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Abstract: Bacillus mojavensis D50, a biocontrol strain, is used to prevent and treat the fungal plant
pathogen Botrytis cinerea. Bacillus mojavensis D50’s biofilms can affect its colonization; thus, the effects
of different metal ions and culture conditions on biofilm formation were determined in this study. The
results of medium optimization showed that Ca2+ had the best ability to promote biofilm formation.
The optimal medium composition for the formation of biofilms contained tryptone (10 g/L), CaCl2
(5.14 g/L), and yeast extract (5.0 g/L), and the optimal fermentation conditions included pH 7, a
temperature of 31.4 ◦C, and a culture time of 51.8 h. We found that the antifungal activity and abilities
to form biofilms and colonize roots were improved after optimization. In addition, the levels of
expression of the genes luxS, SinR, FlhA, and tasA were up-regulated by 37.56-, 2.87-, 12.46-, and
6.22-fold, respectively. The soil enzymatic activities which related biocontrol-related enzymes were
the highest when the soil was treated by strain D50 after optimization. In vivo biocontrol assays
indicated that the biocontrol effect of strain D50 after optimization was improved.

Keywords: optimization; biofilm formation; Bacillus mojavensis D50; biocontrol effects; tomato
gray mold

1. Introduction

Tomato (Solanum lycopersicon L.), an important vegetable crop, is widely planted all
over the world [1]. However, the occurrence of diseases can lead to a reduction in yields.
Particularly important pathogens of tomato include the fungus Botrytis cinerea, which
causes gray mold [2], and the bacterium Ralstonia solanacearum, which causes bacterial
wilt [3]. Therefore, immense efforts and vast amounts of money are being invested to
control these pathogens [4].

Currently, the primary way to control pathogens is the use of chemical pesticides [5].
They are inexpensive and highly efficient. However, the long-term use of chemical pes-
ticides will lead to environmental pollution, pesticide resistance, and negative effects on
human health [6,7]. Therefore, it is urgent to find an environmentally friendly approach to
protect tomato plants from pathogens. Biological control is an approach to control plant
diseases, which introduces another organism to control the pathogen rather than chemical
pesticides. This approach is frequently highly effective, and it is used on many plants.
The modes of action of biocontrol agents include space or nutrient competition, antibiotics
production and inducible resistances. There are many studies about the use of biological
control, such as a study which suggests that Burkholderia cenocepacia ETR-B22 could product
volatile organic compounds and suppress the tomato gray mold [8]. Bacillus velezensis HY19
could also produce salicylic acid and numerous antifungal substances to inhibit the growth
of tomato gray mold [9]. Wickerhamomyces anomalus could inhibit the growth of gray mold
by competition for nutrients and space, and induce the host tissue’s disease resistance and
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producing of antifungal metabolites [10]. Trichoderma harzianum inhibited the tomato gray
mold using competition for space [11].

Microbial biofilms are a microbial community that is attached to biological or abiotic
surfaces. They can be composed of one or more microbial species [12]. Biofilm formation
can improve the biocontrol effects on pathogens. The formation of biofilm can help the
bacteria to rapidly ingest nutrition and become more competitive. In addition, it can also
facilitate colonization of the plant surface, which can protect the plant from pathogens [13].
Many studies have reported that the amount of metal ions and culture conditions can
influence the formation of biofilm. Yang et al. [14] reported that the morphology of the B.
subtilis 1JN2 biofilm was flattened and the expression of biofilm related genes was down-
regulated under high concentrations of Cd2+, while the addition of Mg2+ increased the
biocontrol effect of Burkholderia pyrrocinia JK-SH007 [15]. The three Bacillus spp. strains
which could form biofilm were isolated to protect maize from pathogens, the temperature,
culture medium, and culture time, which could influence the biofilm formation and thus
further impact the biocontrol effect of these strains [16]. The application of phenylalanine
could promote the biofilm formation of Meyerozyma caribbica and improved its biocontrol
efficacy [17]. These studies have indicated that the biofilm formation of strains can influence
their biocontrol effects.

The luxS/AI-2 quorum sensing (QS) system is an important factor affecting biofilm
formation [18]. Many studies have reported that the gene of luxS influences the formation
of biofilms, such as Shewanella xiamenensis [19] and Lactobacillus reuteri [20]. In addition,
the QS system can also regulate the probiotic activities of lactic acid bacteria [21]. The
transcriptional repressor sinR is a master regulator of biofilm formation and the production
of the secreted, amyloid-like protein component of the matrix (TasA), thus blocking biofilm
formation [22]. The gene of flhA, encoded flagellin protein FlhA, can influence the formation
of biofilm. Minamino et al. [23] have reported that the gene of flhA can change the growth
of flagella, further influencing biofilm formation. The tasA is a major gene which encodes
the protein involved in antimicrobial activities, spore coat assembly, and germination. It is
also found in the stationary phase, sporulating cultures, and the biofilm matrix [24].

