Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Silver Nanoparticles
2.2. Experimental Setup
2.3. Morphological and Agronomic Characterization
2.4. Total Protein Content
2.5. Total Fat Content
2.6. Anthocyanin Content
2.7. Nutrients Profiling
2.8. Amino Acids Profiling
2.9. Statistical Analysis
3. Results
3.1. Effect of AgNPs on P. indica
3.2. Morphological and Agronomic Characters
3.3. Total Protein, Fat and Anthocyanin Content
3.4. Nutrients Profiling
3.5. Amino Acids Profiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Alix, A.; Capri, E. Modern agriculture in Europe and the role of pesticides. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 1–22. [Google Scholar]
- Belmans, E.; Campling, P.; Dupon, E.; Joris, I.; Kerselaers, E.; Lammens, S.; Messely, L.; Pauwelyn, E.; Seuntjens, P.; Wauters, E. The multiactor approach enabling engagement of actors in sustainable use of chemicals in agriculture. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 23–62. [Google Scholar]
- Kumar, R.; Kumar, R.; Prakash, O. Chapter-5 the Impact of Chemical Fertilizers on Our Environment and Ecosystem. In Research Trends in Environmental Sciences; 2019; Volume 35, p. 69. [Google Scholar]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Amsterdam, The Netherlands, 2021; pp. 1–20. [Google Scholar]
- Ahmad, M.; Ahmad, M.; El-Naggar, A.H.; Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Elfaki, J.; Abdulelah, A.F.; Al-Wabel, M.I. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere 2018, 28, 873–883. [Google Scholar] [CrossRef]
- Chadha, N.; Mishra, M.; Rajpal, K.; Bajaj, R.; Choudhary, D.K.; Varma, A. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch. Microbiol. 2015, 197, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.M.; Karanja, J.; Bello, S.K. Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol. Mol. Plant Pathol. 2019, 106, 232–237. [Google Scholar] [CrossRef]
- Singh, S.; Sangwan, S.; Sharma, P.; Devi, P.; Moond, M. Nanotechnology for sustainable agriculture: An emerging perspective. J. Nanosci. Nanotechnol. 2021, 21, 3453–3465. [Google Scholar] [CrossRef]
- Mohana, N.C.; Mithun, P.R.; Rao, H.Y.; Mahendra, C.; Satish, S. Nanoparticle applications in sustainable agriculture, poultry, and food: Trends and perspective. In Nanotoxicity; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–353. [Google Scholar]
- Ghafariyan, M.H.; Malakouti, M.J.; Dadpour, M.R.; Stroeve, P.; Mahmoudi, M. Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 2013, 47, 10645–10652. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, L.; Liang, X.; Wang, L.; Luo, L. Study on the sterilization effect and mechanism of black rice by low temperature plasma. Food Control 2016, 60, 202–209. [Google Scholar]
- Palchoudhury, S.; Jungjohann, K.L.; Weerasena, L.; Arabshahi, A.; Gharge, U.; Albattah, A.; Miller, J.; Patel, K.; Holler, R.A. Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer. RSC Adv. 2018, 8, 24075–24083. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Lekamge, S.; Miranda, A.F.; Abraham, A.; Li, V.; Shukla, R.; Bansal, V.; Nugegoda, D. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front. Environ. Sci. 2018, 6, 152. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Lima, R.D. Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Srivastava, R.; Arora, S.; Sharma, A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 2016, 6, 254. [Google Scholar]
- Almutairi, Z.M.; Alharbi, A. Effect of silver nanoparticles on seed germination of crop plants. Int. J. Nucl. Quantum Eng. 2015, 9, 689–693. [Google Scholar] [CrossRef]
- Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2012, 7, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, R.; Li, Y.S.; Ranjbar, S.; Tehrani, R.; Brueck, C.L.; Van Aken, B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 2013, 47, 10637–10644. [Google Scholar] [CrossRef]
- Musante, C.; White, J.C. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environ. Toxicol. 2012, 27, 510–517. [Google Scholar] [CrossRef]
- Gruyer, N.; Dorais, M.; Bastien, C.; Dassylva, N.; Triffault-Bouchet, G. Interaction between silver nanoparticles and plant growth. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant; Acta Horticulturae; ISHS: Leuven, Belgium, 2013; Volume 1037, pp. 795–800. [Google Scholar]
- Solanki, S.; Lakshmi, G.B.V.S.; Dhiman, T.; Gupta, S.; Solanki, P.R.; Kapoor, R.; Varma, A. Co-Application of Silver Nanoparticles and Symbiotic Fungus Piriformospora indica Improves Secondary Metabolite Production in Black Rice. J. Fungi 2023, 9, 260. [Google Scholar] [CrossRef]
- Rathna Priya, T.S.; Eliazer Nelson, A.R.L.; Ravichandran, K.; Antony, U. Nutritional and functional properties of coloured rice varieties of South India: A review. J. Ethn. Foods 2019, 6, 11. [Google Scholar] [CrossRef]
- Rahim, M.A.; Umar, M.; Habib, A.; Imran, M.; Khalid, W.; Lima, C.M.G.; Shoukat, A.; Itrat, N.; Nazir, A.; Ejaz, A.; et al. Photochemistry, Functional Properties, Food Applications, and Health Prospective of Black Rice. J. Chem. 2022, 2022, 2755084. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Ziegler, V.; Ferreira, C.D.; Hoffmann, J.F.; Chaves, F.C.; Vanier, N.L.; de Oliveira, M.; Elias, M.C. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chem. 2018, 242, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, U.K.S. Black Rice: Research, History and Development; Springer: Amsterdam, The Netherlands, 2019; 191p. [Google Scholar]
- Panda, D.K.; Jyotirmayee, B.; Mahalik, G. Black rice: A review from its history to chemical makeup to health advantages, nutritional properties and dietary uses. Plant Sci. Today 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Singha, K.M.; Singh, B.; Pandey, P. Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage. Sci. Rep. 2021, 11, 12259. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, A.L.; Lee, I.J. Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J. Plant Interact. 2014, 9, 478–487. [Google Scholar] [CrossRef]
- Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. R. Soc. Chem. Adv. 2019, 9, 29293–29299. [Google Scholar] [CrossRef]
- Bala, R.; Kalia, A.; Dhaliwal, S.S. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J. Soil Sci. Plant Nutr. 2019, 19, 379–389. [Google Scholar] [CrossRef]
- Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021, 161, 12–24. [Google Scholar] [CrossRef]
- Jia, Q.; Qu, J.; Mu, H.; Sun, H.; Wu, C. Foliar endophytic fungi: Diversity in species and functions in forest ecosystems. Symbiosis 2020, 80, 103–132. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M.; Nadeem, F.; Rehman, A.; Hussain, M.; Nawaz, A.; Naveed, M. Zinc application in combination with zinc solubilizing Enterobacter sp. MN17 improved productivity, profitability, zinc efficiency, and quality of desi chickpea. J. Soil Sci. Plant Nutr. 2020, 20, 2133–2144. [Google Scholar] [CrossRef]
