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Abstract: The transcription factor THCTF1 from Trichoderma harzianum, previously linked to the
production of 6-pentyl-2H-pyran-2-one (6-PP) derivatives and antifungal activity against Fusarium
oxysporum, has been related in this study to conidiation, production of an array of volatile organic
compounds (VOCs) and expression of methyltransferase genes. VOCs emitted by three T. harzianum
strains (wild type T34, transformant ∆D1-38 that is disrupted in the Thctf1 gene encoding the
transcription factor THCTF1, and ectopic integration transformant ∆J3-16) were characterized by
Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-Qi-TOF-MS).
Thctf1 disruption affected the production of numerous VOCs such as the antifungal volatiles 2-pentyl
furan and benzaldehyde which were under-emitted, and acetoine, a plant systemic defense inductor,
which was over-emitted. Biological assays show that VOCs regulated by THCTF1 are involved in
the T. harzianum antifungal activity against Botrytis cinerea and in the beneficial effects leading to
Arabidopsis plant development. The VOC blend from the disruptant ∆D1-38: (i) inhibited Arabidopsis
seed germination for at least 26 days and (ii) when applied to Arabidopsis seedlings resulted in
increased jasmonic acid- and salicylic acid-dependent defenses.

Keywords: VOCs; volatilome; PTR-Qi-TOF-MS; gene disruption; methyltransferase; Botrytis cinerea;
plant growth promotion; JA; SA; plant immunity

1. Introduction

Trichoderma is a cosmopolitan genus of filamentous fungi with an elevated interest to
agriculture for its versatile beneficial effects on plants [1]. This genus includes more than
450 species [2] and is characterized by its high morphological uniformity and nutritional
diversity. Mycoparasitism and competition as well as antibiosis throughout secondary
metabolites (SM), including volatile organic compounds (VOCs) [3–5], are recognized
as the main Trichoderma mechanisms to exert direct biocontrol of phytopathogenic fungi,
oomycetes and nematodes [6–8]. In addition, VOCs released by Trichoderma can attract
parasitoids and predators of insect pests [9,10]. Trichoderma also utilizes its competition
ability in the rhizosphere where it modulates the microbiome composition [11]. In their
colonization of the plant, on the roots [12] or as an endophyte [13,14], Trichoderma spp. have
evolved the capacity to communicate with it and produce numerous multifaceted benefits
ranging from growth promotion to priming of local and systemic defense responses against
biotic and abiotic stresses [15–17]. Trichoderma harzianum is one of the species of most
notable interest for agriculture and is the active matter of many commercial biocontrol
products worldwide [1].
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VOCs are small carbon-based chemicals with low molecular weight, polarity and
boiling point, and high vapor pressure produced by all living beings, included fungi,
which might have high biotechnological and ecological potential [18,19]. VOCs cover long
distances spreading throughout the air and take part in intra and inter-specific commu-
nications, as those among fungi with other microorganisms and plants, without physical
contact between them, which makes these compounds excellent infochemicals [20]. VOCs
released by Trichoderma include lactones, ketones, alcohols, mono- and sesquiterpenes,
esters and aldehydes, all of them with selective bioactivity [21,22]. Several investigations
have demonstrated the antimicrobial properties of Trichoderma VOCs [23–28] as well as
their role in the induction of defenses and/or growth promotion in plants [19,22,29–34].
Production of VOCs in Trichoderma is directly dependent not only on the species, but also
on the strain, and it is also affected by growth conditions, developmental stage and the
abiotic or biotic cues received from the environment [21,35–38]. Moreover, depending on
conditions, VOCs from the same Trichoderma isolate can either stimulate plant growth or
induce toxicity [32].

In previous studies, we reported that the disruption of the transcription factor Thctf1
gene in T. harzianum T34 inhibited the production of two SMs derived from the VOC
6-pentyl-2H-pyran-2-one (6-PP) and compromised the antagonistic activity of this strain
against Fusarium oxysporum [39,40]. Moreover, the disruption of Thctf1 in this strain affects
the expression of a transcriptional coactivator involved in the production of VOCs with
antifungal activity [41]. In this study we have compared the VOC profiles emitted by T.
harzianum T34, its Thctf1 disruptant ∆D1-38 and its ectopic integration transformant ∆J3-16
with the aim of understanding the role of THCTF1 in regulation of VOC emission in the
strain T34 and whether these VOCs influence Botrytis cinerea antagonism, and growth and
defense responses in Arabidopsis plants. Since a methyltransferase gene has been related to
6-PP production by T. atroviride [42], we have also explored the THCTF1 function in the
expression of different methyltransferase genes in T. harzianum T34.

2. Materials and Methods
2.1. Fungal Strains and Growth Conditions

The T. harzianum wild type strain CECT 2413 (Spanish Type Culture Collection, Va-
lencia, Spain), also referred to as strain T34, and the transformants ∆D1-38 and ∆J3-16
derived from it [39], were used in this study. ∆D1-38 is the result of the disruption of Thctf1
gene, which encodes a transcription factor previously related to the production of 6-PP
derivatives, and ∆J3-16 is consequence of the introduction of the Thctf1 disruption cassette
in another region than the Thctf1 locus [39]. Botrytis cinerea 98 (Bc) [43] was used as target
pathogen in the antifungal assay. All fungal strains were routinely grown in the dark on
potato dextrose agar (PDA, Difco Laboratories, Detroit, MI, USA) medium, at 22 ◦C Bc and
25 ◦C T. harzianum. For long-term storage, the fungal conidia were maintained at −80 ◦C in
a 30% glycerol solution.