B. mojavensis D50, which was isolated from tomato rhizosphere soil, has been reported
to have a substantial effect on B. cinerea. Moreover, its fermentation supernatant also had
great antifungal effect on tomato gray mold [5]. However, there have been few studies
on the promotion of biofilm formation and biocontrol effects by the manipulation of
concentrations of metal ions and culture conditions. In this study, to further determine
the effect of biofilm formation on pathogen inhibition, the goals were as follows: (1) to
screen the optimal concentration of metal ions and culture conditions for biofilm formation;
(2) to determine the effect of optimal metal ion and culture conditions on the levels of
expression of the genes related to biofilm formation; (3) to assess the effect of optimal metal
ion and culture conditions of B. mojavensis D50 on soil enzyme activities; and (4) to assess
the effect of optimal metal ion and culture conditions of B. mojavensis D50 on reducing
tomato grey mold.

2. Materials and Methods
2.1. Strains, Medium, Culture Conditions and Plant Materials

Bacillus mojavensis D50, isolated from tomato rhizosphere soil, was used to prevent
tomato from Botrytis cinerea. B. mojavensis D50 and B. cinerea were kindly provided by the
Laboratory of Pesticide Bioassay, Plant Protection College at Jilin Agricultural University
(Jilin, China). The LB broth that was used to culture B. mojavensis D50 contained 5 g yeast
powder, 10 g tryptone, 10 g NaCl, and 1000 mL distilled water. The potato dextrose agar
(PDA) medium that was used to culture B. cinerea contained 20 g glucose, 20 g agar, 200 g
potato, and 1000 mL distilled water.

The initial culture conditions that were used to optimize the formation of biofilm were
30 ◦C, a culture time of 48 h, and pH of 7. The initial medium that was used to optimize
the formation of biofilm formation was LB broth (excluding metal ions) to exclude the
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influence of metal ions on biofilm formation: 5 g/L yeast powder, 10 g/L tryptone, and
1000 mL water. The tomato plants were planted as described by Zheng et al. [25], the
seeds were sterilized in 0.5% sodium hypochlorite solution for 1 min and rinsed with
sterile distilled water three times, then the seeds were incubated at 28 ◦C for 4 days for
germination. One seedling was planted in each plastic pot, and the tomato plants were
grown in a greenhouse at 25–30 ◦C with a 14 h-light/10 h-dark cycle and 70% relative
humidity with regular irrigation.

2.2. Preparation of the B. mojavensis D50 Suspension

To prepare the B. mojavensis D50 suspension, a single colony was inoculated into a
250-mL Erlenmeyer flask that contained 100 mL of LB broth, and it was shaken at 150 rpm
and cultivated at 30 ◦C for 12 h. The suspension was centrifuged at 7000 rpm for 10 min,
and the strains were washed three times with PBS (pH 7.3). The suspension was adjusted
to 1.0 × 108 cfu/mL [25].

2.3. Semiquantitative Evaluation of the B. mojavensis D50 Biofilm

The crystal violet method was used to determine the amount of biofilm formed [26].
Briefly, a suspension of B. mojavensis D50 was prepared as described in Section 2.2. A
volume of 5 µL/well was added to the wells in a 96-well plate and mixed with the relevant
medium (95 µL/well). The plate was left stationary for cultivation. After that, the cell
culture was removed and dyed with 1% crystal violet (CV, 100 µL/well) for 15 min. The
plate was washed three times with distilled water to remove excess dye. The biofilm was
extracted with absolute ethanol (200 µL/well), and the amount of biofilm formation was
determined at 570 nm [27].

2.4. Screening of the Optimal Metal Ions and Conditions for Biofilm Formation
2.4.1. Determination of the Effect of Metal Ions on Biofilm Formation by a Single
Factor Experiment

To determine the effect of metal ions on biofilm formation, the “one-factor-at-a-time”
method was also used in this experiment. Briefly, the CaCl2, MnCl2, FeCl3·6H2O, MgSO4·7H2O
and NaCl were added into initial medium. The concentrations of CaCl2, MnCl2, FeCl3·6H2O,
MgSO4·7H2O were adjusted to 0 g/L, 5 g/L, 10 g/L, 15 g/L, 20 g/L, and 25 g/L, respectively,
and the concentrations of NaCl were adjusted to 0 g/L 20 g/L, 25 g/L, 30 g/L, 35 g/L, and
40 g/L, respectively. The B. mojavensis D50 suspension (5 µL) was inoculated into the medium
(which contained different metal ions) and cultured at 30 ◦C for 48 h. The amount of biofilm
formation was determined as described in Section 2.3 [15]. The experiments were replicated
three times and repeated three times.

