OMICS and Other Advanced Technologies in Mycological Applications
Abstract
:1. Introduction
2. Approaches in Taxonomy and Classification
2.1. Genetic Data and Phylogenetic Analysis
2.2. Discovering New Taxa in Known Lineages
2.3. Proteomics in Fungal Systematics
2.4. Novel Lineages of Dark Taxa from Understudied Geographical Regions
2.5. Fungi from Extreme Environments
3. OMICS in Food-Related Fungi and the Food Industry
3.1. Food Safety and Security Based on Omics Techniques
3.2. The Role of Fungi in the Food Industry
3.3. Macrofungi and Edible Mushrooms
3.4. Foodomics
3.5. Fungal Secondary Metabolites
3.6. Mycotoxins and Fungi
3.7. Food Industry
3.8. Postharvest Losses
4. Biomedical and Therapeutics Applications Based on the Omics Techniques
4.1. Antifungal Drugs
4.2. Molecular Mechanisms of Antifungal Drug Resistance
4.3. Fungal Omics Data for Novel Drug Development
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kendrick, B. The Fifth Kingdom; Focus Publishing: Sydney, NSW, Australia, 2000; ISBN 978-1-58510-022-4. [Google Scholar]
- Watkinson, S.C.; Boddy, L.; Money, N. The Fungi; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-382035-8. [Google Scholar]
- Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s Amazing Diversity: Up to 96% of Fungi in Northern Thailand May Be Novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, Australia, 1971. [Google Scholar]
- Sutton, B.C. The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata; Commonwealth Mycological Institute: Kew, Australia, 1980; ISBN 978-0-85198-446-9. [Google Scholar]
- Bennett, J.W. Mycotechnology: The Role of Fungi in Biotechnology. J. Biotechnol. 1998, 66, 101–107. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Seifert, K.A.; Gams, W. The Genera of Hyphomycetes—2011 Update. Persoonia—Mol. Phylogeny Evol. Fungi 2011, 27, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Barth, D.; Tamminen, A.; Wiebe, M.G. Growth of Marine Fungi on Polymeric Substrates. BMC Biotechnol. 2016, 16, 3. [Google Scholar] [CrossRef]
- Mitchell, J.I.; Zuccaro, A. Sequences, the Environment and Fungi. Mycologist 2006, 20, 62–74. [Google Scholar] [CrossRef]
- Seifert, K.A. Progress towards DNA Barcoding of Fungi. Mol. Ecol. Resour. 2009, 9 (Suppl. S1), 83–89. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, 1–17. [Google Scholar] [CrossRef]
- Handelsman, J.; Rondon, M.R.; Brady, S.F.; Clardy, J.; Goodman, R.M. Molecular Biological Access to the Chemistry of Unknown Soil Microbes: A New Frontier for Natural Products. Chem. Biol. 1998, 5, R245–R249. [Google Scholar] [CrossRef]
- Mahato, N.K.; Gupta, V.; Singh, P.; Kumari, R.; Verma, H.; Tripathi, C.; Rani, P.; Sharma, A.; Singhvi, N.; Sood, U.; et al. Microbial Taxonomy in the Era of OMICS: Application of DNA Sequences, Computational Tools and Techniques. Antonie Van Leeuwenhoek 2017, 110, 1357–1371. [Google Scholar] [CrossRef]
- Silva, R.N. Perspectives in Genomics The Future of Fungi in ‘omics, Era. Curr. Genom. 2016, 17, 82–84. [Google Scholar] [CrossRef]
- Muggia, L.; Ametrano, C.G.; Sterflinger, K.; Tesei, D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life 2020, 10, 356. [Google Scholar] [CrossRef]
- Nowrousian, M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol. Mol. Biol. Rev. 2022, 86, e00104-22. [Google Scholar] [CrossRef]
- Terrón-Camero, L.C.; Gordillo-González, F.; Salas-Espejo, E.; Andrés-León, E. Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes 2022, 13, 2280. [Google Scholar] [CrossRef]
- Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Application of Metabolomics in Fungal Research. Molecules 2022, 27, 7365. [Google Scholar] [CrossRef]
- West, C.M.; Malzl, D.; Hykollari, A.; Wilson, I.B.H. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol. Cell. Proteom. 2021, 20, 100024. [Google Scholar] [CrossRef]