To perform the phenotypic characterization of Trichoderma strains, a 5 mm diameter
agar plug with the fungus was placed at the center of a Petri dish, with PDA or MEA
(Malt Extract Agar, Difco Laboratories) medium, sealed or unsealed, and incubated at 22 or
25 ◦C. Four Petri dishes were considered for each Trichoderma strain and condition tested.
Ten-day cultures were photographed, and conidia from PDA dishes incubated at 22 ◦C,
both sealed and unsealed, were collected in sterile distilled water and quantified using a
Thoma chamber.

For Trichoderma gene expression studies, a 5 mm diameter agar plug with fungal
mycelium was placed on a cellophane-covered PDA dish. Then, it was covered by the lid,
sealed and incubated at 25 ◦C for five days. Mycelia from three biological replicates were
independently collected for each Trichoderma strain, frozen in liquid nitrogen and stored at
–80 ◦C until use for RNA extraction.
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2.2. Assay of Trichoderma VOCs Effects on ∆D1-38 Strain

To test the ability of VOCs released by either strain T34 or ∆J3-16 to rescue the conidia-
tion and phenotype in the disruptant ∆D1-38, we used a closed system (described below,
Section 2.4.), consisting of a large Petri dish containing four small dishes. The disruptant
∆D1-38 was grown in two small dishes and the wild type or the ectopic integration trans-
formant in the other two. The large dish was sealed and incubated at 25 ◦C. A second large
dish containing two small dishes with ∆D1-38 and two small dishes with only PDA was
used as control. Photographs were taken seven days after the inoculations. Three biological
replicates per condition were set up.

2.3. VOCs Analyses

The VOCs released by T. harzianum T34, ∆D1-38 and ∆J3-16 were analyzed by using a
Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-
Qi-TOF-MS) equipment (Ionicon Analytik GmbH, Innsbruck, Austria) in an air-conditioned
room with a constant temperature of 25 ± 1 ◦C. To perform VOCs analysis of Trichoderma
strains, a 5 mm diameter agar plug with the fungus was placed at the center of a 1 L
Erlenmeyer conical glass flask equipped with a GL45 3-valve screw cap, containing 100 mL
of PDA. VOCs protonation and measurements of headspace VOC profiles accumulated in
the flasks were carried out as previously described [38]. Four different biological replicates
for each sample were analyzed and the measurements were taken at five (half of the agar
surface was colonized by the mycelium) and nine (all the agar surface was colonized by
the mycelium) days post inoculation.

The PTR-Qi-TOF-MS raw data were acquired by the TOFDAQ Viewer software (Tofw-
erk AG, Thun, Switzerland), and the mass spectra and temporal ion signal profiles were
extracted using the PTR-TOF-MS Viewer software (Ionicon Analytik version 3.3.8) with a
custom modified Gaussian function fit for each peak. Data acquisition and peak quantifi-
cation were expressed as normalized parts per billion by volume (ppbv). The calibration
of the PTR spectra and the elimination of peaks associated with the PTR-MS ion source
were performed as previously described [38]. The m/z signals were background-corrected
by subtracting the signal obtained from the glass flasks containing only PDA. Most of the
mass peaks were tentatively identified based on the available literature or by comparisons
with genuine standards.

2.4. Antifungal Assay of Trichoderma VOCs against Bc

An antifungal assay was used to evaluate the effect of Trichoderma VOCs on the growth
of Bc. Four 5 cm diameter Petri dishes (small dish) containing PDA medium were placed
inside a 15 cm diameter Petri dish (large dish), and two of the small dishes were inoculated
with a plug took from the perimeter of an actively growing Trichoderma colony. Then, the
large dish was covered by the lid, sealed, and incubated at 22 ◦C for four days. After that
time, the other two small PDA dishes were inoculated with a plug took from the margin
of a growing PDA colony of Bc. The large dish was covered again, sealed with two layers
of Parafilm and incubated under the same conditions during two additional days. At this
time point, six days after Trichoderma inoculation, two diameters of each Bc colony were
recorded. In addition, large dishes containing only pathogen cultures were used as control.
The experiment included three biological replicates and was repeated twice. The results are
expressed as percentage of Bc growth inhibition by VOCs of each Trichoderma strain tested
relative to Bc grown alone.

2.5. Assays of Trichoderma VOCs and Arabidopsis

Arabidopsis thaliana Col-0 ecotype, referred to as Arabidopsis, was used in plant assays.
Seeds were surface disinfected by soaking in a 70% ethanol and 1% (v/v) Triton X-100 solu-
tion for 20 min, followed by 10 min in 20% (v/v) bleach, and then rinsed four times with
sterile distilled water. Afterwards, seeds were kept in sterile water for three days at 4 ◦C to
break dormancy.
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The effect of Trichoderma VOCs on Arabidopsis seed germination was evaluated by
using the same assay with 15 cm diameter Petri dishes as described above with some
modifications. Briefly, each Trichoderma strain was cultured in two small dishes containing
PDA. After four days of fungal incubation, twenty-six surface sterilized seeds of Arabidopsis
were placed in each of the other two small dishes that contained Murashige and Skoog
(MS, Duchefa Biochemie BV, Haarlem, The Netherlands) medium, supplemented with
1% sucrose and adjusted to pH 5.7. The large dish was sealed with two layers of plastic film
and incubated at 22 ◦C. In parallel, a large dish containing small dishes filled with medium
(but not inoculated with Trichoderma) was used as control. The Arabidopsis development
was examined over 26 days, and photographs were taken at 30 days after the start of the
experiment. Fresh weight data were recorded from a set of 50 twelve-day-old seedlings
that were weighed together for each tested condition. Three biological replicates for each
condition were set up and the experiment was repeated twice.

To evaluate the influence of Trichoderma VOCs on the development of Arabidopsis
seedlings, an experiment was conducted as mentioned above, except that seedlings were
grown on MS medium contained in two small dishes for seven days prior to inoculation of
the fungal strain on the other two small dishes with PDA medium. This experiment was
extended for two weeks and at that time point, photographs were taken, and plant material
was collected, frozen in liquid nitrogen, lyophilized and stored at –80 ◦C for expression
studies. Three biological replicates for each condition were considered. This experiment
was repeated, and fourteen-day-old seedlings were collected to determine the fresh weight
as indicated above.

