Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance of Fungal Cultures
2.2. VOC Production
2.3. Potatoes
2.4. Assessment of Efficacy of M. brunneum- and Metarhizium-Derived VOCs on Potato Yield in Wireworm (Elatiridae spp.)-Infested Field
2.5. Statistical Analysis
3. Results
3.1. Effects of Metarhizium brunneum and Its Derived VOCs on Potato Yield Metrics
3.2. Effects of Metarhizium brunneum and Its Derived VOCs on Wireworm-Associated Damage to Potato Tubers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vernon, R.S.; van Herk, W.G. Insect Pests of Potato. In Wireworms as Pests of Potato; Alyokhin, A., Rondon, S., Gao, Y., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Chapter 5; pp. 103–164. [Google Scholar] [CrossRef]
- Fisher, J.R.; Keaster, A.J.; Fairchild, M.L. Seasonal Vertical Movement of Wireworm Larvae in Missouri: Influence of Soil Temperature on the Genera Melanotus Escholtz and Conoderus Escholtz 1. Ann. Entomol. Soc. Am. 1975, 68, 1071–1073. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative strategies for controlling wireworms in field crops: A review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Parker, W.E.; Howard, J.J. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric. For. Entomol. 2001, 3, 85–98. [Google Scholar] [CrossRef]
- Traugott, M.; Benefer, C.M.; Blackshaw, R.P.; Van Herk, W.G.; Vernon, R.S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 2015, 60, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, T.P.; Alvarez, J.M. Timing of injury and efficacy of soil-applied insecticides against wireworms on potato in Virginia. Crop Prot. 2008, 27, 792–798. [Google Scholar] [CrossRef]
- Pellegrino, A.M.; Woodley, A.L.; Huseth, A.S. Horticultural Entomology Understanding the Relationship Between Wireworm (Coleoptera: Elateridae) Damage, Varietal Resistance, and Cover Crop Use in Organic Sweetpotato. Hortic. Entomol. 2021, 114, 2127–2134. [Google Scholar] [CrossRef]
- Brandl, M.A.; Schumann, M.; Przyklenk, M.; Patel, A.; Vidal, S. Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J. Pest Sci. 2017, 90, 479–493. [Google Scholar] [CrossRef]
- Gvozdenac, S.; Milovac, Ž.; Vidal, S.; Crvenkovi, Z.L.; Franeta, F.; Ovuka, J.; Cveji, S. Comparison of Chemical and Biological Wireworm Control Options in Serbian Sunflower Fields and a Proposition for a Refined Wireworm Damage Assessment. Agronomy 2022, 12, 758. [Google Scholar] [CrossRef]
- Barsics, F.; Haubruge, E.; Verheggen, F.J. Wireworms’ Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. Insects 2013, 4, 117–152. [Google Scholar] [CrossRef]
- De Faria, M.R.; Wraight, S.P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Milosavljević, I.; Esser, A.D.; Rashed, A.; Crowder, D.W. The composition of soil-dwelling pathogen communities mediates effects on wireworm herbivores and wheat productivity. Biol. Control 2020, 149, 104317. [Google Scholar] [CrossRef]
- Elena, G.J.; Beatriz, P.J.; Alejandro, P. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv. Biol. Res. 2011, 5, 22–27. [Google Scholar]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoperva zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Wood, M.J.; Kortsinoglou, A.M.; Khoja, S.; Kouvelis, V.N.; Myrta, A.; Midthassel, A.; Loveridge, E.J.; Butt, T.M. Metarhizium brunneum (Hypocreales: Clavicipitaceae) and Its Derived Volatile Organic Compounds as Biostimulants of Commercially Valuable Angiosperms and Gymnosperms. J. Fungi 2022, 8, 1052. [Google Scholar] [CrossRef] [PubMed]
- Dash, C.K.; Bamisile, B.S.; Keppanan, R.; Qasim, M.; Lin, Y.; Islam, S.U.; Hussain, M.; Wang, L. Microbial Pathogenesis Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pthogenesis 2018, 125, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Sufyan, M.; Abbasi, A.; Dildar Gogi, M.; Arshad, M.; Nawaz, A.; Neuhoff, D. Wirksamkeit von Beauveria bassiana für das Management wirtschaftlich wichtiger Drahtwurmarten (Coleoptera: Elateridae) im ökologischen Landbau. Gesunde Pflanz. 2017, 69, 197–202. [Google Scholar] [CrossRef]
