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Abstract: Azole resistance in Aspergillus fumigatus (AFM) is mainly associated with mutations in
CYP51A and its promoter region or its homologue CYP51B. We evaluated the in vitro activity of
isavuconazole, itraconazole, posaconazole, and voriconazole against 660 AFM collected during
2017–2020. Isolates were tested via CLSI broth microdilution. CLSI epidemiological cutoff values
were applied. Non-wildtype (NWT) isolates to azoles were screened for alterations in the CYP51
sequences using whole genome sequencing. Azoles had similar activities against 660 AFM isolates.
Overall, AFM displayed WT MIC values to isavuconazole (92.7%), itraconazole (92.9%), posaconazole
(97.3%), and voriconazole (96.7%). Only 66 isolates (10.0%) were NWT to 1 or more of the azoles,
and 32 harbored one or more alterations in the CYP51 sequences. Of these, 29/32 (90.1%) were
NWT to itraconazole, 25/32 (78.1%) were NWT to isavuconazole, 17/32 (53.1%) were NWT to
voriconazole, and 11/32 (34.4%) were NWT to posaconazole. The most frequent alteration was
CYP51A TR34/L98H, carried by 14 isolates. Four isolates carried the alteration I242V in CYP51A,
and G448S; A9T, or G138C was carried by one isolate each. Multiple alterations in CYP51A were
detected in five isolates. Alterations in CYP51B were noted in seven isolates. Among 34 NWT isolates
without -CYP51 alterations, WT rates to isavuconazole, itraconazole, voriconazole, and posaconazole
were 32.4%, 47.1%, 85.3%, and 82.4%, respectively. Ten different CYP51 alterations were detected in
32/66 NWT isolates. Alterations in AFM CYP51 sequences can have variable effects on the in vitro
activity of the azoles that are best delineated by testing all triazoles.

Keywords: azoles; resistance; surveillance; Aspergillus fumigatus

1. Introduction

Aspergillus fumigatus is an opportunistic fungal pathogen that is the major cause of
invasive aspergillosis (IA) as well as a broad array of chronic and allergic environmentally
acquired respiratory diseases [1]. The frequency of IA and associated resistance to the
mould-active azole antifungal agents among A. fumigatus has increased worldwide over
the past two decades [2–5]. Azole resistance among A. fumigatus is mainly associated with
mutations in CYP51A and its promotor region or its homologue, CYP51B [3–7]. Resistance
to azoles has been shown to develop with prolonged clinical use of azoles in individual
patients with chronic bronchopulmonary aspergillosis or through environmental exposure
in which azole-naive patients become infected by inhaling conidia that already harbor resis-
tance mechanisms secondary to exposure to azole fungicides [5,8,9]. Despite the detection of
azole-resistant A. fumigatus throughout the world [5,7,10], most clinical laboratories do not
perform antifungal susceptibility testing of A. fumigatus or other filamentous fungi [6,11].
As such, there is a paucity of reliable resistance data for isolates of A. fumigatus [3–7].

Voriconazole and isavuconazole are the mould-active azoles that are recommended for
primary therapy of suspected or documented IA [12,13]. The emergence of azole resistance
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complicates this process as initial antifungal therapy must be active against A. fumigatus.
Delays associated with culture, isolate identification, and antifungal susceptibility test-
ing may lead to excess mortality and justify an alternative approach to the use of azole
monotherapy [5,12–14]. As the frequency of azole-resistant A. fumigatus varies widely
from country to country depending on local and regional epidemiology, the local rate of
resistance, as determined by surveillance, has become the major factor that determines
the first line drug therapy for IA [5,6,12,13]. Although routine testing of clinical isolates of
A. fumigatus is not generally recommended [12,13], periodic assessment of local resistance
rates may help guide the management of individual patients [3–7]. It has been suggested
that azole monotherapy with either voriconazole or isavuconazole may be used as primary
therapy in areas with a low rate of resistance, usually considered to be <5% of isolates, and
that MIC testing only be performed in patients failing this therapy [5,12,13]. In regions
where higher resistance rates (5–10%) have been documented, routine testing is advisable
and azole therapy should be modified as soon as resistance has been detected. If local rates
of resistance are greater than 10%, it is recommended that first-line azole monotherapy be
discouraged and one of the following treatment regimens be considered: one, voricona-
zole or isavuconazole in combination with an echinocandin or two, a lipid formulation of
amphotericin B or monotherapy with a lipid formulation of amphotericin B [5,12–17].