2.6. Real-Time Quantitative PCR (qPCR)

Fungal or plant total RNA was extracted by using TRIZOL reagent (Invitrogen Life
Technologies, Carlsbad, CA, USA), following the manufacturer’s instructions. Three biol-
ogy replicates were used for each condition considered. Gene expression was analyzed
by real-time quantitative PCR (qPCR). cDNA synthesis, PCR mixtures and amplification
conditions were as previously described [16]. The expression levels of lae1 (Triha1:85012),
S-adenosyl methionine-dependent methyltransferases (Triha1:506014 and Triha1:81579),
thiopurine S-methyltransferase (Triha1:5468) and prohibitin protein containing a methyl-
transferase domain (Triha1:492690) genes of Trichoderma, and PR-1, VSP2 and PDF1.5
genes of Arabidopsis, were analyzed. Primer sequences, both those that were previous
described [44,45] or designed in this study, are listed in Supplementary Table S1. The Ct
(cycle threshold) values were normalized with the values of the Trichoderma or Arabidopsis
actin gene, and the relative gene expression was calculated using the 2−∆∆CT method [46].

2.7. Statistical Analyses

With the exception of the VOC data, IBM SPSS® Statistics 27 (IBM Corp., Armonk, NY,
USA) package was used for statistical analyses, through an analysis of variance (ANOVA)
using Tukey’s test to identify significant differences among samples (p < 0.05). A two-way
ANOVA was used to test for possible interactions between the main effects within the
antifungal assay by a mean separation using Tukey’s test (p < 0.05).

The statistical analyses of VOCs were carried out by using Metaboanalyst platform
(https://www.metaboanalyst.ca) [47], accessed on 7 September 2022. Data were normalized
and autoscaled (mean-centred and divided by the standard deviation of each variable)
prior to each analysis. Principal component analysis (PCA) was carried as an unsupervised
method to highlight the underlying data structure. One-way ANOVA was performed
coupled with Fisher’s LSD test to find significantly different means in multiple comparisons.
ANOVA results were presented by heat map and hierarchical clustering in order to provide
a more intuitive visualization of the VOC patterns, reordering the rows and columns so
that rows (and columns) with similar profiles are closer to one another, with each entry
displayed as a colour related to its signal intensity. Moreover, dendrograms were created,
using Pearson correlation-based distances and the Ward’s method of agglomeration.

https://www.metaboanalyst.ca
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3. Results
3.1. Thctf1 Disruption Effect on T. harzianum Phenotype

To verify the major phenotypic effects of Thctf1 disruption on T. harzianum, the wild-
type T34, ∆D1-38 and ∆J3-16 strains were assayed for growth and conidiation on PDA
and MEA media at 22 and 25 ◦C, using sealed and unsealed dishes. In qualitative terms,
∆D1-38 disruptant showed less aerial mycelium production than T34 and ∆J3-16 in all
assayed conditions, it being more evident on sealed dishes (Figure 1A). In addition, the loss
of Thctf1 function in T. harzianum affected the degree of conidiation, albeit the effect differed
between sealed and unsealed conditions. When strains were cultured on unsealed PDA
dishes at 22 ◦C, conidiation was reduced by approximately 25% in the disruptant ∆D1-38;
however, the conidiation on sealed dishes at this temperature was reduced to almost zero
(Figure 1B). Similar results among wild type and transformants were obtained at 28 ◦C
(data not shown), indicating that the ∆D1-38 differential phenotype is not affected within
this temperature range. A two-way ANOVA showed the effect of the variable “strain”, the
variable “dish sealing”, and their combination for Trichoderma conidiation (p < 0.05).
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Figure 1. Phenotype and conidiation of Trichoderma harzianum strains (wild type T34, ectopic in-
tegration transformant ∆J3-16 and Thctf1 disruptant ∆D1-38). (A) Phenotype of T34, ∆J3-16 and
∆D1-38 after growing on MEA or PDA medium, unsealed or sealed dishes, at 25 (left) or 22 ◦C
(right) for ten days. (B) Quantification of conidiation of T34, ∆J3-16 and ∆D1-38 on PDA incubated
at 22 ◦C for ten days, unsealed (left) and sealed (right) dishes. Values are means of four biological
replicates. For each growth condition (unsealed or sealed), different letters above indicate significant
differences according to one-way analysis of variance (ANOVA) followed by Tukey’s test (p < 0.05).
Significant effects were determined by a two-way ANOVA for T. harzianum strain, dish sealing, and
their combination (p < 0.05).

We tested if VOCs released by T. harzianum strains would rescue conidiation in ∆D1-38.
Growing this strain for seven days on dishes adjacent to those with T34 or ∆J3-16, did not
bring to conidia production (Supplementary Figure S1), indicating that VOCs from wild type
or ectopic integration strains cannot restore the phenotype of this disruptant transformant.
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3.2. T. harzianum Thctf1 Function Loss Modifies the Expression of Methyltransferase-Related Genes