2.4.2. Determination of the Effect of Culture Conditions on Biofilm Formation by a Single
Factor Experiment

The “one-factor-at-a-time” method was also used in this experiment. Briefly, the
culture conditions were established as follows: the pH of initial medium was adjusted
to 5, 6, 7, 8, 9, and 10. The culture time was adjusted to 12 h, 24 h, 36 h, 48 h, 60 h, and
72 h. The culture temperature was incubated to 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, and 45 ◦C. The
amount of biofilm formed was determined as described in Section 2.3. The experiments
were replicated three times and repeated three times.

2.4.3. Determination of the Optimal Amount of Metal Ions and Culture Conditions for
Biofilm Formation Using a Box-Behnken Design

The results of the single factor experiment indicated the three factors that had the
best effect on biofilm formation, and they were selected for coding. OD570 was used as
the response value. A Box-Behnken central combined experiment was used to design the
response surface test. The codes and levels of each factor are shown in Table 1. The Box-
Behnken design (BBD) was used to conduct 17 tests, including five tests to estimate the error
(Table 2). The concentration of metal ions and culture conditions were prepared based on
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the BBD. The ability to form biofilm was measured as described in Section 2.3. Finally, the
prediction of metal ions and culture conditions were verified under the same fermentation
conditions as the BBD. Based on the response surface methodology (RSM) results, the final
metal ions and culture conditions were determined and verified experimentally [28,29].
The experiments were replicated three times and repeated three times.

Table 1. Box-Behnken design to optimize the biofilm formation medium and conditions using three
components at three levels.

Design Variable
(Factors)

Unit Code
Real Values of the Coded Levels

−1 0 +1

CaCl2 g/L A 0 5 10
Temperature °C B 25 30 35

Time h C 36 48 60
Note: “+1” represents high level, “−1” represents low level.

Table 2. Box Behnken design scheme containing 17 experimental runs.

Runs A B C OD570

1 0 −1 −1 2.546
2 0 0 0 3.224
3 0 1 −1 2.535
4 −1 0 −1 2.632
5 0 −1 1 2.604
6 0 0 0 3.226
7 −1 −1 0 2.609
8 −1 1 0 2.704
9 0 0 0 3.228
10 1 1 0 2.698
11 0 1 1 2.712
12 1 0 1 2.712
13 1 −1 0 2.688
14 0 0 0 3.221
15 0 0 0 3.03
16 −1 0 1 2.682
17 1 0 −1 2.632

Note: “+1” represents high level, “−1” represents low level.

2.5. Effect of Metal Ions and Culture Conditions on the Biocontrol Characteristics of B. mojavensis
D50 against B. cinerea In Vitro

To determine the effect of metal ions and culture conditions on the characteristics of
biocontrol, the flat-stand method was used to measure the antifungal activity in this experi-
ment [30]. As described by Fu et al. [15], the ability to form biofilm and root colonization
by B. mojavensis D50 before and after optimization were also measured. The experiments
were replicated three times and repeated three times.

2.6. B. mojavensis D50 Biofilm-Related Analysis of Differentially Expressed Genes

To determine the effect of optimized metal ions and culture conditions on the differ-
ential expression of genes related to biofilm formation, the B. mojavensis D50 suspension
was inoculated into a 250-mL Erlenmeyer flask that contained 100 mL of optimized culture
medium. The culture was then cultivated at 31.4 ◦C and 150 rpm for 12 h and 51.8 h.
The key genes related to biofilm formation, luxS, SinR, FlhA, and tasA, were analyzed.
The primers were designed using Primer 6 software (Table S1), and the total RNA was
extracted using a Trazol up Plus RNA Kit (TransGen Biotech., Beijing, China). The cDNA
was generated according to the manufacturer’s instructions for the TransGen all-in-one
first-strand cDNA synthesis SuperMix (TransGen Biotech.). The luxS, SinR, FlhA, and tasA
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genes were measured in this study. Quantitative real-time PCR (qRT-PCR) was performed
using PerfectStart Green qPCR SuperMix on a Roche Light Cycler® 96 (Roche Diagnostics
Corporation, Indianapolis, IN, USA). The qRT-PCR program used was as follows: 95 ◦C
for 2 min, followed by 32 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 30 s and 78 ◦C
for 11 s. The melting curve cycle program was as follows: 95 ◦C for 10 s, 60 ◦C for 1 min,
and 97 ◦C for 1 s. The relative levels of expression of the genes were determined using the
2−∆∆CT method, and the 16S rDNA gene was used as a reference gene. Data are reported
on a logarithmic scale as a relative gene expression ratio (RQ) after calibration on values
obtained at B. mojavensis D50 that was cultured in basic medium [31]. The experiments
were replicated three times and repeated three times.