In the present study, we report the MIC distributions for four mould-active azole
antifungal agents (isavuconazole, itraconazole, posaconazole and voriconazole) and
660 isolates of A. fumigatus sensu stricto that were submitted to the SENTRY Antifungal
Surveillance Program (JMI Laboratories, North Liberty, IA, USA) for reference identifica-
tion and in vitro antifungal susceptibility testing via the CLSI broth microdilution (BMD)
method. Isolates submitted for testing were collected in 2017–2020 from clinically signifi-
cant infections as part of the SENTRY Antifungal Surveillance Program (JMI Laboratories,
North Liberty, IA, USA). All isolates were submitted to antifungal susceptibility testing
to detect emerging resistance by applying epidemiological cutoff values (ECVs), where
available.

2. Materials and Methods
2.1. Organisms

A collection of 660 non-duplicate clinical isolates of Aspergillus fumigatus sensu stricto
from the SENTRY Antimicrobial Surveillance Program collected during 2017–2020 were
included in the study. Only one fungal isolate per infection episode determined to be
significant by local criteria as the reported probable cause of infection were included in
this investigation. A total of 40 medical centers in North America (17 sites; 241 isolates),
Europe (16 sites; 324 isolates), Latin America (1 site; 11 isolates), and the Asia-Pacific
region (6 sites; 84 isolates) have sent isolates to the coordinating laboratory as part of the
SENTRY Program.

2.2. Identification Methods

Isolates were identified at the participating institutions using methods routinely em-
ployed at the submitting laboratory for mould identification [18]. Isolates were submitted to
JMI Laboratories (North Liberty, IA, USA) where species identification was confirmed using
DNA sequencing and/or proteomic methods [19,20]. Mould isolates were sub-cultured
on potato dextrose agar (Remel, Inc., Lenexa, KS, USA) after arrival at the central labo-
ratory and grown for up to seven days to assess purity and viability. Isolates confirmed
as pure were inoculated into Sabouraud Liquid Broth, Modified (Becton, Dickenson and
Company, Sparks, MD, USA) and the hyphae harvested and prepared for formic acid
extraction. Isolates then were submitted to matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS) using the MALDI Biotyper (Bruker Daltron-
ics, Billerica, MA, USA). Isolates that did not score ≥2.0 when tested using spectrometry
were identified using sequencing of the 28S ribosomal subunit, followed by an analysis of
β-tubulin or internal spacer regions (ITS) [19–21]). Nucleotide sequences were analyzed
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using Lasergene® software (DNASTAR, Madison, WI, USA) and compared to sequences
using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cqi; last accessed on 1 May 2021).

2.3. Susceptibility Testing

All isolates of A. fumigatus were tested via broth microdilution (BMD) using CLSI
methodologies [22]. Frozen-form microdilution panels using RPMI 1640 broth supple-
mented with morpholinepropane sulfonic acid buffer (MOPS) and 0.2% glucose were
inoculated with 0.4 − 5.0 × 104 CFU/mL conidial suspensions for a final concentration of
0.2 − 2.5 × 104 CFU/mL. Minimal inhibitory concentrations (MICs) were visualized after
48 h. MIC endpoints were read at the lowest concentration producing visually clear wells.
Quality control was performed in accordance with CLSI M38 guidelines using A. flavus
ATCC 204,304 and A. fumigatus ATCC MYA-3626. MIC values were within the QC ranges.

Clinical breakpoints (CBPs) have been published by CLSI for Aspergillus fumigatus
and voriconazole only (susceptible [S] ≤0.5 mg/L; intermediate [I] 1 mg/L; resistant
[R] ≥ 2 mg/L) (CLSI, 2020a). However, epidemiological cutoff values (ECVs) have been
developed for A. fumigatus and isavuconazole (ECV, 1 mg/L), itraconazole (ECV, 1 mg/L),
posaconazole (ECV, 0.5 mg/L), and voriconazole (ECV, 1 mg/L) [23–25]. Isolates for which
azole MIC results exceed the ECV were considered non-wildtype (NWT) [23,26]. Whereas
the European Committee on Antimicrobial Susceptibility Testing [27] has developed both
ECVs (based on MIC distribution) and clinical breakpoints based on MIC distributions,
dosing and pharmacokinetic/pharmacodynamic parameters, and likelihood of clinical suc-
cess and failure, the CLSI has elected at present to provide ECVs but no clinical breakpoints
due to a lack of clinical data to support breakpoints [23].