As methyltransferase LAE1 was previously related to conidiation in T. atroviride [42]
and in view of the phenotype observed in the disruptant ∆D1-38, we have explored the
role of THCTF1 in the expression of the lae1 orthologous gene and other methyltransferase
genes in T. harzianum. We identified in the T. harzianum genome an orthologous gene
of lae1 (Triha1:85012) and analyzed the expression of this gene by qPCR with the aim of
knowing whether THCTF1 is involved in the production of LAE1. The lae1 transcript was
strongly down-regulated in the disruptant ∆D1-38 with respect to those of T34 or ∆J3-16
after growing these strains in sealed PDA dishes for five days (Figure 2).
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Figure 2. Relative expression of methyltransferase-related genes in Trichoderma harzianum strains
(wild type T34, Thctf1 disruptant ∆D1-38 and ectopic integration transformant ∆J3-16) by real-time
quantitative PCR. Strains were cultured on PDA sealed dishes for five days. Analyzed genes:
lae1 (Triha1:85012), two S-adenosyl methionine-dependent methyltransferases (Triha1:506014 and
Triha1:81579), one thiopurine S-methyltransferase (Triha1:5468) and a prohibitin protein containing
a methyltransferase domain (Triha1:492690). T. harzianum T34 actin was used as endogenous gene.
For each gene, values correspond to relative measurements against the transcript in T34 (2−∆∆CT = 1)
and data are the mean values for three biological replicates. Different letters above the bars indicate
significant differences according to one-way analysis of variance (ANOVA) followed by Tukey’s test
(p < 0.05).

The expression of four other genes, annotated as putative methyltransferases in the
genome of T. harzianum (two S-adenosyl methionine (SAM)-dependent methyltransferase
(Triha1:506014 and Triha1:81579) and one thiopurine S-methyltransferase (Triha1:5468)),
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or harboring a methyltransferase domain (prohibitin protein (Triha1:492690)), was also
analyzed by qPCR. Results showed that, compared to T34 or ∆J3-16, the expression levels
of three out of these four genes were significantly lower in the disruptant (Figure 2),
indicating that THCTF1 is involved in the expression of methyltransferase-related genes in
T. harzianum.

3.3. Differences in T. harzianum VOC Profiles

We compared the VOC production among wild type T34, ectopic integration ∆J3-
16 and disruptant ∆D1-38 strains grown on PDA medium five and nine days after the
inoculation. A total of 129 and 130 VOCs were detected at five and nine days, respectively, in
the range of measured masses (mass protonated range m/z = 20–300) after the subtraction
of peaks associated with the PTR-MS ion source and their isotopes. VOCs’ putative
identification is reported in Supplementary Table S2 [48–71]. Overall, all samples’ released
VOCs were blends composed of similar compounds, but in different proportions. The
tentatively identified compounds belong to different chemical classes such as alcohols,
aldehydes, esters, organic acids, ketones and sulfur compounds.

Throughout the experiment, VOC emissions of the three T. harzianum strains varied
(Figures 3 and 4). Even if PCA analyses of the two collection times gave slightly different
results there is a general trend, as VOC profiles emitted by T34 and ∆J3-16 were partially
overlapping both at five (with the first three principal components explaining the 67.2%
of total variance, Figure 3A) and nine days (with the first three principal components
explaining the 77.4% of total variance, Figure 3B). This indicates that samples from these
two genotypes share some characteristics, while the ∆D1-38 disruptant resulted clearly
separated, showing an altered production of VOCs.
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three Trichoderma harzianum strains (T34 = wild type; Dj = ∆J3-16 ectopic integration transformant;
DD = ∆D1-38 disruptant transformant) on PDA culture medium. (A) Five and (B) nine days post
inoculation. The variance explained by each component is reported in brackets.
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Figure 4. Heat maps and two-dimensional hierarchical dendrograms of VOCs emitted by Trichoderma
harzianum strains (T34 = wild type, Dj = ∆J3-16 ectopic integration transformant; DD = ∆D1-38
disruptant transformant) on PDA culture medium. (A) Five and (B) nine days. Biological replicates
are in columns and variables are in rows. Each colored cell on the map corresponds to a concentration
value, following a blue/red chromatic scale from −2 value (very low production) to 2 (extremely high
production). Only analysis of variance significant peaks was used (p < 0.05). Pearson distance and
Ward’s clustering algorithm were used for dendrograms. The tentative identification and chemical
group of VOCs are detailed in Supplementary Table S2.

A detailed analysis of the compounds at five and nine days reveals that those common
to all three T. harzianum strains such as ethanol and acetaldehyde did not vary during the
experiment and accounted for more than 90% of total VOCs.

The one-way ANOVA and post hoc test on five- and nine-days data
(Supplementary Table S3) showed significant differences (p < 0.05) in 43 and 53 out of
129 and 130 detected peaks, respectively. The peak m/z 93.068 was the only one not shared
among the two time point data sets: it was detected only at 9 days. Hierarchical heat map
clusters of ANOVA significant VOCs are presented in Figure 4. The heat maps for both
time points show well-defined clusters of volatiles characteristically over- or under-emitted
among the three fungal strains. At five days (Figure 4A), the disruptant ∆D1-38 over-
emitted a cluster of volatiles consisting mostly of VOCs that showed significant differences
(p < 0.05) with those released by both T34 and ∆J3-16 strains (m/z 61.026, m/z 129.090,
m/z 79.038, m/z 101.059, m/z 147.138, m/z 129.127, m/z 87.080, m/z 119.049, m/z 43.012,
m/z 40.026, m/z 265.856, m/z 77.059, m/z 107.068, m/z 145.122, m/z 159.138, m/z 54.033,
m/z 39.024, m/z 59.051, m/z 85.064, m/z 127.112, m/z 266.856). At nine days (Figure 4B),
the disruptant over-emitted most of the 53 VOCs significantly different among the three
strains. Overall, the disruptant emitted much more VOCs in comparison to wild type and
ectopic integration strains.