- Ogunyemi, S.O.; Zhang, M.; Abdallah, Y.; Ahmed, T.; Qiu, W.; Ali, M.A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. The biosynthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front. Microbiol. 2020, 11, 588326. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.G.; Neri, G. Characterization and optical studies of PVP-capped silver nanoparticles. J. Nanostructure Chem. 2017, 7, 37–46. [Google Scholar] [CrossRef]
- Dhiman, T.K.; Lakshmi, G.B.V.S.; Dave, K.; Roychoudhury, A.; Dalal, N.; Jha, S.K.; Kumar, A.; Han, K.H.; Solanki, P.R. Rapid and label-free electrochemical detection of fumonisin-B1 using microfluidic biosensing platform based on Ag-CeO2 nanocomposite. J. Electrochem. Soc. 2021, 168, 077510. [Google Scholar] [CrossRef]
- Verma, D.; Dhiman, T.K.; Mukherjee, M.D.; Solanki, P.R. Electrophoretically Deposited Green Synthesized Silver Nanoparticles Anchored in Reduced Graphene Oxide Composite Based Electrochemical Sensor for Detection of Bisphenol A. J. Electrochem. Soc. 2021, 168, 097504. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Ma, C.; Wang, Y.; Wu, C.; Huang, J.; Xing, B. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 2016, 159, 326–334. [Google Scholar] [CrossRef]
- Singhal, U.; Khanuja, M.; Prasad, R.; Varma, A. Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front. Microbiol. 2017, 8, 1909. [Google Scholar] [CrossRef]
- Dabral, S.; Varma, A.; Choudhary, D.K.; Bahuguna, R.N.; Nath, M. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. Ecotoxicol. Environ. Saf. 2019, 186, 109741. [Google Scholar] [CrossRef] [PubMed]
- Goyal, K.; Singh, N.; Jindal, S.; Kaur, R.; Goyal, A.; Awasthi, R. Kjeldahl Method. Adv. Tech. Anal. Chem. 2022, 1, 105. [Google Scholar]
- Nielsen, S.S. Introduction to food analysis. In Food Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–16. [Google Scholar]
- Bhuvaneswari, S.; Gopala Krishnan, S.; Bollinedi, H.; Saha, S.; Ellur, R.K.; Vinod, K.K.; Singh, I.M.; Prakash, N.; Bhowmick, P.K.; Nagarajan, M.; et al. Genetic architecture and anthocyanin profiling of aromatic rice from Manipur reveals divergence of Chakhao landraces. Front. Genet. 2020, 11, 570731. [Google Scholar] [CrossRef]
- Tarantino, T.B.; Barbosa, I.S.; de CLima, D.; de GPereira, M.; Teixeira, L.S.; Korn, M.G.A. Microwave-assisted digestion using diluted nitric acid for multi-element determination in rice by ICP OES and ICP-MS. Food Anal. Methods 2017, 10, 1007–1015. [Google Scholar] [CrossRef]
- Kalman, D.S. Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods 2014, 3, 394–402. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Pestovsky, Y.S.; Martínez-Antonio, A. The use of nanoparticles and nano formulations in agriculture. J. Nanosci. Nanotechnol. 2017, 17, 8699–8730. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, C.; Rawat, S.; Cota-Ruiz, K.; Medina-Velo, I.; Gardea-Torresdey, J.L. Evaluation of the effects of nanomaterials on rice (Oryza sativa L.) responses: Underlining the benefits of nanotechnology for agricultural applications. ACS Agric. Sci. Technol. 2021, 1, 44–54. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Tsai, H.J.; Shao, K.H.; Chan, M.T.; Cheng, C.P.; Yeh, K.W.; Oelmüller, R.; Wang, S.J. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal. Behav. 2020, 15, 1722447. [Google Scholar] [CrossRef]
- Rane, M.; Bawskar, M.; Rathod, D.; Nagaonkar, D.; Rai, M. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 045014. [Google Scholar] [CrossRef]