2.7. Effect of Metal Ions and Culture Conditions on the Biocontrol Characteristics of B. mojavensis
D50 against B. cinerea In Vivo

As described by Zheng et al., the tomato plant and spore suspension of B. cinerea were
prepared [25]. The suspension of B. mojavensis D50 before or after optimization was prepared
as described in Section 2.2. The 6-leaf-stages of tomato seedlings were used in this experi-
ment. The suspension of B. mojavensis D50 before or after optimization (1.0 × 108 cfu/mL,
15 mL/pot) was irrigated into the roots of tomato plants as the treatment, whereas the ster-
ile water (15 mL/pot) was irrigated into the roots as the control. After 7 days, the spores
(5 × 104 spores/mL, 8 mL/pot) were sprayed on the tomato seedlings. The tomato seedlings
were incubated in a growth chamber at 26 ± 0.5 ◦C and covered with plastic bags for 3 days to
maintain high humidity. The disease incidence was determined 7 days after inoculation with
B. cinerea [32,33]. Each treatment contained 16 pots with 1 seedling per pot. The experiments
were replicated three times and repeated three times. The biochemical growth parameters of
tomato plant were measured as described by Zhang et al. [31].

2.8. Effect of B. mojavensis D50 on Soil Enzyme Activities before and after Optimization

To determine the effect of optimized metal ions and culture conditions of B. mojavensis
D50 on soil enzyme activities, the activities of invertase, catalase, urease, and dehydro-
genase were measured. The treatments were the same as those described in Section 2.7.
The soil samples were collected at 2 h and 1, 3, 5, 7, and 15 days. Invertase activity was
measured by the 3,5-dinitrosalicylic acid method. Briefly, 2 g of soil sample was mixed with
15 mL of 8% sucrose solution, 5 mL of PBS (pH 5.5), and 0.2 mL drops of toluene, and it
was cultured at 37 ◦C for 24 h. A volume of 1 mL of the supernatant was mixed with 5 mL
of 3,5-dinitrosalicylic acid and 5 mL of water, and the invertase activity was determined
at 508 nm [34]. To measure the catalase activity, 2 g of soil sample was mixed with 40 mL
water and 5 mL of 0.5% H2O2 and incubated at 30 ◦C for 20 min. A volume of 5 mL of
H2SO4 (1.5 mol/L) was added to terminate the reaction. Finally, the supernatant was
titrated with KMnO4 (20 mmol/L) [35]. Urease activity was determined by the Berthelot
method. Briefly, 5 g of soil was mixed with 1 mL of PBS (pH 7.7, 20 mmol/L) and then
incubated at 37 ◦C for 2 h. It was extracted with KCl (2 mmol/L), and the absorbance at 690
nm was measured using a visible spectrophotometer [36]. The dehydrogenase activity was
determined by colorimetry. Briefly, 2 g of soil was mixed with 2 mL of tetrazolium chloride
(TTC) and 2 mL water and then cultured at 37 ◦C for 24 h. The solution was extracted with
5 mL of alcohol. Its absorbance was measured at 485 nm using a visible spectrophotometer.
The experiments were replicated three times and repeated three times.

2.9. Statistical Analysis

The data were subjected to analyses of variance (ANOVA) using SPSS 26.0 (IBM, Inc.,
Armonk, NY, USA). The means were separated by a least significant difference (LSD) test
at the level p < 0.05. Respective significant differences were denoted using different letters
(a, b, c, etc.).