3.4. THCTF1 Affects the Production of Fungistatic VOCs of T. harzianum

The effect of VOCs released by T. harzianum T34, ∆J316 and ∆D1-38 strains on
the growth of the phytopathogen B. cinerea (Bc) was evaluated in sealed PDA dishes
(Supplementary Figure S2). The Bc colony growth was significantly reduced by T34 and
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∆J3-16 VOCs compared with that obtained in the control without Trichoderma (Figure 5),
inhibition percentages being 26.72 ± 8.38 and 20.34% ± 4.19, respectively. Nevertheless, no
growth differences were observed when the pathogen was exposed to VOCs released by
the disruptant strain compared to the control.
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3.5. Effects of Trichoderma VOCs on Arabidopsis Seed Germination, Seedling Development and
Defense Gene Expression

The effect of VOCs emitted by T. harzianum on Arabidopsis seed germination and
seedling development was assessed on co-culture experiments in closed MS plus 1%
sucrose dishes. After 7 days, the germination of the control seeds was 97% and none of the
treatments showed germination. At 26 days, seeds exposed to T34 or ∆J3-16 VOCs reached
germination rates (97%) similar to control, while seeds exposed to ∆D1-38 VOCs were
unable to germinate (Figure 6), indicating that volatiles of the disruptant strain may have
toxic effects on Arabidopsis seeds. As would be expected due to the delay in germination,
fresh weight values of 12 day old seedlings subjected to the VOCs of T34 or ∆J3-16 were
lower than those of the control (Table 1).
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Figure 6. Germination of Arabidopsis thaliana seeds in MS medium after 26 day exposure to VOCs from
Trichoderma harzianum PDA cultures. (A) Control, seeds exposed to uncultured PDA medium, and
exposed to VOCs released by PDA cultures from wild type T34 (B), ectopic integration transformant
∆J3-16 (C) and Thctf1 disruptant ∆D1-38 (D).
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Table 1. Average fresh weight (mg/seedling) of three biological replicates of Arabidopsis seedlings
(n = 50) exposed to Trichoderma VOCs (wild type T34, ectopic integration transformant ∆J3-16 and
Thctf1 disruptant ∆D1-38). (A) Arabidopsis seeds were sown in MS medium and directly exposed to
Trichoderma VOCs. Fresh weight values were taken twelve days after VOC exposition. (B) Arabidopsis
seeds were sown in MS medium and, seven days after sowing, seedlings were exposed to Trichoderma
VOCs. Fresh weight values were taken seven days after VOC exposition. Controls were grown
without Trichoderma VOC exposition. For each experiment (A or B) different letters above indicate
significant differences according to one-way analysis of variance (ANOVA) followed by Tukey’s test
(p < 0.05).

Fresh Weight (mg/Seedling)

Trichoderma VOCs A B

Control 4.3 ± 0.7 a 7.3 ± 2.1 a

T34 2.5 ± 0.7 b 8.9 ± 0.1 a

∆J3-16 2.5 ± 0.1 b 8.9 ± 1.8 a

∆D1-38 ND c 4.2 ± 0.7 b

ND: Not detected fresh weight since seeds did not germinate.

In a different experiment, seven-day-old Arabidopsis seedlings were exposed for seven
days to T. harzianum VOCs to determine their effects on plant growth (Figure 7). Seedlings
subjected to VOCs of T34 or ∆J3-16 showed increased development in terms of more
vigor, greenery and size than those of the control, although no significant differences were
detected in their fresh weight measurements (Table 1). In the case of seedlings exposed to
VOCs of ∆D1-38, a phenotype with smaller size and yellowing was observed (Figure 7)
and their fresh weight values were much lower than those of the rest of the seedlings in the
assay (Table 1). These results could indicate that a functional Thctf1 gene is necessary to
Trichoderma VOC production that do not have negative effects on plant growth.
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Figure 7. Arabidopsis thaliana 14 day seedling phenotypes developed in MS medium after sharing
atmosphere with Trichoderma harzianum VOCs for seven days. (A) Control, seedlings exposed to
uncultured PDA medium, and exposed to VOCs released by PDA cultures from Thctf1 disruptant
∆D1-38 (B), wild type T34 (C) and ectopic integration transformant ∆J3-16 (D).

The expression of genes related to plant immunity was also analyzed in seedlings
exposed to T. harzianum VOCs for seven days (Figure 8). Seedlings subjected to ∆D1-38
VOCs showed the highest expression levels of marker genes for salicylic acid (SA)- (PR-1),
jasmonic acid (JA)- (VSP2) and JA/ethylene (ET)- (PDF1.5) dependent defense pathways.
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No differences were observed in the expression levels of these three genes between control
plants and those exposed to T34 VOCs and between plants subjected to the VOCs of T34
and ∆J3-16.
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Figure 8. Relative expression of defense-related genes in 14 day Arabidopsis seedlings exposed for
seven days to VOCs from Trichoderma harzianum (wild type T34, Thctf1 disruptant ∆D1-38 or ectopic
integration transformant ∆J3-16) PDA cultures. Analyzed genes: PR-1 (pathogenesis-related protein
1), VSP2 (vegetative storage protein 2) and PDF1.5 (plant defensin 1.5). Arabidopsis actin was used
as endogenous gene. For each gene, values were referred to unexposed plants used as control
(2−∆∆CT = 1). Data are the mean values for three biological replicates. Different letters above the
bars indicate significant differences according to one-way analysis of variance (ANOVA) followed by
Tukey’s test (p < 0.05).