- Singhal, U.; Prasad, R.; Varma, A. Piriformospora indica (Serendipita indica): The novel symbiont. In Mycorrhiza-Function, Diversity, State of the Art; Springer: Berlin/Heidelberg, Germany, 2017; pp. 349–364. [Google Scholar]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Alaofè, H.; Freed, N.; Jones, K.; Plano, A.; Taren, D. Impacts of Double Up SNAP farmers’ market incentive program on fruit and vegetable access, purchase, and consumption. J. Nutr. Health Sci. 2017, 4, 304. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef]
- Keum, N.; Aune, D.; Greenwood, D.C.; Ju, W.; Giovannucci, E.L. Calcium intake and colorectal cancer risk: Dose–response meta-analysis of prospective observational studies. Int. J. Cancer 2014, 135, 1940–1948. [Google Scholar] [CrossRef]
- Hruby, A.; Meigs, J.B.; O’Donnell, C.J.; Jacques, P.F.; McKeown, N.M. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged Americans. Diabetes Care 2014, 37, 419–427. [Google Scholar] [CrossRef]
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Bell, P.T.; Gilat, M.; O’Callaghan, C.; Copland, D.A.; Frank, M.J.; Lewis, S.J.; Shine, J.M. Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson’s disease. Hum. Brain Mapp. 2015, 36, 1278–1291. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Gammoh, S.; Ereifej, K.; Al-Mahasneh, M.A.; Naimi, O.; Hussein, N.; Kubow, S. Application of olive oil as nutraceutical and pharmaceutical food: Composition and biofunctional constituents and their roles in functionality, therapeutic, and nutraceutical properties. In Soft Chemistry and Food Fermentation; Academic Press: Cambridge, MA, USA, 2017; pp. 265–298. [Google Scholar]
- Fernstrom, J.D.; Wurtman, R.J. Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science 1971, 173, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Suda, K.; Kawai, M.; Shimizu, K.; Kushiro, A.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef. Microbes 2016, 7, 153–156. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, A.; Luongo, L.; Romano, R.; Iannotta, M.; Marabese, I.; Boccella, S.; Belardo, C.; de Novellis, V.; Arra, C.; Barbieri, A.; et al. D-aspartic acid ameliorates painful and neuropsychiatric changes and reduces β-amyloid Aβ1-42 peptide in a long lasting model of neuropathic pain. Neurosci. Lett. 2017, 651, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Sheffield-Moore, M.; Zhang, X.J.; Volpi, E.; Wolf, S.E.; Aarsland, A.; Ferrando, A.A.; Wolfe, R.R. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol.-Endocrinol. Metab. 2004, 286, E321–E328. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.H.; Lee, J.Y.; Yoon, H.W.; Kim, J.R. Proline as a novel neurotransmitter in the central nervous system. Arch. Pharmacal Res. 2015, 38, 1883–1888. [Google Scholar]
- Bannai, M.; Kawai, N.; Ono, K.; Nakahara, K.; Murakami, N. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers. Front. Neurol. 2012, 3, 61. [Google Scholar] [CrossRef]
S. No | Parameters | Control | AgNP Treated | P. indica Treated | AgNP + P. indica Treated |
---|---|---|---|---|---|
1 | Plant hHeight (cm) | 185.9 ± 0.07 d | 190.5 ± 0.04 c | 210.5 ± 0.01 b | 243.5 ± 0.34 a |
2 | No. of productive tillers | 11 ± 0.03 c | 11 ± 0.07 c | 13 ± 0.03 b | 16 ± 0.021 a |
3 | Flag leaf length (cm) | 73.1 ± 0.15 c | 74.4 ± 0.05 a | 73.4 ± 0.003 b | 73.1 ± 0.34 c |
4 | Panicle length (cm) | 23.4 ± 0.19 d | 24.6 ± 0.10 c | 30.6 ± 0.04 b | 34.6 ± 0.50 a |
5 | Yield per plant (gm) | 17.5 ± 0.34 d | 22.3 ± 0.01 c | 28.3 ± 0.42 b | 30.3 ± 0.25 a |
6 | 1000 grain weight (gm) | 4.3 ± 0.021 d | 5.1 ± 0.006 c | 6.3 ± 0.008 b | 7.1 ± 0.014 a |
S. No | Compound | Control | AgNPs Treated | P. indica Treated | AgNPs + P. indica Treated |
---|---|---|---|---|---|
