64.2

SSR538 VIC F: CTTGGAGGTGTTGATGAGTGTCTGC ACCAGG 59.6 250 256 243
- R: CACATCACAGACGACGCTGGAC 60.1

SSR637 VIC F: TCGGTTTCCTCGACCAATTCC ACCG 57.2 191 183 178
- R: CATGGTTGCGGTGGCTTATGTCG 60.8

SSR646 VIC F: TCTTGTGGCGGAGTGGCTGTC CAC 62.1 362 362 374
- R: GCACATCCTGTGTCCAGCGAAC 60.8

SSR661 FAM F: TACCGTTGCGCTTTGCCCCATTTG TGTTT 62.8 371 253 253
- R: CATCGGCAGCCATTCCATTTGTG 59.3

* Amplicon size was determined based on sequences originated from the whole genome sequencing of S. brasiliensis
5110 (AWTV01), S. schenckii 1099-18 (AXCR01), and S. globosa CBS120340 (LVYW01).

After identifying the alleles, we calculated the polymorphic statistics for the codomi-
nant markers individually (Supplementary Table S4) or considering the M1–M5 multiplexes
(Table 3). The PIC values showed the excellent ability of each marker to reveal intra and in-
terspecific polymorphisms. Excellent PIC values were found for S. brasiliensis (PIC = 0.8987),
S. schenckii (PIC = 0.9009), and S. globosa (PIC = 0.8904). The most significant individual PIC
value was observed for the SSR235 marker (PIC = 0.9004), and the lowest was registered
for the SSR50 marker (PIC = 0.4221), demonstrating good diversity among the studied
Sporothrix species. Essentially, S. brasiliensis, S. schenckii, and S. globosa displayed compa-
rable levels of polymorphic information content (Table 3). Discriminating power (D) was
estimated as the likelihood that two random Sporothrix exhibit a different pattern of alleles,
and all SSR markers showed high overall discriminating power (D = 0.7127), notably for
emerging pathogens previously considered clonal such as S. brasiliensis (D = 0.3562) and
S. globosa (D = 0.3075) (Table 3).

The marker index (MI) was determined as the product of the effective multiplex
ratio (E) and the expected mean heterozygosity (Havp) for polymorphic SSR and was
employed to assess the overall utility of each marker system. Equivalent overall MI values
(MI = 0.4878–0.9072) were found for all markers individually (Supplementary Table S3) as
well as combined (MI = 0.9159) (Table 3).
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Table 3. Polymorphic statistics for multiplexes M1–M5 of SSR markers in Sporothrix species.

Multiplex ID Species (n) Alleles (n) H PIC E Havp MI D

M1 S. brasiliensis (97) 26 0.7908 0.7644 1.0000 0.7908 0.7908 0.4045
S. schenckii (49) 43 0.8980 0.8899 1.0000 0.8980 0.8980 0.8370
S. globosa (34) 13 0.8089 0.7845 1.0000 0.8089 0.8089 0.4908
Overall (180) 64 0.9010 0.8941 1.0000 0.9010 0.9010 0.7813

M2 S. brasiliensis (97) 13 0.7291 0.6796 1.0000 0.7291 0.7291 0.2531
S. schenckii (49) 29 0.8740 0.8628 1.0000 0.8740 0.8740 0.7633
S. globosa (34) 8 0.7141 0.6599 1.0000 0.7141 0.7141 0.1468
Overall (180) 40 0.8759 0.8637 1.0000 0.8759 0.8759 0.7183

M3 S. brasiliensis (97) 18 0.8245 0.8029 1.0000 0.8245 0.8245 0.4825
S. schenckii (49) 28 0.8032 0.7821 1.0000 0.8032 0.8032 0.5986
S. globosa (34) 9 0.7803 0.7473 1.0000 0.7803 0.7803 0.3571
Overall (180) 40 0.8650 0.8524 1.0000 0.8650 0.8650 0.7202

M4 S. brasiliensis (97) 39 0.7785 0.7522 1.0000 0.7785 0.7785 0.3736
S. schenckii (49) 27 0.8523 0.8371 1.0000 0.8523 0.8523 0.6366
S. globosa (34) 17 0.7797 0.7525 1.0000 0.7797 0.7797 0.4504
Overall (180) 67 0.8636 0.8519 1.0000 0.8636 0.8636 0.7172

M5 S. brasiliensis (97) 20 0.6023 0.5381 1.0000 0.6023 0.6023 0.2673
S. schenckii (49) 16 0.7420 0.7004 1.0000 0.7420 0.7420 0.2449
S. globosa (34) 3 0.6699 0.5987 1.0000 0.6699 0.6699 0.0927
Overall (180) 29 0.7683 0.7392 1.0000 0.7683 0.7683 0.6265

15 SSRs S. brasiliensis (97) 116 0.9057 0.8987 1.0000 0.9057 0.9057 0.3562
S. schenckii (49) 143 0.9077 0.9009 1.0000 0.9077 0.9077 0.6161
S. globosa (34) 50 0.8993 0.8904 1.0000 0.8993 0.8993 0.3075
Overall (180) 240 0.9159 0.9101 1.0000 0.9159 0.9159 0.7127

D: discriminating power; E: effective multiplex ratio; H: expected heterozygosity; Havp: mean heterozygosity; MI:
marker index; PIC: polymorphism information content.