4. Discussion

In a previous study, we found that the transcription factor THCTF1 of T. harzianum
was found to be involved in the production of two 6-PP derivatives and the antagonism of
this fungus against Fusarium oxysporum [39]. The unsaturated lactone 6-PP is responsible
for the characteristic “coconut aroma” of certain Trichoderma species and it has been related
to the fungistatic activity of Trichoderma strains [29,36]. Since 6-PP and its analogs are VOCs,
in the present study we have analyzed the volatilome emitted by three T. harzianum strains:
T34 (wild type), ∆D1-38 (∆Thctf1 disruptant) and ∆J3-16 (ectopic integration transformant),
on PDA at two different growth times, five and nine days. As might be expected, the
PTR-Qi-TOF-MS analysis showed that many VOCs were present in similar abundance
in samples from the three T. harzianum strains, not showing significant differences at
the two time points considered, such as those putatively identified as decanal, acetalde-
hyde, 2,4-dimethylfuran, furan, formaldehyde, 1,2,4-trimethylbenzene, 6,10-dimethyl-
5,9-undecadien-2-one (geranylacetone), p-cymene, methanethiol, 3-methylacetophenone,
2-methoxy-4-methylphenol (=creosol), sesquiterpenes, ethanol, methanol, hexenal isomeres
and cedrol, molecules all known to be normally emitted by different microbes, including
Trichoderma spp. [18,38,50,72]. However, no significant differences in the production levels
of 6-PP and its derivatives were detected among the three strains of T. harzianum under the
experimental condition of the present study. This would not be surprising as it has been
described that microbial VOC emissions are dependent on substrate composition, biotic
environment, growth phase and life cycle [36,73].

We found that ∆D1-38 disruptant showed less aerial mycelium and a reduced coni-
diation in comparison to both the wild type and the ectopic integration transformant.
This fact could be due to how gene disruption affects the regulation of master genes, as
occurs with the downregulation of lae1, evidenced by the lower concentration of conidia
detected on unsealed plates, without accumulation of VOCs. Moreover, gene disruption
modifies the production of VOCs which, when accumulating in the sealed plates, may
affect genes involved in conidiation. In fact, the formation of conidia by the disruptant
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was reduced to almost zero in a closed system in which the VOCs could not spread freely.
These phenotypic differences did not depend on temperature or culture medium composi-
tion. It has been described that Trichoderma conidiation may be triggered by VOCs from
adjacent Trichoderma colonies [74]. However, the VOCs from T34 or ∆J3-16 were unable to
rescue conidiation in ∆D1-38 disruptant. These authors suggested that the production of
1-octen-3-ol, 3-octanol and 3-octanone is linked to the process of conidia formation. We
have found that 1-octen-3-ol/3-octanone (m/z 129.127) was over-emitted in the disruptant
compared to T34 and ∆J3-16 strains. However, ranking the emitted VOCs as percentages of
the total (data not shown), this compound has a peak of emission in the wild type going
from position 102nd at five days (starting conidiation phase) to position 18th at nine days,
while in the disruptant it is kept almost in the same position in the ranking, around 40th.
These results suggest that for the conidiation process not only is the presence of certain
VOCs important, but also their relative concentration in the total blend of volatiles.

It has been reported that pyrone derivatives are major components of the volatilome
of T. atroviride [75] and that the disruption of lae1 gene, which encodes a methyltransferase,
almost entirely reduced the conidiation of this fungus and, in agreement with our results, it
could not be rescued by VOCs from the parent strain [42]. Since it has also been described
that lae1 is related to 6-PP production and to the T. atroviride antagonism [42], we searched
for a lae1 orthologue in the publicly available genome of T. harzianum CBS 226.95 [76].
We compared the expression of the lae1 orthologue in the three T. harzianum strains and
found that it was lower in the disruptant strain ∆D1-38. Gene expression results obtained
by qPCR for the three strains allow us to relate THCTF1 function with some but not all
methyltransferase-related genes present in the genome of T. harzianum. Moreover, lae1 gene
deletion in T. atroviride resulted also in a reduction in the expression of polyketide synthase
(PKS)-encoding genes [42]. These enzymes have a fundamental role in the production
of non-ribosomal peptides (NRPs) or polyketides, molecules known to be involved in
antimicrobial activity of some fungi [77]. The 4-phosphopantetheinyl transferase of T. virens
plays a role in plant protection against Bc through VOC emission. The lae1 gene looks to be
a master regulator that is quite conserved and expanded in the genus Trichoderma, but the
function of the other potential methyltransferases cannot be ruled out and therefore might
need to be the target for future experiments.

The ability of Trichoderma VOCs to inhibit microbial growth has been documented with
respect to different plant pathogenic fungi. For instance, VOCs produced by T. harzianum
T-E5 caused a remarkable decline in F. oxysporum f. sp. cucumerinum growth [23], and
those from T. asperelloides TSU1 inhibited the growth of different ascomycetes [28]. A
delay in conidial germination and a suppression of germ tube elongation of Bc and F.
oxysporum has also been related to the VOCs emitted by T. koningiopsis T-51 [20]. Our
results have shown that VOCs from T34 or ∆J3-16 were able to inhibit the growth of
Bc while those of the disruptant ∆D1-38 did not. Although pyrones are the most studied
Trichoderma volatiles, the antifungal capacity of Trichoderma VOCs is not unique to 6-PP and
its derivatives [23]. Thus, in addition to 6-PP, 2-methyl-1-butanol and 2-pentyl furan have
been suggested as VOCs responsible for growth inhibition of fungi such as Colletotrichum,
Sclerotium or Penicillium by T. asperelloides, 2-pentyl furan being the most abundant of
the antifungal blend [34]. The VOCs 2-pentyl furan (m/z 139.112) and benzaldehyde
(m/z 97.049) were over-emitted in T34 and ∆J3-16 blends from axenic cultures in comparison
with those of ∆D1-38 disruptant, which would support that these VOCs are related with
the antifungal activity of T. harzianum against Bc. Moreover, VOC profiles of Trichoderma
spp. are susceptible to change in interaction with potential preys [27,78,79], as occurs with
selinene, limonene and cyclohexane that were identified from co-cultivation scenarios of T.
harzianum and Laccaria bicolor compared to the respective axenic cultures [79]. Nevertheless,
the results observed with Bc cannot be extrapolated to other fungal pathogens, and a more
extensive and case-by-case study should be conducted once the antagonistic potential of
the VOCs regulated by THCTF1 has been proven.
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Trichoderma VOCs are able to promote plant growth and immunity [20,29,30,34], al-
though the outcome depends on its concentration [29,68,80]. The biostimulant capacity of
VOCs released by Trichoderma has been accompanied by increased levels of endogenous
sugars in shoots, roots and root exudates of Arabidopsis plants [22]. Conversely, it has been
reported that there is a decrease in fresh shoot weight and chlorophyll in Arabidopsis plants
exposed to VOCs of T. atroviride CBS 01.209 [33]. According to this work, we observed
that T. harzianum VOCs delayed germination of Arabidopsis seeds. Moreover, ∆D1-38 VOCs
arrested seed germination for at least the 26 days the experiment lasted. We cannot attribute
this inhibition of seed germination by the disruptant to a specific VOC, since it is known
that VOCs work synergistically to exert their activity [30], but some of the volatiles reported
to have an inhibitory effect on Arabidopsis seed germination were over-emitted in ∆D1-38
disruptant compared to the other two strains. Indeed, octanal/1-octen-3-ol/3-octanone
(m/z 129.127), 2-octenal/1-octen-3-one (m/z 127.112) and pentanal/pentanone (m/z 87.080),
likely affecting Arabidopsis seeds germination [37], were differentially over-emitted in the
disruptant at five and nine days. As previously reported [32,33], we have observed that
VOCs of T. harzianum T34 exert a positive effect on Arabidopsis seedlings and their beneficial
effects on plants depends on the developmental stage. The deleterious phenotype observed
in plants subjected to ∆D1-38 VOCs could be demonstrative of the important role of Thctf1
gene in the production of VOCs with positive effects on Trichoderma-plant interaction.