J. Fungi 2023, 9, 526 6 of 16

3. Results
3.1. Screening of the Optimal Metal Ions and Culture Conditions for Biofilm Formation

The “one-by-one factor” experiments were used to select the metal ions and conditions.
We found that the Ca2+ and Mg2+ could promote the formation of biofilm and the Na+ had
less of an effect on the biofilm formation, while Mn2+, Fe3+, and Zn2+ inhibited it (Figure 1).
When the concentrations of Ca2+ and Mg2+ were 5 g/L and 10 g/L, respectively, the biofilm
formation was maximum: the biofilm formation increased by 24.7% and 21.1%, respectively.
We found that the factors that were the most effective at stimulating biofilm formation were
CaCl2 (5 g/L), pH 7, and a culture time of 48 h at 30 ◦C (Figures 1 and 2). According to the
principle of Box-Behnken design, the optimal concentration or conditions were taken to
the climbing test as the central point of the response surface test factor level. A response
surface analysis (three factors and three levels) was used to determine the optimal level
of the primary factors that affected the biofilm formation of B. mojavensis D50. The design
factors and levels of the Box-Behnken response surface are shown in Table 1, and the design
results are shown in Table 2. A regression analysis of the results in Table 3 was used to
obtain the regression equation of Y = 3.19 + 0.0129A + 0.0253B + 0.0456C − 0.0213AB +
0.0075AC + 0.0297BC − 0.2229A2 − 0.2882B2 − 0.2984C2. The correlation coefficient of the
model was R2 = 0.9710, and the corrected determination coefficient was R2

Adj = 0.9336. The
fitting model could clarify the change of 93.36% of the response value, indicating that there
was a strong fitting degree between the experimental data and that predicted. There was
little experimental error, which indicated that it could be used to predict and analyze the
factors that affected the biofilm formation.
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(A), Ca2+ (B), Mg2+ (C), Na+ (D), Zn2+ (E), and Fe3+ (F). The strain D50 (5 µL) was inoculated into
mediums (containing different metal ions) and cultured at 30 ◦C for 48 h. Bars followed by the same
letter are significantly different at p < 0.05 using a least significant difference (LSD) test. Error bars
indicate the SD of three experiments. SD, standard deviation.
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Figure 2. Effect of different concentrations of culture conditions on B. mojavensis D50 biofilm for-
mation: pH (A), time (B), and temperature (C). The strain D50 (5 µL) was inoculated into mediums
(without metal ions) and cultured for different amounts of time and at different temperatures. To
determine the effect of pH on biofilm formation of strain D50, the strain D50 (5 µL) was inoculated
into mediums (of different pH) and cultured at 30 ◦C for 48 h. Bars followed by the same letter are
significantly different at p < 0.05 using a least significant difference (LSD) test. Error bars indicate the
SD of three experiments. SD, standard deviation.

Table 3. ANOVA for response surface reduced quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 1.07 9 0.1189 26.01 0.0001 Significant
A-CaCl2 0.0013 1 0.0013 0.2902 0.6068

B-Temperature 0.0051 1 0.0051 1.12 0.03258
C-Time 0.0167 1 0.0167 3.64 0.0979

AB 0.0018 1 0.0018 0.3953 0.5495
AC 0.0002 1 0.0002 0.0492 0.8307
BC 0.0035 1 0.0035 0.7748 0.4079
A2 0.2092 1 0.2092 45.78 0.0003
B2 0.3496 1 0.3496 76.51 <0.0001
C2 0.3749 1 0.3749 82.05 <0.0001

Residual 0.0320 7 0.0046
Lack of Fit 0.0016 3 0.0005 0.0710 0.9724 Not significant
Pure Error 0.0304 4 0.0076
Cor Total 1.10 16

Note: ANOVA, analysis of variance.

The variance analysis of response surface quadratic model is shown in Table 3. The
response surface quadratic model was highly significant (p < 0.0001), and the lake of fit
(lake of fit = 0.0710 > 0.05) was not significant. There were no abnormal points in the data,
and there was a high fitting degree of the regression equation. The influence degree of each
factor of F value on the response value, C > B > A, indicated that the influence intensity
of each factor on the biofilm formation was as follows: time > temperature > CaCl2. The
response surface curve and contour map were drawn based on the results of the equation
simulation (Figure 3). All three surface graphs were convex, and all the contour lines
were oval. These results indicated that there was a stable maximum value of the response.
As shown in Figure 3 and Table 3, the simulation factors A2, B2, and C2 were significant,
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indicating that magnesium sulfate had a significant impact on the biofilm formation. In
contrast, A, B, and C were not significant, indicating that CaCl2, temperature, and time
had no significant impact on the biofilm formation, and the impact of various influencing
factors on biofilm formation was not linear. AB, AC, and BC were not significant, indicating
that the interaction between various factors was not significant. The parity plot of biofilm
formation shows the distribution of predicted yield and actual yield of biofilm formation
under different conditions, as seen in Figure 4. The corresponding predicted data of the
model was almost consistent with that of the actual data, indicating that the polynomial
model was highly accurate and universal. Thus, it was reasonable to use the model to
analyze the corresponding trend.
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3.2. Determination of Antagonistic Abilities and Colonization Capacity Differences