The expected heterozygosity (H), which is the likelihood that an isolate is heterozygous
for the locus in the population, was calculated. The expected heterozygosity corresponds
to the unbiased genetic diversity of Nei (HS). The average expected heterozygosity for
the Sporothrix species is high (H = 0.9159) (Table 3). Considering the earlier report of
clonality among members of the clinical clade, the expected high combined heterozygosity
for S. brasiliensis (H = 0.9057) and S. globosa (H = 0.8993) was remarkable when compared to
S. schenckii isolates (H = 0.9077), corroborating that our SSR panel of markers allows us to
explore cryptic diversity in Sporothrix of medical relevance.

Combining SSR markers significantly increases intra and interspecific diversity (Table 3).
To evaluate which markers are more informative and consequently more efficient in geno-
typing Sporothrix, we performed a simple permutation of multiplex panels and evaluated
the performance of each scenario, which is presented as a heatmap in Figure 5. The
combinations involving the sets M1, M2, and M4 show excellent performance; for exam-
ple, the highest values of PIC and H were found for combined M1 and M4 (PIC = 0.9156
and H = 0.9208), M1, M2, and M4 (PIC = 0.9171 and H = 0.9222), M1, M2, M3, and M4
(PIC = 0.9155 and H = 0.9206), and M1, M2, M3, M4, and M5 (PIC = 0.9101 and H = 0.9159).

The UPGMA-based clustering method was used to generate the dendrogram shown
in Figure 6. The cluster evaluation reveals three well-supported clades with a significant
global cophenetic correlation coefficient (98%) for S. brasiliensis (93%; Dice similarity =
24.91% ± 3.30%), S. schenckii (94%; Dice similarity = 22.02% ± 5.70%), and S. globosa (89%;
Dice similarity = 25.69% ± 3.48%). Employing an arbitrary cutoff of 60 ± 2%, a few
subgroups are recognized in the dendrograms (Supplementary Figure S3). In S. brasiliensis,
we highlight the clade Ia (n = 16, Dice similarity = 69.51% ± 3.51%) composed mainly of
isolates from Rio Grande do Sul, harboring the MAT1-1 locus, and the clades Ib (n = 57,
Dice similarity = 69.74% ± 5.99%), Ic (n = 15, Dice similarity = 59.09% ± 7.07%), and Id
(n = 6, Dice similarity = 79.72% ± 3.35%) composed mostly of isolates from the Southeast
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region, exhibiting the MAT1-2 locus. Isolates from humans and animals in Rio de Janeiro
were hitchhiking through clades Ib-Id (Supplementary Figure S3).

Figure 5. Multiplex combinations were used to assess intra and interspecific diversity in medically
relevant Sporothrix, revealing that a minimum of three multiplexes (nine SSR markers) are needed to
cover considerable diversity in Sporothrix. In order of effectiveness, our recommendations are (1) M1,
M2, M3, M4, and M5; (2) M1, M2, M3, and M4; (3) M1, M2, and M4; and (4) M1 and M4.

Clustering patterns in S. schenckii follow a geographic trend as observed for clades IIa
(n = 16, Dice similarity = 58.07% ± 6.05%), IIb (n = 11, Dice similarity = 58.90% ± 4.13%), IIc
(n = 5, Dice similarity = 40.46%± 0.37%), and IId (n = 11, Dice similarity = 60.40% ± 4.31%).
Most clades (IIa–IIc) are composed of isolates recovered in Latin America, while clade
IId harbors global specimens represented by Brazil, USA, Italy, and Mexico. In S. glo-
bosa, four clades with limited diversity were observed being named IIIa (n = 5, Dice
similarity = 67.86% ± 2.59%), IIIb (n = 12, Dice similarity = 73.09% ± 6.09%), IIIc (n = 10,
Dice similarity = 76.32% ± 1.59%), and IIId (n = 4, Dice similarity = 76.32% ± 1.59%). We
highlight clade IIIc with closely related samples from Brazil, Chile, Spain, Venezuela, and
Japan (Supplementary Figure S3). Dice similarity coefficient values for the SSR markers
indicated that diversity is high for the Sporothrix genotypes (Figure 6). The observed clus-
tering patterns indicate that S. brasiliensis and S. schenckii are sister species, and S. globosa
assumes a more basal position within the clinical clade.
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Figure 6. The UPGMA dendrogram, based on SSR markers, generated with a total of 15 SSR markers
for 180 Sporothrix isolates originated worldwide. The dendrogram shows cophenetic correlation
values (circles are represented by color ranges between green-yellow-orange-red according to de-
creasing cophenetic correlation) for a given clade and its standard deviation (grey bar). For pairwise
genetic distances calculation, the Dice similarity coefficient was used. The cophenetic correlation of
the dendrogram is 98%. Further information about isolate sources can be found in Supplementary
Table S1.
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We used Pearson correlation and the global similarity index to assess the topological
congruence between the results obtained for the five multiplexes and the complete panel
with the 15 SSR markers. Pairwise comparisons revealed a similar and consistent cluster-
ing pattern, as evidenced by the positive Pearson correlation (Figure 7). Pearson values
and global similarity are concordant and are more significant for pairwise comparisons
between the whole panel (15 SSRs) and multiplexes M2 (r = 76%), M1 (r = 72.70%), M4
(r = 70.79%), and M5 (r = 70.61%) (Figure 7). Therefore, the dendrograms generated from
the SSR marker were more congruent than expected by chance, revealing consistent diver-
sity patterns. Moreover, the observed 100% agreement between microsatellite data and
molecular identification also supports using SSR markers to identify Sporothrix down to the
species level.