2.4. Characterization of Mutations in the Sterol 14 Alpha-Demethylase-Encoding Gene

A. fumigatus isolates displaying isavuconazole, itraconazole, posaconazole, or voricona-
zole MIC values above the ECV (non-wild type [NWT]) were submitted to molecular
detection of CYP51A and CYP51B mutations as previously described [19]. Sequences were
compared with GenBank sequences available under the accession numbers AAK73659.1
for CYP51A and AAK73660.1 for CYP51B.

3. Results

The cumulative frequency of MIC distributions for the four mould-active azoles and
A. fumigatus are presented in Table 1. Isavuconazole, itraconazole, posaconazole, and
voriconazole displayed similar activities (MIC90, 1 mg/L, 1 mg/L, 0.5 mg/L, and 0.5 mg/L,
respectively; Table 1) against 660 A. fumigatus isolates. More than 92.0% of the isolates tested
were wildtype (WT) to isavuconazole (92.7% WT), itraconazole (92.9% WT), posaconazole
(97.3% WT), and voriconazole (96.7% WT). The overall frequency of NWT strains of A.
fumigatus was 7.3% for isavuconazole, 7.1% for itraconazole, 2.7% for posaconazole, and
3.3% for voriconazole (Tables 1 and 2).

Table 1. Antimicrobial activity of isavuconazole, itraconazole, posaconazole, and voriconazole tested
against Aspergillus fumigatus.

Organism (No.
of Isolates)

No. and Cumulative % of Isolates Inhibited at MIC (mg/L) of:
MIC50 MIC90

≤0.03 0.06 0.12 0.25 0.5 1 2 4 8 >8

Aspergillus fumigatus

Isavuconazole (660) 0
0.0

3
0.5

49
7.9

422
71.8

138
92.7

26
96.7

13
98.6

5
99.4

4
100.0 0.5 1

Itraconazole (660) 0
0.0

36
5.5

295
50.2

282
92.9

27
97.0

10
98.5

4
99.1

6
100.0 0.5 1

Voriconazole (660) 0
0.0

1
0.2

13
2.1

311
49.2

284
92.3

29
96.7

16
99.1

3
99.5

1
99.7

2
100.0 0.5 0.5

Posaconazole (660) 0
0.0

7
1.1

118
18.9

331
69.1

186
97.3

16
99.7

0
99.7

1
99.8

1
100.0 0.25 0.5

https://blast.ncbi.nlm.nih.gov/Blast.cqi
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Table 2. Frequency of non-wildtype strains of A. fumigatus determined via CLSI broth microdilution
testing of isavuconazole, itraconazole, posaconazole and voriconazole, 2001–2020.

Year/Antifungal
Agent (ref) No. Tested Mode (mg/L) Range % > ECV

2001–2009 (27)
Isavuconazole NA NA NA NA
Itraconazole 1221 0.25 0.015 to >8 2.0

Posaconazole 1312 0.03 0.007 to 2 3.5
Voriconazole 1312 0.25 0.06 to 4 1.4

2015–2017 (28)
Isavuconazole 1189 0.5 0.12 to 32 3.8
Itraconazole 876 1 0.12 to 32 4.2

Posaconazole 817 0.25 0.008 to 4 2.1
Voriconazole 1122 0.5 0.12 to 32 1.9

2017–2020 (This study)
Isavuconazole 660 0.5 0.12 to >8 7.3
Itraconazole 660 0.5 0.25 to >8 7.1

Posaconazole 660 0.25 0.06 to 8 2.7
Voriconazole 660 0.25 0.06 to >8 3.3

The mould-active azoles have been tested against isolates of A. fumigatus in the SEN-
TRY Program since 2001 (Table 2). The data from 2001 to 2009 [28] and 2015 to 2017 [29]
have been published previously; those data are shown in Table 2 and compared to that
of the present study. Whereas the modal MIC values from each time period remained
relatively stable for each of the azoles, the percentage of isolates for which the MIC was
greater than the ECV (e.g., NWT) increased for each azole over time, indicating a gradual
increase in isolates likely to harbor an acquired resistance mechanism. Applying the CLSI
clinical breakpoints for voriconazole, the percentage of nonsusceptible isolates (NS; I and
R) increased from 4.3% in 2015–2017 to 7.7% in the present study.