Antagonistic abilities and colonization capacity are important targets to optimize for
high biocontrol ability. Therefore, these abilities were measured. As shown in Figure 5A,
the biofilm of B. mojavensis D50 (after optimization) was more viscous and denser than
those in B. mojavensis D50 (before optimization). The biofilm yields of B. mojavensis D50
(after optimization) were more than those in B. mojavensis D50 (before optimization). The
antagonistic abilities were improved after optimization, and the morphology of B. cinerea
obviously changed (Figure 5B). After optimization, the colonization capacity of B. mojavensis
D50 increased in the root of the tomato plant (Figure 5C). These results could indicate that
the biocontrol ability of B. mojavensis D50 increased after optimization.

3.3. B. mojavensis D50 Biofilm-Related Gene Differential Expression Analysis

To determine the differential expression of biofilm-related genes (before or after opti-
mization), the levels of expression of the genes luxS, SinR, FlhA, and tasA were measured.
As shown in Figure 6, the level of expression of the luxS gene was upregulated by 27.87-
and 37.56-fold when the culture times were 24 h and 51.8 h, respectively (Figure 6A). The
level of expression of the SinR gene after optimization was higher than that before opti-
mization at the different culture times (1.69- and 2.87-fold) (Figure 6B). Moreover, the level
of expression of the FlhA gene was upregulated by 7.47- and 12.46-fold when the culture
times were 24 h and 51.8 h, respectively (Figure 6C). The level of expression of the tasA
gene after optimization was higher than that before optimization at the different culture
times (4.68- and 6.22-fold, respectively) (Figure 6D). These results indicated that the levels
of expression of biofilm-related genes were upregulated after optimization, and the ability
to form biofilm improved owing to the increased expression of the genes involved in the
production of biofilm.
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Figure 5. Effect of B. mojavensis D50 on biofilm formation, antifungal activity, and colonization ability
on the plant root. (A) The biofilm formation of D50 ((a): before optimization, and (b): after optimization).
The strain D50 (5 µL) was inoculated into initial or optimum medium and cultured at 30 ◦C or 31.4 ◦C
for 48 h or 51.8 h. (B) The antifungal activity of D50 ((a): before optimization, (b): after optimization).
The strain D50 (5 µL) which was cultured into initial or optimum medium was inoculated into PDA
medium and cultured at 26 ◦C for 7 days to determine the biocontrol effect. (C) The colonization ability
of D50 ((a): before optimization, (b): after optimization). The strain D50 (1.0 × 108 cfu/mL, 20 mL),
before or after optimization, was poured on the roots of tomatoes, and the colonization ability was
determined after 2 days.
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Figure 6. The levels of expression of the genes luxS, SinR, FlhA, and tasA related to biofilm for-
mation were detected using qRT-PCR: (A) luxS, (B) SinR, (C) tasA, (D) FlhA. B. mojavensis D50
(1.0 × 108 cfu/mL, 1 mL) was inoculated into initial medium (100 mL) and cultured at 30 ◦C for 48 h
as the control, while B. mojavensis D50 (1.0 × 108 cfu/mL, 1 mL) was inoculated into optimization
medium (100 mL) and cultured at 31.4 ◦C for 51.8 h as the treatment. Bars followed by the same letter
are significantly different at p < 0.05 using a least significant difference (LSD) test. Error bars indicate
SD of three experiments. qRT-PCR, quantitative PCR; SD, standard deviation.

3.4. Effect of Metal Ions and Culture Conditions on the Biocontrol Characteristics of B. mojavensis
D50 against B. cinerea In Vivo

Furthermore, B. mojavensis D50 (before and after optimization) was used in this ex-
periment to assess its antifungal ability improvement. Three days after inoculation with
B. cinerea, small spotted lesions appeared on the tomato. As time went on, lesions became
larger and caused extensive yellowing of leaves in the group BS. In the group BSA and
BSB, small spotted lesions appeared after five days’ inoculation with B. cinerea. The lesions
did not expand with time. After the inoculation with B. cinerea for seven days, large areas
of tomato plants in the group BS turned yellow, while a small portion of the plant had
diseased spots in the group BSB and BSA. The disease severity index was 85.6 in the group
BS (B. cinerea + sterile water). In the group BSB (B. cinerea + strain D50 before optimization),
the severity of disease and disease reduction was 58.4 and 39.7, respectively, while in the
group BSA (B. cinerea + strain D50 after optimization), the severity of disease and disease
reduction was 45.3 and 46.2, respectively (Table 4).
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Table 4. Antifungal spectra of B. mojavensis D50 (before and after optimization) against Botrytis cinerea
in vivo. Sterile water as control; B. mojavensis D50 before or after optimization as treatment.