Figure 7. Pairwise congruence between experiments (multiplexes): (A) Pearson correlation between
experiments evaluated for 180 Sporothrix isolates is displayed above the diagonal, and correlation
plots are depicted below the diagonal. (B) A similarity index was calculated in BioNumerics v7.6,
comparing M1–M5 and the complete panel.

3.3. Population Structure Based on Multivariate Cluster Analysis

SSR markers were used to generate band-matching tables, which were then subjected
to a multivariate cluster analysis using BioNumerics v7.6. In the PCA and MDS plots, the
scattering of 180 Sporothrix isolates among the three coordinates demonstrated a species-
specific tendency to clustering corresponding to different Sporothrix species. The set of
SSR showed an excellent cumulative explained percentage, with 61.7% of the variation
described by the first three components (X, Y, and Z coordinates, Figure 8A), signaling
a solid genetic structure. The dimensionality reduction method showed a significant
level of intraspecific dispersion (diversity) and a substantial genetic distance between any
two individuals of different species (interspecific diversity) (Figure 8B). Discrimination
(DA) on PCA supports splitting S. brasiliensis, S. schenckii, and S. globosa using SSR markers
(Figure 8C). The first component (PC1 = 51.63%) segregates S. brasiliensis from the remaining
species, while PC2 (48.37%) differentiates S. schenckii and S. globosa clusters. PCDA analysis
using the characters entries (240 alleles) describes a scenario of species-specific alleles whose
sample projections along the axes significantly contribute to interspecific discrimination
(Figure 8D).



J. Fungi 2023, 9, 354 17 of 34

Figure 8. Dimensionality reduction using principal component analysis (PCA), multidimensional
scaling (MDS), and principal component discriminant analysis (PCDA) of the SSR markers: (A) PCA
of 180 Sporothrix isolates shows that the first three components explain 61.7%; (B) MDS analysis of
180 Sporothrix isolates; (C) PCDA analysis of 180 Sporothrix isolates splits S. brasiliensis, S. schenckii, and
S. globosa into three different clusters; (D) PCDA analysis of SSR alleles reveals the best discriminating
components for Sporothrix groups. Dimensionality reduction analyses were created in the software
BioNumerics v7.6.

The MSTs derived from the SSR markers in Figure 9 effectively confirm the genetic
structure observed using dimensionality reduction methods, with most isolates assum-
ing unique genotypes. Using SSR markers, we recognized the emergence of nine clonal
complexes in S. brasiliensis, with isolates with identical genotypes and distinct geographic
origins, thus indicating transmissibility, or in the cases of isolates with identical genotypes
recovered from humans and animals, confirming zoonotic transmission. Therefore, MST
can be used to understand cat-transmitted S. brasiliensis during geographical expansion.
The S. brasiliensis clonal complex #1 is formed by eight isolates (four from Rio de Janeiro
and four from Pernambuco). These data suggest the migration of S. brasiliensis from Rio de
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Janeiro to Pernambuco, most likely via an introduction of a diseased animal from endemic
to non-endemic areas. Other complexes refer to isolates from São Paulo (see complexes 2
and 4, Figure 9). The main characteristic of clonal complexes 2 and 4 reflects a temporal
variable since these isolates were recovered in the same area in a short period.

Figure 9. Minimum Spanning Trees (MSTs) showing the genetic relationship among 180 Sporothrix
isolates using 15 SSRs markers. MST was created in the software BioNumerics v7.6. The annotated
figure with all isolates is shown in Supplementary Figure S4.

The presence of clonal complexes is inherent to the founder effect and depicts the
dynamics of the expansion of S. brasiliensis, where initially, after the introduction of a
genotype, it spreads rapidly through scratches and bites of infected or colonized cats to
other animals and humans (Figure 9). Therefore, time and space influence the recognition



J. Fungi 2023, 9, 354 19 of 34

of the emergence of clonal complexes during cat-transmitted sporotrichosis outbreaks.
As it is a dynamic process, multiple introductions over time lead to greater genotypes
diversification that strengthens the population structure (see genotypes referring to São
Paulo in the insert of Figure 9).

The allelic data were used to generate self-organizing maps employing an artificial
neural network. Kohonen maps using the characters or the similarity matrix are shown in
Figure 10 for 180 color-coded isolates enclosed in cells with a black background. Isolates
positioned in adjacent cells are separated by lines with different thicknesses and colors,
varying between black as the lowest intensity and white as the highest intensity. The more
intense (white) and thicker the line separating isolates allocated to adjacent cells, the more
significant the accumulated genetic differences between the isolates. On the other hand,
the thinner and darker (black) the line separating the isolates, the less powerful the genetic
differences that separate these isolates. Therefore, it is evident that interspecific differences
are meaningful among S. brasiliensis, S. schenckii, and S. globosa, according to Kohonen’s
maps (Figure 10).

Figure 10. Self-organizing map representing the distribution of 180 Sporothrix isolates genotyped
using SSR markers. Kohonen maps using (A) character data or (B) the similarity matrix. The regions
occupied by clonal complexes #1 (Rio de Janeiro and Pernambuco: Ss66, Ss611, Ss612, Ss615, Ss616,
Ss1034, Ss1036, and Ss1037) and #2 (São Paulo: Ss631, Ss653, Ss663, Ss669, Ss676, Ss681, Ss683,
and Ss684) are indicated. The dimensioning analyses were performed using BioNumerics v7.6 to
determine the consistency of the differentiation of the populations defined by the cluster analysis.