Only 66 isolates (10.0% of total) were NWT to one or more of the azoles, 32 of which
(48%) harbored one or more alterations in the CYP51 sequences (Table 3). Among the
32 isolates with CYP51 alterations, 25 (78.1%) were NWT to isavuconazole, 29 (90.1%)
were NWT to itraconazole, 11 (34.4%) were NWT to posaconazole, and 17 (53.1%) were
NWT to voriconazole (Table 3). The isolates withCYP51 alterations were detected most
frequently among A. fumigatus isolates from Europe (17/324; 5.2%) followed by those from
the Asia-Pacific region (4/84; 4.8%) and North America (11/241; 4.6%) (data not shown).
None of the isolates from Latin America possessed a substitution in CYP51 sequences.

The most frequent alteration was CYP51A TR34/L98H, carried by 14 isolates from
Europe (7 from Italy, 4 from the UK, and 1 each from Belgium, Slovenia, and Germany), all
of which were NWT to isavuconazole and itraconazole, 13 were NWT to voriconazole (all
14 were NS via CLSI CBPs), and 8 were NWT to posaconazole (Table 3). Single substitutions
in CYP51A were detected in 6/11 isolates from North America, 4 of which carried the
alteration I242V (all NWT to itraconazole, all WT to isavuconazole and voriconazole, 3 of
4 WT to posaconazole) (Table 3). One North American isolate carried the CYP51A alteration
G448S (NWT to isavuconazole, itraconazole, and voriconazole) and one carried A9T (NWT
to isavuconazole). A single isolate from the Asia-Pacific region carried a CYP51A G138C
alteration and was NWT to all four azoles.

A series of 3 (F46Y, M172V, E427K) or 5 (F46Y, M172V, N248T, D255E, E427K) alterations
on CYP51A were detected in 1 and 3 isolates, respectively; 2 of these isolates were NWT
to isavuconazole and itraconazole and 1 was only NWT to itraconazole (Table 3). One
isolate from Thailand with CYP51A alterations F46Y, M172V, N248T, D255E, and E427K
was only NWT to isavuconazole and harbored the CYP51B alteration Q42L. A single isolate
from Belgium was NWT to isavuconazole, itraconazole, and voriconazole and harbored
the CYP51A alterations Y121F, M172I, T289A, G448S, and TR46.
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Table 3. Summary of CYP alterations detected among azole non-wildtype Aspergillus fumigatus isolates.

Study
Year

Site
Code Continent Country City ISC ITC VRC PSC CYP51A CYP51B

2018 203 Asia-W.
Pacific Australia Perth 1 1 2 0.25 wild-type Q42L

2020 260 Asia-W.
Pacific

New
Zealand Auckland 8.1 8.1 8 8 G138C wild-type

2017 603 Asia-W.
Pacific Thailand Bangkok 2 1 0.5 0.25

F46Y, M172V,
N248T, D255E,

E427K
Q42L

2018 131 Europe Belgium Antwerp 4 4 2 1 L98H, TR34 wild-type

2019 131 Europe Belgium Antwerp 8.1 8 8.1 0.5
Y121F, M172I,
T289A, G448S,

TR46
wild-type

2018 302 Europe Czech
Republic

Hradec
Kralove 2 2 1 0.5

F46Y, M172V,
N248T, D255E,

E427K
wild-type

2020 91 Europe France Caen
Cedex 4 4 1 1 wild-type Q42L

2018 377 Europe Italy Milan 8 8 2 1 L98H, TR34 wild-type
2018 377 Europe Italy Milan 8.1 8.1 8.1 4 L98H, TR34 wild-type
2018 377 Europe Italy Milan 4 4 2 1 L98H, TR34 wild-type
2018 377 Europe Italy Milan 4 4 1 0.5 L98H, TR34 wild-type
2018 377 Europe Italy Milan 4 4 2 1 L98H, TR34 wild-type
2019 377 Europe Italy Milan 4 2 2 0.5 L98H, TR34 wild-type
2019 377 Europe Italy Milan 2 2 2 0.5 L98H, TR34 wild-type
2019 329 Europe Slovenia Ljubljana 4 8.1 2 0.5 L98H, TR34 wild-type
2019 303 Europe UK Leeds 4 8.1 2 0.5 L98H, TR34 wild-type
2020 303 Europe UK Leeds 4 4 2 1 L98H, TR34 wild-type
2020 303 Europe UK Leeds 4 4 2 0.5 L98H, TR34 wild-type
2020 303 Europe UK Leeds 8 8 2 1 L98H, TR34 wild-type