It has been described that Trichoderma VOCs can activate defense responses in plants
and, although little is known about the overall plant gene expression in response to VOCs
emitted by this fungus, the role of some individual Trichoderma VOCs has been reported.
Thus, the exposure to 6-PP induced the expression of the SA-responsive marker PR-1
in Arabidopsis [29], while 1-octen-3-ol enhanced the expression of ET- and JA-dependent
defense genes [81]. These two Trichoderma VOCs can attract parasitoids and predators
of insect pests and confer antifeedant effects on plants that mitigate herbivore attack
[10,82]. By contrast, Arabidopsis plants exposed to 1-decene showed a reduced expression
of the JA biosynthesis-related LOX4 gene accompanied by the downregulation of WRKY
transcription factors involved in defense [37]. We have observed in Arabidopsis plants
exposed to a VOC blend of ∆D1-38 disruptant an upregulation of the three defense marker
genes analyzed. This is indicative that the plant perceives the ∆D1-38 VOC blend as a
stress signal, which in addition to limiting plant development, it activates both SA- and JA-
dependent defenses. It has been reported that exogenous application of the Bacillus subtilis-
derived elicitor acetoin (3-hydroxy-2-butanone) was able to trigger systemic resistance in
Arabidopsis, with an increase in the expression of the defense related genes PDF1.2 and
PR-1 [83], which suggests the activation of SA/ET pathways. We have observed that
∆D1-38 disruptant over-emitted acetoin (m/z 89.59) and overexpressed PDF1.5 and PR-1
genes, in comparison to wild type and ectopic transformant strains, confirming that this
volatile has a role in the activation of plant defense responses.

It has been reported in Arabidopsis that VOCs of T. virens increase the expression of a
JA-defense marker gene without changing the expression of another, in theory antagonistic,
SA marker gene [77], but it has also been shown that VOCs of T. asperellum raise the levels
of SA and abscisic acid marker genes whereas those of JA remained unaltered [31]. We
have seen that plants subjected to VOCs of T. harzianum T34 or ∆J3-16 have a larger size
with no change in the expression of immunity marker genes for SA-, JA- or ET-dependent
defenses, compared to control plants. These observations are illustrative of the difficulty of
interpreting the variation of plant growth and defense responses as a result of the different
stimuli received by distinct Trichoderma strains.

5. Conclusions

The activity of a transcription factor may affect different functions involved in a variety
of biological processes. In our case, the use of a Thctf1 null transformant has made it possible
to link the transcription factor THCTF1 with conidiation, expression of methyltransferase-
related genes and VOC production in T. harzianum. VOCs affected by THCTF1 are involved



J. Fungi 2023, 9, 654 14 of 18

in the T. harzianum antifungal capacity and have effects on plant defense and development.
As VOCs are emitted as blends, it is difficult to know whether a particular outcome is
caused by a single VOC, especially when the observed effects are the result of multifaceted
interactions. Moreover, there are limitations associated with the analytical methods used
for VOC identification and the VOCs responsible of an effect may be undetected by the
selected analytical method. Due to the potential of beneficial fungi such as Trichoderma in
agriculture, more thorough studies are needed to decipher the role of VOCs in the context
of their interaction with plants and other organisms in natural systems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof9060654/s1, Figure S1: Potato dextrose agar (PDA)
cultures of Trichoderma harzianum ∆D1-38 after seven-day growing on small dishes adjacent to PDA
cultures of T34 and ∆J3-16, or uninoculated dishes (control), disposed within sealed large Petri dishes.
Figure S2: Evaluation of the effect of Trichoderma VOCs on Botrytis cinerea (Bc) growth on sealed PDA
dishes. The photo was taken ten days after sowing Trichoderma incubated at 22 ◦C. Bc was inoculated
four days after sowing Trichoderma (T34 = wild type, ∆J3-16 = ectopic integration transformant, and
∆D1-38 = disruptant transformant). Table S1: Primers used for real-time quantitative PCR (qPCR)
analyses of Trichoderma harzianum and Arabidopsis genes. Table S2: Putative identification of VOCs
identified through PTR-Qi-TOF-MS analysis. (a) Compound rank (b) Mass to charge ratio measured
by the Mass Spectrometer (c) Compound’s chemical formula (H+ added by protonation) (d) Puta-
tive identifications (e) Compound classification based on their chemical and biochemical properties
(f) Fungal volatile emission using PTR-ToF-MS citations (g) PTR-TOF citations (h) Fungal VOCs
citations. Table S3: Significantly different VOCs identified according to one-way analysis of variance
(ANOVA) followed by Fisher’s least significant difference method (Fisher’s LSD) analysis (p < 0.05)
emitted by the three Trichoderma strains, at 5 and 9 days after inoculation (T34 = wild type; Dj = ∆J3-16
ectopic integration transformant; DD = ∆D1-38 disruptant transformant).
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74. Nemčovič, M.; Jakubíková, L.; Víden, I.; Farkaš, V. Induction of conidiation by endogenous volatile compounds in Trichoderma
spp. FEMS Microbiol. Lett. 2008, 284, 231–236. [CrossRef]