The interpretation of self-organizing maps suggests that intraspecific diversity in
S. globosa is relatively low given the negligible lines depicted, a situation contrary to
S. schenckii, where many isolates accumulated differences that translate into thicker and
more intense segregating lines. In S. brasiliensis, we find a hybrid scenario, underlining
specimens with little differentiation, separated by tenuous and dark lines, and genetically
divergent isolates, whose boundary lines present expressive thickness colored with a more
vivid white. Interestingly, clonal complexes #1 (Rio de Janeiro and Pernambuco: Ss66,
Ss611, Ss612, Ss615, Ss616, Ss1034, Ss1036, and Ss1037) and #2 (São Paulo: Ss631, Ss653,
Ss663, Ss669, Ss676, Ss681, Ss683, and Ss684) of S. brasiliensis recognized in the dendrogram
(Figure 6) and MSTs (Figure 9), were placed in the same cell in the Kohonen’s maps
(Figure 10 B), confirming the limited diversity among these samples. The SOMs, therefore,
allowed us to understand the dynamics of differentiation of Sporothrix populations during
outbreaks and epidemics (Figure 10).
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3.4. Population Genetics in Sporothrix Species

Subsequently, we investigated the genetic structure of Sporothrix populations by evalu-
ating allele frequencies between groups. STRUCTURE analysis of 180 isolates determined
that three groups best described the data (Figure 11A,B). Thus, considering K = 3, the
genotypes of S. brasiliensis (cluster 1), S. schenckii (cluster 2), and S. globosa (cluster 3) tend
to have high proportions of species-specific association. A few genotypes of S. brasiliensis
(cluster 1, e.g., Ss34 and Ss265) and S. globosa (cluster 3, e.g., Ss211 and Ss450) shared
ancestry with genotypes of S. schenckii (cluster 2) and therefore are mixed in the three-
clusters model (Figure 11C, Supplementary Table S5). These assumptions are consistent
with the multivariate analysis of clusters that detected the presence of outliers in our panel
of isolates. Considering K = 4 or 5, the S. brasiliensis isolates are partitioned into two major
groups: the Rio de Janeiro clade and the Rio Grande do Sul clade. For S. schenckii, this
subdivision considers isolates from South America and globally distributed. The cluster of
S. globosa remained homogeneous at K = 4 or 5 (Figure 11D,E).

The AMOVA for the 180 individuals allowed a partition of the global variation into
two levels (Table 4). The genetic differences between the three populations were significant
(ΦPT = 0.539; Nm = 0.213; p < 0.0001). The proportion of variation attributable to differences
within (46%) and among populations (54%) was somewhat equivalent (Figure 12B).

Table 4. Analysis of molecular variance (AMOVA) shows the partitioning of genetic variation within
and between Sporothrix species populations.

Group Source of Variation df SS MS Est. Var. % p-Value

Sporothrix Among population 2 1609.687 804.843 14.677 54% 0.0001
(n = 180) Within population 177 2217.469 12.528 12.528 46% 0.0001

Total 179 3827.156 27.205 100%

S. brasiliensis Among population 2 83.248 41.624 1.416 12% 0.0001
(n = 96) * Within population 93 934.752 10.051 10.051 88% 0.0001

Total 95 1018.000 11.467 100%

(df = degree of freedom, SS = sum of squares, MS = mean squares, Est. var. = estimate of variance, % = percentage
of the total variation, p-value is based on 9999 permutations). Group Sporothrix (n = 180): Pop1 is 97 S. brasiliensis
isolates; Pop2 is 49 S. schenckii isolates; Pop 3 is 34 S. globosa isolates. Group S. brasiliensis (n = 96): * Pop1 is
18 isolates (South); Pop2 is 67 isolates (Southeast); Pop3 is 11 isolates (Northeast). Isolate Ss104 (Central-West
Brazil) was removed from the S. brasiliensis dataset.

Pairwise ΦPT and gene flow (Nm) values between populations 1 and 2 (ΦPT = 0.474,
Nm = 0.277, p < 0.0001), 1 and 3 (ΦPT = 0.640, Nm = 0.141, p < 0.0001), and 2 and 3
(ΦPT = 0.508, Nm = 0.242, p < 0.0001) and their significance are shown in Figure 12A.
Subsequently, S. brasiliensis isolates were segregated according to the geographic origin
considering South (n = 18), Southeast (n = 67), and Northeast isolates (n = 11). The AMOVA
of the distance matrix for the 96 individuals of S. brasiliensis allowed a partition of the global
variation in two levels (Table 4). The proportion of variation attributable to differences
within populations (88%) was high, while only 12% occurred among subpopulations (Fig-
ure 12D). Likewise, estimated ΦPT and Nm values between S. brasiliensis in the South and
Southeast regions (ΦPT = 0.122, Nm = 1.801, p < 0.0001), South and Northeast (ΦPT = 0.241,
Nm = 0.786, p < 0.0001), and Southeast and Northeast (ΦPT = 0.081, Nm = 2.846, p < 0.0001)
indicate that the Southeast and Northeast populations are the most similar to each other
(low differentiation and high gene flow). The South population differed most from the
remaining areas (Figure 12C). Notably, gene flow between S. brasiliensis populations in
the Southeast and Northeast regions was 3.62 times higher than that between the South
and Northeast regions (p < 0.0001), supporting the introduction of isolates from the Rio de
Janeiro clade to the Northeast region, which is also supported by the temporal variability
of the evolution of the outbreaks (Figure 12).
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Figure 11. Population structure of medically relevant Sporothrix isolates: (A,B) StructureHARVESTER
results show the most reasonable number of genetic clusters (K) within the complete data according
to the approach described by Evanno et al. [68]. The population genetic structure of the estimated ∆K
value (275.005058) defined the maximum value at K = 3 and LnP (Mean LnP(K) = −2749.95 ± 1.89).
Bayesian cluster analyses with STRUCTURE for (C) K = 3, (D) K = 4, (E) K = 5 based on SSR markers.
Each vertical bar exemplifies one individual and its probability of being allocated to clusters. Further
information about inferred ancestry can be found in Supplementary Table S5.
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Figure 12. ΦPT genetic distances among medically relevant Sporothrix species based on 15 SSR
markers. (A,C): Frequency Distribution of Random ΦPT versus Observed ΦPT. (B,D): Percentages
of molecular variance. (A,B): Group Sporothrix (n = 180); Pop1 is 97 S. brasiliensis isolates; Pop2 is
49 S. schenckii isolates; Pop 3 is 34 S. globosa isolates. (C,D): Group Sporothrix brasiliensis (n = 96). The
most significant ΦPT values were found between the South (S) and Northeast (NE) S. brasiliensis
isolates (ΦPT = 0.241), along with the lowest Nm values (0.786). The lowest values were found
in pairwise comparisons between the Southeast and Northeast, demonstrating the proximity of
these isolates (ΦPT = 0.081) and suggesting that the migration occurred between members of the
southeastern region and the northeastern region of Brazil. S: S. brasiliensis South isolates (n = 18); SE:
S. brasiliensis Southeast isolates (n = 67); NE: S. brasiliensis Northeast isolates (n = 11). Isolate Ss104
from Central-West Brazil was removed from the S. brasiliensis dataset. Nm is gene flow.