2018 32 North
America Canada Winnipeg 1 2 0.5 0.5 I242V wild-type

2018 2 North
America USA Indianapolis 1 2 1 1 I242V wild-type

2018 122 North
America USA Burlington 2 2 1 0.5 F46Y, M172V,

E427K wild-type

2018 806 North
America USA Richmond 1 2 0.5 0.5 I242V wild-type

2019 806 North
America USA Richmond 8.1 8.1 4 0.5 G448S wild-type

2019 129 North
America USA New

Brunswick 2 2 1 0.5 wild-type Q42L

2020 122 North
America USA Burlington 1 2 0.5 0.5

F46Y, M172V,
N248T, D255E,

E427K
wild-type

2020 456 North
America USA Birmingham 1 2 0.5 0.25 I242V wild-type

2020 129 North
America USA New

Brunswick 2 2 1 0.5 wild-type Q42L

2020 129 North
America USA New

Brunswick 0.5 2 0.5 0.25 wild-type Q42L

2020 614 Asia-W.
Pacific Australia Melbourne 2 2 1 0.5 wild-type

K82Q,
F149V,
P383L

2020 381 Europe Germany Hamburg 8 8.1 4 1 L98H, TR34 wild-type

2018 122 North
America USA Burlington 2 1 0.5 0.25 A9T wild-type

Abbreviations: ISC, isavuconazole; ITC, itraconazole; VRC, voriconazole; PSC, posaconazole.
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Alterations in CYP51B were noted in 7 isolates; 6/7 carried Q42L, 3 from North
America (all NWT to itraconazole, and 2 NWT to isavuconazole), 2 from the Asia-Pacific
region (NWT to voriconazole or isavuconazole), and 1 from Europe (NWT to isavuconazole,
itraconazole, and posaconazole). One of the isolates with the CYP51B alterations K82Q,
F149V, and P383L was from Australia and was only NWT to isavuconazole. One of the
Asia-Pacific isolates with CYP51B alteration Q42L also contained a series of five mutations
in CYP51A (Table 3).

This collection of 660 isolates of A. fumigatus contained 594 isolates (90.0%) that were
WT to all four azoles, 34 isolates (5.2%) that were NWT to one or more azole but showed
no alterations in CYP51A or CYP51B, and 32 isolates (4.8%) that were NWT to one or more
azole and harbored alterations in CYP51 (Table 4). Among the 34 NWT isolates without
CYP51 alterations, 32.4% were WT to isavuconazole, 47.1% were WT to itraconazole, 82.4%
were WT to posaconazole, and 85.3% were WT to voriconazole. By comparison, among the
32 NWT isolates with CYP51 alterations, 21.9% were WT to isavuconazole, 9.4% were WT
to itraconazole, 65.6% were WT to posaconazole, and 46.9% were WT to voriconazole.

Table 4. In vitro activity of mould-active azole antifungal agents against azole wild-type (WT) and
non-WT (NWT) isolates of A. fumigatus.

Azole Phenotype
(No. Tested)

MIC50 MIC90 Range
ECV a

%WT %NWT

WT (594)
Isavuconazole 0.5 1 0.12 to 1 100.0 0.0
Itraconazole 0.5 1 0.25 to 1 100.0 0.0

Posaconazole 0.25 0.5 0.06 to 1 99.8 0.0
Voriconazole 0.25 0.5 0.06 to 1 100.0 0.0

NWT (no CYP51
alteration) (34)
Isavuconazole 2 4 0.5 to 8 32.4 67.6
Itraconazole 2 4 0.5 to 8 47.1 52.9

Posaconazole 0.5 1 0.25 to 1 82.4 17.6
Voriconazole 0.5 2 0.5 to 4 85.3 14.7

NWT (with CYP51
alteration) (32)
Isavuconazole 4 >8 0.5 to >8 21.9 78.1
Itraconazole 2 >8 1 to >8 9.4 90.6

Posaconazole 0.5 1 0.25 to 8 65.6 34.4
Voriconazole 2 4 0.5 to >8 46.9 53.1

Abbreviations: ECV, epidemiological cutoff value. a CLSI M57S (2022).