- Reddy GV, P.; Tangtrakulwanich, K.; Wu, S.; Miller, J.H.; Ophus, V.L.; Prewett, J.; Jaronski, S.T. Evaluation of the effectiveness of entomopathogens for the management of wireworms (Coleoptera: Elateridae) on spring wheat. J. Invertebr. Pathol. 2014, 120, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, P.; Crowder, D.W.; Esser, A.D.; Zhao, Z.; Marshall, J.M.; Rashed, A. Soil type mediates the effectiveness of biological control against limonius californicus (Coleoptera: Elateridae). J. Econ. Entomol. 2018, 111, 2053–2058. [Google Scholar] [CrossRef] [PubMed]
- Ravensberg, W.J. Progress in Biological Control Book 10: A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods; Springer: New York, NY, USA, 2011; Chapter 2, Selection of a Microbial Pest Agent; pp. 23–57. [Google Scholar] [CrossRef]
- Lovett, B.; St Leger, R.J. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 2018, 74, 781–789. [Google Scholar] [CrossRef]
- Rangel, D.E.N.; Braga, G.U.L.; Fernandes, É.K.K.; Keyser, C.A.; Hallsworth, J.E.; Roberts, D.W. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr. Genet. 2015, 61, 383–404. [Google Scholar] [CrossRef]
- Isaka, M.; Kittakoop, P.; Thebataranonth, Y. Secondary Metabolites of Clavicipitalean Fungi. In Clavicipitalean Fungi; White, J.F., Bacon, C.W., Hywel-Jones, N.L., Spatafora, J.W., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2003. [Google Scholar]
- Oller-l, J.L.; Mormeneo, S.; Oliver, E.; Cuerva, M.; Oltra, J.E. Bassianolone: An antimicrobial precursor of cephalosporolides E and F from the entomoparasitic fungus. Org. Biomol. Chem. 2005, 3, 1172–1173. [Google Scholar] [CrossRef]
- Molnar, I.; Gibson, D.M.; Krasnoff, S.B. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 2010, 27, 1241–1275. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.M.; Donzelli, B.G.G.; Krasno, B. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat. Prod. Commun. 2014, 31, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Hummadi, E.H.; Dearden, A.; Generalovic, T.; Clunie, B.; Harrott, A.; Cetin, Y.; Demirbek, M.; Khoja, S.; Eastwood, D.; Dudley, E.; et al. Volatile organic compounds of Metarhizium brunneum influence the efficacy of entomopathogenic nematodes in insect control. Biol. Control 2021, 155, 104527. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.A.; Zottele, M.; Baxter, I.; Myrta, A.; Midthassel, A.; Wechselberger, K.F.; Khoja, S.; Bull, J.C.; Hermann, S.; Butt, T.M. Fumigation of three major soil pests (Agriotes lineatus, Diabrotica virgifera virgifera, Phyllopertha horticola) with 3-octanone and 1-octen-3-ol enantiomers. Biocontrol Sci. Technol. 2022, 32, 863–876. [Google Scholar] [CrossRef]
- Khoja, S.; Eltayef, K.M.; Baxter, I.; Myrta, A.; Bull, J.C.; Butt, T. Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. Biol. Control 2021, 152, 104472. [Google Scholar] [CrossRef] [PubMed]
- Khoja, S.; Eltayef, K.M.; Baxter, I.; Bull, J.C.; Loveridge, E.J.; Butt, T. Fungal volatile organic compounds show promise as potent molluscicides. Pest Manag. Sci. 2019, 75, 3392–3404. [Google Scholar] [CrossRef]
- Yavasoglu, S.I.; Wood, M.J.; Alkhaibari, A.M.; Touray, M.; Butt, T. Potential of 3-octanone as a lure and kill agent for control of the Brown garden snail. J. Invertebr. Pathol. 2023, 198, 107920. [Google Scholar] [CrossRef]
- Kline, D.L. Semiochemicals, traps/targets and mass trapping technology for mosquito management. J. Am. Mosq. Control Assoc. 2007, 23, 241–251. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic fungi: New insights into host–pathogen interactions. In Genetics and Molecular Biology of Entomopathogenic Fungi; Elsevier Science and Technology: Amsterdam, The Netherlands, 2016; pp. 307–364. [Google Scholar]