In a randomly mating (or panmictic) population, allele frequencies are projected to
be approximately similar between groups. Nevertheless, mating tends to be nonrandom
to some extent, triggering the structure to emerge. Thus, we analyzed the linkage dise-
quilibrium (LD) through the nonrandom association of alleles at two or more loci in the
genome using Fisher’s exact test (Figure 13). As expected, only 1201 (~4.20%) possible SSR
marker pairs were in LD at p < 0.001, demonstrating that the level of LD continued low in
the Sporothrix isolates incorporated in our analysis (Table 5).

Table 5. Linkage disequilibrium (LD) analysis in the complete Sporothrix isolate set (n = 180) and
within members of the clinical clade.

LD Characteristic Clinical Clade
(n = 180)

S. brasiliensis
(n = 97)

S. schenckii
(n = 49)

S. globosa
(n = 34)

Total number of markers 240 240 240 240
Number of markers pairs 28,560 28,560 28,560 28,560

Number of markers pairs at 0 ≤ p ≤ 0.001 871 (3.40%) 102 (0.35%) 87 (0.30%) 7 (0.024%)
Number of markers pairs at 0.001 ≤ p ≤ 0.01 330 (1.15%) 59 (0.20%) 74 (0.25%) 10 (0.035%)

Number of markers pairs at r2 = 1 4 (0.014%) 2 (0.007%) 8 (0.028%) 0
Mean r2 0.02714 0.04104 0.04957 0.05840
Mean D′ 0.8910 0.7750 0.8405 0.6170
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Splitting Sporothrix to species level has eliminated some of the observed LD degrees;
although; the remaining equilibrium patterns continue to be similar. In S. brasiliensis
(n = 97), a total of 161 of 28,560 (0.56%) genome marker pairs were in LD at p < 0.001, and
the strongest LD (r2 = 1) was observed for only 2 pairs of markers (0.007%). In S. schenckii
(n = 49), a total of 161 of 28,560 (0.56%) genome marker pairs were in LD at p < 0.001, and
the strongest LD (r2 = 1) was observed for 8 pairs of markers (0.028%). In S. globosa (n = 34),
a total of 17 of 28,560 (0.059%) genome marker pairs were in LD at p < 0.001, and the
strongest LD (r2 = 1) was not detected (Table 5).

Figure 13. Marker-marker disequilibrium matrix for 240 polymorphic loci based on medically
relevant Sporothrix species (S. brasiliensis, n = 97; S. schenckii, n = 49; S. globosa, n = 34). Pairwise
calculations (28,560 pairs) of linkage disequilibrium (LD) (r2) are displayed above the diagonal, with
the corresponding p-values for Fisher’s exact test shown below the diagonal. The locus position (L)
is indicated on the left X-axis. The color legends indicate the level of significance (p-value) and the
corresponding strength of LD (r2). Mean r2 = 0.02714. Mean D′ = 0.8910.

4. Discussion

Microsatellites or simple sequence repeats of DNA present significant polymorphism
due to the high mutation rates at these loci. These elements are widely distributed in
Sporothrix genomes and can play a vital role in the organization, recombination, gene
regulation, quantitative genetic variation, and gene evolution, in addition to serving as
relevant markers for dissecting both population structure and analysis of genetic diver-
sity [77]. The availability of complete genomic sequences from various Sporothrix offers the
unique opportunity to characterize and compare SSR distributions [78]. The distribution
and frequency of SSRs underlined repeat unit lengths of 2–10 bp in the Sporothrix genome
revealed a total of 118,140–143,912 SSR loci (82,841–98,369 unique markers), with a density
of 3651.55–3804.65 SSR/Mb. The overall SSR density in S. brasiliensis (3803.12 SSR/Mb)
was slightly higher than the one observed for S. schenckii (3677.32 SSR/Mb) and S. globosa
(3653.11 SSR/Mb) but roughly similar to the mid-pathogenic S. pallida (3804.65 SSR/Mb),
despite the smaller genome of S. brasiliensis (coefficient of variation = 1.719%).
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It is often accepted that larger genomes harbor more SSRs than smaller ones; although,
there is no clear association between SSR content and genome size [79–81]. This statement
does not seem proper for fungi, as several fungal species have varying SSR frequencies
and abundances in their genomes, despite having equivalent genome sizes [82]. According
to Morgante et al. [83], in plants such as Arabidopsis thaliana, the overall frequency of mi-
crosatellites is inversely related to genome size and the proportion of repetitive DNA. The
results found in Sporothrix contrast with this general tendency, as we reveal a positive cor-
relation between the size of the genomes and the density of SSR, as well as the distribution
of these elements by the length of the contigs of the analyzed isolates.