75. Keszler, A.; Forgács, E.; Kótai, L.; Vizcaíno, J.A.; Monte, E.; García-Acha, I. Separation and identification of volatile components
in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography–mass spectrometry. J.
Chromatogr. Sci. 2000, 38, 421–424. [CrossRef]

76. Druzhinina, I.S.; Chenthamara, K.; Zhang, J.; Atanasova, L.; Yang, D.; Miao, Y.; Rahimi, M.J.; Grujic, M.; Cai, F.; Pourmehdi, S.; et al.
Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its
plant-associated hosts. PLoS Genet. 2018, 14, e1007322. [CrossRef]

77. Contreras-Cornejo, H.; Macías-Rodríguez, L.; Herrera-Estrella, A.; López-Bucio, J. The 4-phosphopantetheinyl transferase of
Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil
2014, 379, 261–274. [CrossRef]

78. Stoppacher, N.; Kluger, B.; Zeilinger, S.; Krska, R.; Schuhmacher, R. Identification and profiling of volatile metabolites of the
biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Meth. 2010, 81, 187–193. [CrossRef] [PubMed]

https://doi.org/10.1016/j.ijms.2006.11.010
https://doi.org/10.1002/ffj.3439
https://doi.org/10.5194/acp-10-1759-2010
https://doi.org/10.1104/pp.104.038703
https://doi.org/10.1016/j.atmosenv.2014.08.007
https://doi.org/10.1016/j.lwt.2021.111089
https://doi.org/10.1016/S1387-3806(02)00896-5
https://doi.org/10.5194/acp-18-3299-2018
https://doi.org/10.3390/molecules21040483
https://doi.org/10.1016/j.foodchem.2015.06.090
https://doi.org/10.1128/spectrum.02713-22
https://doi.org/10.3390/molecules25245948
https://www.ncbi.nlm.nih.gov/pubmed/33334053
https://doi.org/10.1111/nph.13725
https://doi.org/10.1016/j.soilbio.2007.07.002
https://doi.org/10.1021/jf60180a010
https://doi.org/10.1111/1574-6968.12545
https://doi.org/10.1039/b507392h
https://doi.org/10.1021/acs.est.8b00806
https://doi.org/10.1111/j.1574-6968.2008.01202.x
https://doi.org/10.1093/chromsci/38.10.421
https://doi.org/10.1371/journal.pgen.1007322
https://doi.org/10.1007/s11104-014-2069-x
https://doi.org/10.1016/j.mimet.2010.03.011
https://www.ncbi.nlm.nih.gov/pubmed/20302890


J. Fungi 2023, 9, 654 18 of 18

79. Guo, Y.; Ghirardo, A.; Weber, B.; Schnitzler, J.-P.; Benz, J.P.; Rosenkranz, M. Trichoderma species differ in their volatile profiles and
in antagonism towards ectomycorrhiza Laccaria bicolor. Front. Microbiol. 2019, 10, 891. [CrossRef] [PubMed]

80. Parker, S.R.; Cutler, H.G.; Jacyno, J.M.; Hill, R.A. Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J. Agric. Food
Chem. 1997, 45, 2774–2776. [CrossRef]

81. Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J.
Plant Pathol. 2007, 73, 35–37. [CrossRef]

82. Monte, E. The sophisticated evolution of Trichoderma to control insect pests. Proc. Natl. Acad. Sci. USA 2023, 120, e2301971120.
[CrossRef] [PubMed]

83. Rudrappa, T.; Biedrzycki, M.L.; Kunjeti, S.G.; Donofrio, N.M.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. The rhizobacterial elicitor
acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 2010, 3, 130–138. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fmicb.2019.00891
https://www.ncbi.nlm.nih.gov/pubmed/31105677
https://doi.org/10.1021/jf960681a
https://doi.org/10.1007/s10327-006-0314-8
https://doi.org/10.1073/pnas.2301971120
https://www.ncbi.nlm.nih.gov/pubmed/36913591
https://doi.org/10.4161/cib.3.2.10584
https://www.ncbi.nlm.nih.gov/pubmed/20585504

	Introduction 
	Materials and Methods 
	Fungal Strains and Growth Conditions 
	Assay of Trichoderma VOCs Effects on D1-38 Strain 
	VOCs Analyses 
	Antifungal Assay of Trichoderma VOCs against Bc 
	Assays of Trichoderma VOCs and Arabidopsis 
	Real-Time Quantitative PCR (qPCR) 
	Statistical Analyses 

	Results 
	Thctf1 Disruption Effect on T. harzianum Phenotype 
	T. harzianum Thctf1 Function Loss Modifies the Expression of Methyltransferase-Related Genes 
	Differences in T. harzianum VOC Profiles 
	THCTF1 Affects the Production of Fungistatic VOCs of T. harzianum 
	Effects of Trichoderma VOCs on Arabidopsis Seed Germination, Seedling Development and Defense Gene Expression 

	Discussion 
	Conclusions 
	References