Treatment Inoculants of Treatment Disease Severity
Index (%)

Disease Reduction
(%)

BS B. cinerea + Sterile water 85.6 -

BSB B. cinerea + strain D50
(before optimization) 58.4 39.7

BSA B. cinerea + strain D50
(after optimization) 45.3 46.2

Data with sample size n = 16 plants per treatment.

As shown in Table 5, various growth and biochemical parameters of the tomato
seedlings were measured. The fresh weight, shoot length, and chlorophyll content in the
tomato seedlings differed significantly among BS (B. cinerea + sterile water), BSB (B. cinerea
+ strain D50 before optimization), and BSA (B. cinerea + strain D50 after optimization)
(p < 0.05). The chlorophyll content, shoot length, and fresh weight in BSA were higher
than those in BS and BSB. Moreover, the contents of chlorophyll a, chlorophyll b, and
total chlorophyll in BSA were significantly higher than BS (24.2%, 22.4%, and 23.8%,
respectively) and BSB (19.3%, 9.8%, and 12.8%, respectively). The total phenolic content
was enhanced by 52.5% and 10.3% more than BS and BSB, respectively. The correlated
parameters (chlorophyll a, chlorophyll b, total chlorophyll, fresh weight, shoot length, root
length, total phenolic content, and total soluble protein) in BS and BSB were lower than
that in BSA. This effect was associated with decreases in fresh weight, shoot length, and
root length. The results indicated that the biofilm formation improvement could improve
the antifungal effects in vivo.

Table 5. Growth and biochemical parameters (fresh weight, root length, shoot length, chlorophyll a,
chlo-rophyll b, total chlorophyll, total phenolic content, and total soluble protein) of tomato plants
after strain D50 (before and after optimization) treatments. Bars followed by the same letter are
significantly different at p < 0.05 by LSD test, error bars indicate ± SD of triplicates.

Treatments Fresh Weight (g) Root Length (cm) Shoot Length (cm) Chl a (mg/mL) Chl b (mg/mL) Total Chlorophyll
(mg/mL)

Total Phenolic
Content (mg/100 g)

Total Soluble
Protein (mg/100 g)

BS 1.45 ± 0.05 c 6.15 ± 0.13 c 17.82 ± 0.32 c 11.99 ± 0.08 c 3.75 ± 0.08 c 15.74 ± 0.15 c 163.38 ± 0.28 c 301.76 ± 1.42 c
BSB 2.06 ± 0.07 b 7.06 ± 0.12 b 20.23 ± 0.12 b 12.48 ± 0.13 b 4.18 ± 0.09 b 17.27 ± 0.08 b 225.82 ± 0.68 b 345.2 ± 2.68 b
BSA 2.73 ± 0.03 a 8.26 ± 0.24 a 24.36 ± 0.18 a 14.89 ± 0.06 a 4.59 ± 0.05 a 19.48 ± 0.12 a 249.17 ± 0.36 a 390.8 ± 3.87 a

Note: BS (Botrytis cinerea + sterile water), BSB (B. cinerea + strain B. mojavensis D50 before optimization) and BSA
(B. cinerea + strain B. mojavensis D50 after optimization).

3.5. Effect of B. mojavensis D50 (before and after Optimization) on Soil Enzyme Activities

To determine the effect of B. mojavensis D50 (before or after optimization) on soil
enzyme activities (related to biocontrol), the activities of invertase, catalase, urease, and
dehydrogenase were measured. As shown in Figure 7, the invertase, catalase, and dehy-
drogenase activities increased from 2 h to 15 days (Figure 7A,C,D). The urease activity
in BSB (B. cinerea + strain D50 before optimization) and BSA (B. cinerea + strain D50 after
optimization) group increased from 2 h to 5 days, while it decreased from 5 days to 15 days.
In addition, the urease activity in the BS (B. cinerea + sterile water) group decreased from 2 h
to 3 days, while it decreased from 3 days to 15 days (Figure 7B). The soil enzyme activities
in the T3 group were the highest among these groups (Figure 7) (p < 0.05). These results
indicated that B. mojavensis D50 (after optimization) improved the related biocontrol soil
enzyme activities and promoted the growth of tomato plants.
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Figure 7. Soil enzyme activities in various treatments (sterile water as control; B. mojavensis D50 before
or after optimization as treatment): (A) catalase, (B) invertase, (C) dehydrogenase, and (D) urease.
The soil was collected at 2 h, 1 day, 3 days, 5 days, 7 days, and 15 days after the inoculation with
strain D50 (before and after optimization). Error bars indicate SD of three experiments. SD, standard
deviation.