Microsatellite composition and frequency confirmed that di- and trinucleotides, the
most extensively studied motifs, were the most abundant SSRs, accounting for ~95.41%
of all SSRs identified in S. brasiliensis. This phenomenon seems to be supported by the
negative selection pressure driven by polymerase slippage during DNA replication [84]
or other enzymes involved in various aspects of DNA processing [85]. The SSR frequency
decreased as the complexity and number of repeat units increased. For Sporothrix genomes,
the nucleotide composition of an SSR motif was strongly biased towards C or G, especially
at the first base. For example, the SSR motif with the highest frequency of repeats was
GC/CG, making up 17.01% (coefficient of variation = 13.13%) of all dinucleotide loci in
the genome. Furthermore, a similar trend was also observed for longer motifs, such as
CAG/TGC/GGC, which were the most abundant trinucleotide motifs. These data were
already expected, considering that S. brasiliensis and S. schenckii harbor GC-rich sequences of
~62% of their genome content, and in S. globosa and S. pallida this content is approximately
52–54% [37,38,40,41].

We successfully designed primers for 98.16–99.58% of the microsatellites documented.
However, our selection criteria considered only (i) polymorphic markers covering the pri-
mary motifs characterized in silico and distributed over different contigs, (ii) that presented
a high potential for cross-species transferability (i.e., allowed portability between species),
and (iii) with excellent multiplexing capability. Therefore, our panel comprises 15 SSR
markers suitable for genotyping S. brasiliensis, S. schenckii, and S. globosa. As a proof of
concept, it has been successfully applied to genotype 180 isolates with a positive ampli-
fication rate of >90%, allowing the recognition of 240 alleles in a systematic population
genetic study. The number of alleles per locus ranged from 7 to 36 with a mean of 16,
with a moderate to high PIC (0.4221–0.9004; mean = 0.6802), which confirms the success of
our panel of highly informative genetic markers [59]. The performance of our assay was
superior to the results found by Gong et al. for S. globosa, who described a panel of 10 SSR
markers with an average of 5.50 alleles (range 3–13) showing a moderate PIC (0.441) [36].
Therefore, our results indicate that the genetic variability in Sporothrix was estimated with
the aid of highly polymorphic markers.

In a scenario where the individual SSR markers showed excellent discriminatory
power, when combined, they revealed unique genetic profiles of alleles for the analyzed
Sporothrix. Therefore, we investigated the impact of different permutations of markers on
estimates of genetic diversity. We aimed to optimize the genotyping process, accelerating
the bench steps, reducing genotyping costs, and ensuring equivalent efficiencies [86]. Our
results point to a minimal scenario that includes at least three multiplexes, M1, M2, and
M4, followed by the addition of M3, and M5 in order of efficiency (an essential criterion
in scenarios with limited budgets). The most promising strategy for estimating genetic
diversity encompasses the five multiplexes (M1–M5).

UPGMA dendrograms produced grouping profiles compatible with the evolution-
ary history of Sporothrix species using DNA sequencing methods; i.e., S. brasiliensis and
S. schenckii are sister species, closely related, and this group is close to S. globosa [22,43].
The dendrogram recognized small clonal complexes in all species, with isolates showing
100% similarity (Dice) between the generated profiles. Such a scenario repeatedly appears
in the literature, confirmed by multilocus analysis of genes encoding proteins and bar-
coding markers, AFLP analyses, and phylogenomic analyses [5–7,23,25,29,32,37,43,87–90].
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Congruent genotyping methods appear in Sporothrix and other fungi of medical relevance,
such as Histoplasma [91], Paracoccidioides [58], Fonsecaea pedrosoi [92], Fusarium [93], or Can-
dida auris [94]. Therefore, we emphasize that the extensive in silico mining of SSRs was
vital to ensure the effectiveness of these markers, avoiding, for example, the choice of
monomorphic SSRs or those with low transferability potential.

The genetic diversity in emerging Sporothrix species has been debated in recent years
with the purpose of determining to what extent the population structure in Sporothrix is
constituted of clonal or recombinant individuals. The population genetic variables depend
on time, space, and genetic markers, and one must consider: (i) the species and number of
isolates evaluated; (ii) the timescale covered by the data (i.e., sampling only at the beginning
of an outbreak or multiple collections over time); (iii) sampling spatial diversity, considering
specimens from endemic and non-endemic areas; and (iv) the discriminating power of the
evaluated marker (e.g., DNA sequencing versus fingerprint markers such as AFLP and
SSRs, or SNPs panels derived from whole-genome sequencing). That said, it is evident that
the initial studies on the molecular epidemiology of sporotrichosis experienced the effect of
genetic markers masking diversity, such as the sequencing of calmodulin, beta-tubulin, and
ITS region [7,23,25,26,28,29,43,89,95,96]. With the introduction of polymorphic markers
such as AFLPs [34,35], we revealed a highly diverse scenario in S. brasiliensis, which is also
confirmed here using SSR markers. However, although AFLPs and microsatellite markers
show excellent discrimination power, we also detected clonal complexes during the initial
stage of outbreaks involving epizooties (cat–cat transmission) or zoonoses (cat–human
transmission) [9,87]. Our sample group represented such complexes in Rio de Janeiro,
Pernambuco, and São Paulo.