- Reinbacher, L.; Bacher, S.; Knecht, F.; Schweizer, C.; Sostizzo, T.; Grabenweger, G. Preventive field application of Metarhizium brunneum in cover crops for wireworm control. Crop Prot. 2021, 150, 105811. [Google Scholar] [CrossRef]
- Sharma, A.; Jaronski, S.; Reddy, G.V.P. Impact of granular carriers to improve the efficacy of entomopathogenic fungi against wireworms in spring wheat. J. Pest Sci. 2020, 93, 275–290. [Google Scholar] [CrossRef]
- Meyran, J.C.; Ravanel, P.; Tissut, M. Feeding behaviour as a limiting step in insecticide absorption for the wireworm Agriotes sp. (Coleoptera: Elateridae). Pestic. Biochem. Physiol. 2003, 77, 106–114. [Google Scholar] [CrossRef]
- Chaerunisaa, A.Y.; Sriwidodo, S.; Abdassah, M. Microcrystalline Cellulose as Pharmacutical Excipient; Ahmad, U., Akhtar, J., Eds.; Chapter 3; IntechOpen: London, UK, 2020. [Google Scholar]
- Kabaluk, J.T.; Ericsson, J.D. Metarhizium anisopliae Seed Treatment Increases Yield of Field Corn When Applied for Wireworm Control. Agron. J. 2007, 99, 1377–1381. [Google Scholar] [CrossRef]
- Ansari, M.A.; Butt, T.M. Influence of the application methods and doses on the susceptibility of black vine weevil larvae Otiorhynchus sulcatus to Metarhizium anisopliae in field-grown strawberries. Biocontrol 2013, 58, 257–267. [Google Scholar] [CrossRef]
- Lahlali, R.; Hijri, M. Screening, identi¢cationand evaluationof potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potatoplants. FEMS Microbiol. Lett. 2010, 311, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Krell, V.; Unger, S.; Jakobs-Schoenwandt, D.; Patel, A.V. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol. 2018, 34, 43–49. [Google Scholar] [CrossRef]
- Dotaona, R.; Wilson, B.A.L.; Ash, G.J.; Holloway, J.; Stevens, M.M. Sweetpotato weevil, Cylas formicarius (Fab.) (Coleoptera: Brentidae) avoids its host plant when a virulent Metarhizium anisopliae isolate is present. J. Invertebr. Pathol. 2017, 148, 67–72. [Google Scholar] [CrossRef]
- Wang, X.; Huang, M.; Peng, Y.; Yang, W.; Shi, J. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 2022, 135, 108804. [Google Scholar] [CrossRef]
Treatments | Active Ingredient, Manufacturer | Dose Rate |
---|---|---|
T1: Untreated Control | N/A | NA |
T2: Tri-Soil | Trichoderma atroviridae | 5 kg/Ha |
T3: 1-octen-3-ol granules | 1-octen-3-ol (10% w/w) | 30 kg/Ha |
T4: 3-octanone granules | 3-octanone (10% w/w) | 30 kg/Ha |
T5: M. brunneum (V275) | M. brunneum conidia | 1 × 109 conidia/plant |
T6: V275 + 1-octen-3-ol granules | M. brunneum + 1-octen-3-ol (10% w/w) | 1 × 109 conidia/plant + 30 kg/Ha |
T7: V275 + 3-octanone granules | M. brunneum + 3-octanone (10% w/w) | 1 × 109 conidia/plant + 30 kg/Ha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, M.J.; Kortsinoglou, A.M.; Bull, J.C.; Eastwood, D.C.; Kouvelis, V.N.; Bourdon, P.A.; Loveridge, E.J.; Mathias, S.; Meyrick, A.; Midthassel, A.; et al. Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field. J. Fungi 2023, 9, 599. https://doi.org/10.3390/jof9060599
Wood MJ, Kortsinoglou AM, Bull JC, Eastwood DC, Kouvelis VN, Bourdon PA, Loveridge EJ, Mathias S, Meyrick A, Midthassel A, et al. Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field. Journal of Fungi. 2023; 9(6):599. https://doi.org/10.3390/jof9060599
Chicago/Turabian StyleWood, Martyn J., Alexandra M. Kortsinoglou, James C. Bull, Daniel C. Eastwood, Vassili N. Kouvelis, Pierre A. Bourdon, E. Joel Loveridge, Stephen Mathias, Abigail Meyrick, Audun Midthassel, and et al. 2023. "Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field" Journal of Fungi 9, no. 6: 599. https://doi.org/10.3390/jof9060599
APA StyleWood, M. J., Kortsinoglou, A. M., Bull, J. C., Eastwood, D. C., Kouvelis, V. N., Bourdon, P. A., Loveridge, E. J., Mathias, S., Meyrick, A., Midthassel, A., Myrta, A., & Butt, T. (2023). Evaluation of Metarhizium brunneum- and Metarhizium-Derived VOCs as Dual-Active Biostimulants and Pest Repellents in a Wireworm-Infested Potato Field. Journal of Fungi, 9(6), 599. https://doi.org/10.3390/jof9060599