4. Discussion

Most Gram-positive bacteria can form biofilms, but this process is difficult to observe
under culture conditions [15]. The formation of biofilm facilitates its colonization in plants
and increases its biocontrol ability [37]. In this study, the metal ion and culture conditions
were optimized by the one-by-one method and response surface methodology. As shown
in Figures 1 and 2, Ca2+ promoted biofilm formation, and the temperature and culture time
were also important factors that influenced the biofilm formation. The optimized culture
conditions and culture medium were determined using response surface methodology.
Many studies have reported that the optimal culture medium and conditions can influence
biofilm formation; for instance, the biofilm formation of B. subtilis 1JN2 decreased when
it was cultured under a high concentration of Cd2+ [14]. The culture medium and culture
time could also impact the biofilm formation of Bacillus spp. [16]. Glycerol, as a carbon
source, and Ca2+ and Mg2+ have been reported to have a substantial effect on biofilm
formation [15]. These studies indicated that optimizing the culture conditions and culture
medium can improve the biofilm formation, and their results were consistent with ours.

Biofilm is an aggregated form of a growing microorganism. Biofilm formation can
influence strain colonization, affecting its biocontrol effects [37]. To ensure the effect of
optimizing the culture medium and culture conditions on biofilm formation, the antifungal
abilities and colonization capacity were measured. We found that these biocontrol charac-
teristics were improved (Figure 5). Many studies have reported that the biocontrol effects
could improve by enhancing the biofilm formation [38]. Our results closely agreed with
the findings in these studies.

The quorum sensing (QS) system, which regulates biofilm formation, is one of the
important factors that regulates biofilm formation in many bacteria [39]. To determine the
mechanism of biofilm formation, the levels of expression of the genes luxS, SinR, FlhA, and
tasA involved in its formation were measured. We found that the level of expression of these
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genes increased after optimization. These results showed that the optimal culture medium
and conditions could upregulate the level of expression of the biofilm-related genes to
promote biofilm formation (Figure 6). The optimal culture medium and conditions of
C. albicans could promote biofilm formation and growth [40]. These results were consistent
with ours.

To determine the effect of B. mojavensis D50 in vivo, the disease incidence and severity,
fresh weight, shoot length, and chlorophyll content of the tomato seedlings were measured.
We found that B. mojavensis D50 (after optimization) effectively protected the tomato plants
from B. cinerea. In addition, the growth and biochemical parameters of the tomato seedlings
treated with B. mojavensis D50 (after optimization) were the highest among those in BS and
BSB group (p < 0.05) (Table 5). There are some studies on the effect of biocontrol strain on
pathogens, such as the ability of B. subtilis Y2 to inhibit the growth of Alternaria brassicicola
in pear fruit [41]. The antagonistic activity of B. velezensis CMRP 4489 could inhibit the
growth of pathogens by the formation of biofilm [42].

Soil enzyme activity is an important physical and chemical index of soil. It is generally
believed that a higher activity of soil enzymes in the soil environment indicates that the soil
is more fertile [43]. The results of this study showed that the activities of urease, invertase,
catalase, and dehydrogenase in the soil treated with B. mojavensis D50 (after optimization)
increased in the tomato rhizosphere (Figure 7). Simultaneously, they could promote the
growth of root length, root weight, and fresh weight of tomato seedlings, indicating that
the growth promotion of B. mojavensis D50 could be related to its ability to improve the
activities of soil enzymes, which improves the fertility of soil.

5. Conclusions

In this study, the effects of different metal ions and culture conditions on biofilm
formation were determined. After optimization, the characteristics of biocontrol and the
ability of colonization were improved, and the levels of expression of the biofilm-related
genes luxS, SinR, FlhA, and tasA were up-regulated. After optimization, B. mojavensis D50
could increase the activity of soil enzymes related to biological control, and the biocontrol
effect was also improved in vivo. Further study is needed with a focus on searching for
how the metal ions influence the biofilm formation of B. mojavensis D50, and the effect of
key genes which are related to the biofilm formation and biocontrol of B. cinerea.
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