De Carvalho et al. [35,78] describe that introducing a sick animal in an area free
of sporotrichosis leads to the development of the founder effect. This scenario was also
confirmed using SSR markers, characterized by the reduction in genetic variability resulting
from introducing a small group of individuals (founders) separated from the larger parental
population. As there are no sanitary barriers to contain outbreaks, humans constantly
move between endemic and non-endemic areas carrying symptomatic and asymptomatic
animals [97–100]. Brazil has two epicenters of cat-transmitted sporotrichosis with particular
genetic features. The oldest outbreak of feline sporotrichosis began in Rio de Janeiro in
the mid-1990s [101,102] and is typified by individuals harboring the MAT1-2 locus [74,103].
Molecular markers can track the dispersion of S. brasiliensis from the parental population in
Rio de Janeiro across border states such as São Paulo [104–106], Minas Gerais [7,25], and
Espírito Santo [107,108]. The second relevant genetic group of S. brasiliensis has its epicenter
in Rio Grande do Sul and comprises MAT1-1 idiomorphs [7,74,103,109,110]. Our data from
SSRs confirm a more significant contribution of genotypes circulating in Rio de Janeiro to
outbreaks occurring in other Brazilian states. This trend is even more evident by the low
allelic donation of individuals circulating in Rio Grande do Sul (limited gene flow), and the
absence of Rio Grande do Sul isolates hitchhiking through clades identified in this study
(e.g., Ib-Id) [111].

Multiple genotypes of S. brasiliensis circulate in Brazil’s South/Southeast axis, as
demonstrated by genetic diversity and population structure. The most parsimonious
scenario to explain the dispersion dynamics for the observed genetic patterns suggests
unidirectional migration from the Southeast to the Northeast of Brazil. This hypothesis is
supported by (i) the temporal evolution of the outbreaks since there are rare reports of cat-
transmitted sporotrichosis in the northeast region until the mid-2015s [12,25]; (ii) skewed
distribution of MAT idiomorphs with an overwhelming prevalence of MAT1-2 isolates in
Pernambuco [35]; (iii) the high gene flow between isolates from the Rio de Janeiro clade
and specimens from Pernambuco, and (iv) low differentiation values (ΦPT). The founder
effect probably played a vital role in this dynamic, as the introduction was recent, and
the diversity of isolates in the Northeast was low compared to the parental population in
Rio de Janeiro. Some rare S. brasiliensis isolates were detected in the Northeast region in
mid-1997 (e.g., Ss43) [4,25,87]. Although the Ss43 isolate was part of our sample group, it
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was unrelated to the recent cat-transmitted outbreaks taking place in Pernambuco. On the
contrary, a major clonal complex (Rio de Janeiro/Pernambuco) was described in this study
in agreement with previous AFLP data [35].

We used the clustering method described by Pritchard et al. [67] to infer population
structure in Sporothrix and assign individuals to genetic populations. We assume a model
in which there are K populations, each characterized by a set of allele frequencies at
each SSR locus [112]. Sporothrix were then probabilistically assigned to three populations
according to the method described by Evanno [68]. For some individuals, in the three
species evaluated, we observed mutual attribution to two or more populations, indicating
patterns of introgression (miscegenation) or incomplete lineage sorting, a scenario that had
already been explored using AFLP markers [35] and gained new support using codominant
markers. Putative hybrids are highlighted in S. brasiliensis (e.g., Ss34, Ss128, and Ss265)
and S. globosa (e.g., Ss211, Ss376, and Ss450), always with the contribution of alleles from
S. schenckii population.

Interestingly, when estimating K = 4 or 5, we observed the bipartition of the S. brasilien-
sis and S. schenckii isolates into two clusters each, but not among S. globosa isolates, which
maintained a homogeneous population structure. Interestingly, the subdivision of the
S. brasiliensis group reveals isolates belonging to the Rio de Janeiro clade or the Rio Grande
do Sul clade. The partition of S. schenckii shows interesting geographical relationships, with
isolates from Latin America and isolates representing a global population (e.g., Brazil, USA,
Italy, and Mexico). Generally, this S. schenckii partition is related to the genotypes identified
by mitochondrial DNA in the classic studies conducted by Ishizaki et al. [30,75,113–121].
Recently, S. globosa from China was separated into eight distinct groups using AFLP mark-
ers [122] and three genetic clusters using a panel of ten microsatellites [36]. However,
such partition has no significant association with clinical manifestations. Sporothrix glo-
bosa displays low genetic diversity when investigated using AFLP markers in India [123].
Similar to the Chinese study, there is no correlation between genotypes and clinical pre-
sentation or geographic distribution [123]. The absence of a phylogeographic structure is
commonly observed in outbreak scenarios where numerous variants can be discovered
before becoming extinct [124]. However, we argue that such inference may also result
from the markers’ resolution power and statistical models used. The scenario observed
in S. globosa [6] may be similar to that observed in populations previously characterized
as panmictic in Aspergillus fumigatus. In Aspergillus, earlier studies have shown little or no
correlation between population structure with geography, as genetically identical (clonal)
isolates are collected from different locations worldwide [125–127]. However, Lofgren
et al. [128] used pan-genomic analyses to explore the panmixia model uncovering strong
evidence for three primary populations of A. fumigatus (Clades 1–3), with recombination
occurring only rarely between populations and often within them.