4. Discussion

Antimicrobial resistance (AMR) is an emerging crisis worldwide [3,4,30–32]. Whereas
most attention is directed towards resistance in bacteria [32,33], antifungal resistance is
an undervalued yet important component of AMR [3,4,6,30,31,34]. Recently, both the
United States (US) Centers for Disease Control and Prevention (CDC) and the World Health
Organization (WHO) have added azole-resistant A. fumigatus and Candida spp. (C. auris) to
lists of emerging AMR threats to public health [30,34]. Both organizations have emphasized
the importance of conducting standardized surveillance that addresses antifungal resistance
and treatability issues.

The SENTRY Antifungal Surveillance Program has been active since 1997 and has
included filamentous fungi, including A. fumigatus, since 2001 [28,35,36] (Table 2). As such,
we have established a baseline database of mould-active azole MIC values for clinical
isolates of A. fumigatus from hospital locations throughout the world. Data generated in
the SENTRY Program may serve as a means of monitoring resistance phenotypes and
mechanisms of resistance (MOR) over time and in specific global regions.
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The results of the present survey confirm and extend those reported previously
from the SENTRY Program [28,29] (Table 2) and other surveillance efforts [3,4,6,10,37,38].
We demonstrated that 90% of A. fumigatus isolates were WT to all 4 azoles and, among
66 azole-NWT isolates, 32 harbored one or more alterations in CYP51 sequences (Table 3).
The most frequent set of alterations was the so-called environmental mutation CYP51A
TR34/L98H, detected only in isolates from Europe (Table 3). Although isolates with this
set of alterations have been detected in the United States (Berkow et al., 2018), none of
the isolates from North America in the present survey possessed these environmental
alterations. The TR34/L98H alteration resulted in NS (voriconazole; I/R)/NWT MIC re-
sults for isavuconazole, itraconazole, and voriconazole, whereas other alterations in cyp51
can have variable effects on the in vitro activities of the mould-active azoles (Table 3).
These effects are best delineated by testing all four azoles. At present, it is unclear that an
infection with an A. fumigatus isolate that is phenotypically R or NWT (with or without
alterations in CYP51) to one azole can be successfully managed using an azole with an
S/WT MIC [5,6,8,14,17,19].

An examination of MIC results for azoles and A. fumigatus from 2001 through the
present showed a gradual increase in the % NWT for isavuconazole (data from 2015 to
2017), itraconazole, and voriconazole (Table 2). Conversely, the % NWT for posaconazole
decreased from 3.5% in 2001–2009 to 2.7% in 2017–2020 (Table 2). Application of CLSI CBPs
for voriconazole showed an increase in the NS (I/R) percentage from 4.3% in 2015–2017
to 7.7% in 2017–2020 (data not shown). Although the frequency of NWT isolates with
alterations in CYP51 was highest in isolates from Europe (5.2%), comparable rates were
observed in the Asia-Pacific region (4.8%) and North America (4.6%), suggesting that a
decreased susceptibility to azoles is increasing in regions beyond Europe. Indeed, cases
with CYP51-mediated resistance have been reported in every continent; moreover, new
resistance mechanisms have also been described [3–7]. The prevalence of azole-resistant
strains should be investigated in every country in order to understand the prevalence
of resistance and adjust therapeutic options where high rates of resistance (>10%) are
present [5].

There are some limitations in this SENTRY survey that must be acknowledged. First,
we neither collect clinical outcome data nor do we identify those individuals who received
an antifungal agent. As such, we are unable to establish any clinical correlation between
MIC values and clinical outcomes. Second, we did not identify any mechanisms of resis-
tance beyond alterations in CYP51A/B. There were several isolates of A. fumigatus that were
NWT to an azole but did not possess specific alterations in CYP51 sequences. The potential
for an efflux mechanism accounting for elevated MIC values was not evaluated. Finally,
the SENTRY Surveillance Program is a sentinel, not a population-based surveillance.

In summary, the data presented in the present study expand upon the azole MIC
distributions for A. fumigatus. We noted that the frequency of azole-NWT strains of A.
fumigatus has increased since a survey conducted in 2001–2009 and now approaches 10%
overall, a level at which the use of azole monotherapy is questionable [5]. The azole-
NWT isolates harbored alterations in CYP51 that included environmental alterations (e.g.,
TR34/L98H) in isolates from Europe and nonsynonymous point mutations in isolates
from North America. Antifungal resistance among isolates of A. fumigatus appears to be
increasing in North America, Europe, and the Asia-Pacific region. State of the art methods
for species identification and antifungal susceptibility testing will be important to further
define the impact of azole resistance in both local and regional settings.
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