1 | Total Protein | 7.4 ± 0.07 a | 7.4 ± 0.13 a | 7.5 ± 0.08 a | 7.5 ± 0.12 a |
2 | Total Fat | 2.6 ± 0.03 a | 2.6 ± 0.04 a | 2.6 ± 0.03 a | 2.6 ± 0.05 a |
3 | Anthocyanin | 7.7 ± 0.04 b | 7.9 ± 0.09 b | 7.8 ± 0.07 b | 11.7 ± 0.11 a |
S. No | Compound | Control (mg/100 gm) | AgNPs Treated (mg/100 gm) | P. indica Treated (mg/100 gm) | AgNPs + P. indica- Treated (mg/100 gm) |
---|---|---|---|---|---|
1 | Iron (Fe) | 6.3 ± 0.11 b | 6.9 ± 0.11 b | 7.3 ± 0.15 b | 8.4 ± 0.28 a |
2 | Manganese (Mn) | 3.7 ± 0.24 b | 3.7 ± 0.24 b | 3.9 ± 0.26 b | 5.8 ± 0.64 a |
3 | Copper (Cu) | 0.3 ± 0.02 c | 0.2 ± 0.007 c | 0.4 ± 0.03 b | 0.6 ± 0.04 a |
4 | Zinc (Zn) | 9.1 ± 0.13 b | 9.9 ± 0.13 ab | 10.1 ± 0.13 ab | 11.3 ± 0.10 a |
5 | Molybdenum (Mo) | 3.6 ± 0.34 c | 3.5 ± 0.32 c | 4.5 ± 0.42 b | 5.5 ± 0.25 a |
6 | Nickel (Ni) | 0.23 ± 0.01 b | 0.24 ± 0.01 b | 0.24 ± 0.01 b | 0.38 ± 0.01 a |
7 | Sodium (Na) | 4.3 ± 0.19 b | 4.7 ± 0.21 b | 4.6 ± 0.21 b | 7.2 ± 0.14 a |
8 | Cobalt (Co) | 1.1 ± 0.005 d | 1.2 ± 0.006 c | 1.3 ± 0.007 b | 2.1 ± 0.021 a |
9 | Magnesium (Mg) | 143.7 ± 2.18 c | 144.8 ± 2.19 c | 194.6 ± 2.95 b | 228.9 ± 2.27 a |
10 | Potassium (K) | 267.8 ± 4.10 c | 279.4 ± 4.28 b | 285.7 ± 4.38 b | 462.8 ± 7.05 a |
11 | Calcium (Ca) | 33.3 ± 0.50 c | 33.4 ± 0.50 c | 54.2 ± 0.82 b | 61.9 ± 1.88 a |
S. No | Compound | Control | AgNP Treated | P. indica Treated | AgNP + P. indica Treated |
---|---|---|---|---|---|
1 | Aspartic Acid | 0.7 ± 0.008 d | 0.9 ± 0.01 c | 1.2 ± 0.02 b | 2.03 ± 0.04 a |
2 | Serine | 0.3 ± 0.01 c | 0.3 ± 0.007 c | 0.4 ± 0.009 b | 0.8 ± 0.01 a |
3 | Glutamic Acid | 15 ± 0.01 c | 1.6 ± 0.01 c | 3.4 ± 0.03 b | 4.1 ± 0.04 a |
4 | Glycine | 0.4 ± 0.02 c | 0.4 ± 0.008 b | 0.5 ± 0.01 a | 0.6 ± 0.01 a |
5 | Histidine | 0.2 ± 0.003 d | 0.2 ± 0.008 c | 0.3 ± 0.01 b | 0.5 ± 0.02 a |
6 | Arginine | 0.6 ± 0.03 d | 0.6 ± 0.006 c | 0.8 ± 0.008 b | 1.4 ± 0.01 a |
7 | Threonine | 0.3 ± 0.011 c | 0.3 ± 0.007 b | 0.3 ± 0.006 b | 0.6 ± 0.01 a |
8 | Alanine | 0.4 ± 0.004 c | 0.6 ± 0.05 c | 1.0 ± 0.09 b | 1.3 ± 0.12 a |
9 | Proline | 0.3 ± 0.007 c | 0.4 ± 0.004 b | 0.5 ± 0.005 a | 0.5 ± 0.005 a |
10 | Cysteine | 0.08 ± 0.001 c | 0.09 ± 0.01 bc | 0.1 ± 0.01 bc | 0.2 ± 0.02 a |
11 | Tyrosine | 0.3 ± 0.021 c | 0.3 ± 0.006 c | 0.4 ± 0.008 b | 0.7 ± 0.014 a |
12 | Valine | 0.4 ± 0.009 c | 0.5 ± 0.04 c | 0.6 ± 0.05 b | 0.9 ± 0.09 a |
13 | Methionine | 0.2 ± 0.01 c | 0.2 ± 0.004 c | 0.3 ± 0.006 b | 0.3 ± 0.006 a |
14 | Tryptophan | 0.1 ± 0.001 d | 0.1 ± 0.002 c | 0.1 ± 0.003 b | 0.2 ± 0.005 a |
15 | Isoleucine | 0.3 ± 0.03 c | 0.4 ± 0.03 c | 0.5 ± 0.05 b | 0.8 ± 0.07 a |
16 | Leucine | 0.6 ± 0.006 d | 0.7 ± 0.007 c | 0.9 ± 0.01 b | 1.5 ± 0.01 a |
17 | Phenylalanine | 0.4 ± 0.01 c | 0.5 ± 0.05 bc | 0.7 ± 0.07 b | 1.2 ± 0.13 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solanki, S.; Gupta, S.; Kapoor, R.; Varma, A. Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice. J. Fungi 2023, 9, 611. https://doi.org/10.3390/jof9060611
Solanki S, Gupta S, Kapoor R, Varma A. Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice. Journal of Fungi. 2023; 9(6):611. https://doi.org/10.3390/jof9060611
Chicago/Turabian StyleSolanki, Shikha, Samta Gupta, Rupam Kapoor, and Ajit Varma. 2023. "Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice" Journal of Fungi 9, no. 6: 611. https://doi.org/10.3390/jof9060611
APA StyleSolanki, S., Gupta, S., Kapoor, R., & Varma, A. (2023). Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice. Journal of Fungi, 9(6), 611. https://doi.org/10.3390/jof9060611