In population genetics, linkage disequilibrium (LD) in small genomic areas reflects the
history of natural selection, genetic conversion, mutation, and other mechanisms that affect
evolution. At the same time, genome-wide LD plays a more significant role in informing
about past events of pathogen evolution, population, the reproductive system, and the pat-
tern of geographic subdivision [66,129]. Therefore, LD is a powerful indicator of the popula-
tion genetic forces that structure a genome, and here we employ the nonrandom association
of alleles at different loci to investigate whether Sporothrix populations are mostly clonal or
recombinant. In a population with random mating (panmictic) and without selection, the
probability of a given allele participating in the reproductive process is inherent only to
its population frequency, with all individuals being potential partners; that is, there are no
mating restrictions [130]. In contrast, failure or lack of mating results in populations with
significant LD [131–135]. Therefore, the low marker-marker LD levels found for Sporothrix
suggest expressive recombination estimates (mean r2 = 0.02–0.05), supporting that alleles
can freely recombine into new genotypes during the mating process [136], a scenario pre-
viously reported using AFLP markers [78] and mating-type distributions [74,103,137,138].
High genetic diversity scenarios with low LD values, suggestive of significant sexual re-
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combination, have been observed in Ophiostoma montium [139], Fusarium graminearum [140],
Zymoseptoria tritici [141], Glomus claroideum [142] and are associated with the ability to
quickly respond to new environmental conditions or changes in the host. This scenario
would be a force driving the emergence of Sporothrix species.

5. Conclusions

Our capacity to gain insights into the sporotrichosis transmission chain impacts our
ability for decision making to mitigate disease progression. Sporotrichosis is a neglected
mycosis, lacking robust investments in basic and applied research. Here, we develop genetic
markers with high discriminatory value to shed light on the molecular epidemiology of
human and animal sporotrichosis, overcoming the two critical bottlenecks mentioned
above: (i) our approach highlights microsatellite markers as a powerful and inexpensive
tool tremendously relevant in low-budget scenarios and (ii) we optimized an SSR panel
with high amplification success rates within and between Sporothrix species, allowing us to
test epidemiological and evolutionary hypotheses comparatively.

A weak signature of mixed ancestry was detected, which may clarify the abrupt
appearance of Sporothrix with increased virulence characteristics or producing severe,
atypical, and refractory cases of sporotrichosis. The center of origin of cat-transmitted
sporotrichosis may be used to gain insight into the Sporothrix capacity for evolution, genetic
diversity, method of reproduction, and gene flow. Rio de Janeiro is likely the probable
center of origin based on several lines of evidence: (i) this parental population harbors
the most diverse allele repertoire; (ii) the historical evolution of the epidemic; and (iii) the
significant contribution of RJ genotypes hitchhiking through S. brasiliensis clades. These
findings directly impact public health as cat-transmitted sporotrichosis expands its frontiers
throughout America.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jof9030354/s1, Supplementary Table S1. Sporothrix isolates used in this
study. Supplementary Table S2. Genomes of Sporothrix species were retrieved from the NCBI Genome
database (https://www.ncbi.nlm.nih.gov/genome, accessed on 15 March 2018) for in silico analysis.
Supplementary Table S3. Polymorphic statistics calculated individually for SSR markers applied
in medically relevant Sporothrix species. Supplementary Table S4. Sporothrix species genotypes
(alleles) characterized using 15 microsatellite markers. Supplementary Table S5. Inferred ancestry of
individuals using the software STRUCTURE for S. brasiliensis (n = 97), S. schenckii (n = 49), and S. globosa
(n = 34). Supplementary Figure S1. Panel of SSR markers used for genotyping medically relevant
Sporothrix species. The forward primer was labeled at the 5’ region. 6-Carboxyfluorescein (FAM;
520 nm), 2′-chloro-phenyl-1,4-dichloro-6-carboxyfluorescein (VIC; 555 nm) or benzofluorotrichloro-
carboxy-fluorescein (NED; 576 nm). The multiplex PCR’s and cycling conditions are presented.
We considered a good quality DNA extraction when the OD 260/280 ratio was between 1.8 and
2.0, and an amplicon was detected by PCR using the primers ITS1 and ITS4, indicating that the
sample was free of PCR inhibitors. Supplementary Figure S2. Summary of performance of SSR
markers for S. brasiliensis (n = 97, yellow line), S. schenckii (n = 47, red line), and S. globosa (n = 37,
green line) using receiver operating characteristic curves. The area under the ROC curve was great
(AUC above 0.956) for all primer pairs (except marker SSR391 for S. globosa isolates), indicating
excellent performance. Supplementary Figure S3. The annotated UPGMA dendrogram (clades),
based on SSR markers, generated with a total of 15 SSR markers for 180 Sporothrix isolates originated
worldwide. The dendrogram shows cophenetic correlation values (circles are represented by color
ranges between green-yellow-orange-red according to decreasing cophenetic correlation) for a given
clade and its standard deviation (grey bar). For pairwise genetic distances calculation, the Dice
similarity coefficient was used. Supplementary Figure S4. Annotated Minimum Spanning Trees
(MSTs) showing the genetic relationship among 180 Sporothrix isolates using 15 SSRs markers. MST
was created in the software BioNumerics v7.6.
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