- Řezanka, T.; Kolouchová, I.; Gharwalová, L.; Palyzová, A.; Sigler, K. Lipidomic Analysis: From Archaea to Mammals. Lipids 2018, 53, 5–25. [Google Scholar] [CrossRef]
- Martínez-Ramírez, F.; Riecan, M.; Cajka, T.; Kuda, O. Analysis of Fatty Acid Esters of Hydroxy Fatty Acids in Edible Mushrooms. LWT 2023, 173, 114311. [Google Scholar] [CrossRef]
- James, K.; Wipat, A.; Cockell, S.J. Expanding Interactome Analyses beyond Model Eukaryotes. Brief. Funct. Genom. 2022, 21, 243–269. [Google Scholar] [CrossRef]
- Dani, D.; Dencher, N.A. Native DIGE for Quantitative and Functional Analysis of Protein Interactomes. In Difference Gel Electrophoresis: Methods and Protocols; Ohlendieck, K., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; pp. 53–69. ISBN 978-1-07-162831-7. [Google Scholar]
- Xiao, G.; Zhang, X.; Gao, Q. Bioinformatic Approaches for Fungal Omics. BioMed Res. Int. 2017, 2017, 7270485. [Google Scholar] [CrossRef]
- Navarro-Muñoz, J.C.; Collemare, J. A Bioinformatics Workflow for Investigating Fungal Biosynthetic Gene Clusters. In Engineering Natural Product Biosynthesis: Methods and Protocols; Skellam, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; pp. 1–21. ISBN 978-1-07-162273-5. [Google Scholar]
- Ball, B.; Langille, M.; Geddes-McAlister, J. Fun(Gi)Omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020, 11, e01020-20. [Google Scholar] [CrossRef]
- Capozzi, F.; Bordoni, A. Foodomics: A New Comprehensive Approach to Food and Nutrition. Genes Nutr. 2013, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, S.; Kilinc, E.; Celik, K.S.; Okumus, V.; Soylak, M. Simultaneous Preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ Ions by Bacillus Altitudinis Immobilized Nanodiamond Prior to Their Determinations in Food Samples by ICP-OES. Food Chem. 2017, 215, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise Is Fungal DNA Barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Irinyi, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes. Persoonia—Mol. Phylogeny Evol. Fungi 2015, 35, 242–263. [Google Scholar] [CrossRef]
- Meyer, W.; Irinyi, L.; Hoang, M.T.V.; Robert, V.; Garcia-Hermoso, D.; Desnos-Ollivier, M.; Yurayart, C.; Tsang, C.-C.; Lee, C.-Y.; Woo, P.C.Y.; et al. Database Establishment for the Secondary Fungal DNA Barcode Translational Elongation Factor 1α (TEF1α). Trends DNA Barcoding Metabarcoding 2019, 1, 160–169. [Google Scholar]
- Baturo-Ciesniewska, A.; Pusz, W.; Patejuk, K. Problems, Limitations, and Challenges in Species Identifcation of Ascomycota Members on the Basis of ITS Regions. Acta Mycol. 2020, 55, 1–18. [Google Scholar] [CrossRef]
- James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; et al. Reconstructing the Early Evolution of Fungi Using a Six-Gene Phylogeny. Nature 2006, 443, 818–822. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A.; et al. A Phylum-Level Phylogenetic Classification of Zygomycete Fungi Based on Genome-Scale Data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef]
- Chander, A.M.; Teixeira, M.D.M.; Singh, N.K.; Williams, M.P.; Simpson, A.C.; Damle, N.; Parker, C.W.; Stajich, J.E.; Mason, C.E.; Torok, T.; et al. Description and Genome Characterization of Three Novel Fungal Strains Isolated from Mars 2020 Mission-Associated Spacecraft Assembly Facility Surfaces—Recommendations for Two New Genera and One Species. J. Fungi 2023, 9, 31. [Google Scholar] [CrossRef]
- Stajich, J.E. 11 Phylogenomics Enabling Genome-Based Mycology. In Systematics and Evolution: Part B; McLaughlin, D.J., Spatafora, J.W., Eds.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2015; pp. 279–294. ISBN 978-3-662-46011-5. [Google Scholar]
- Chen, A.J.; Hubka, V.; Frisvad, J.C.; Visagie, C.M.; Houbraken, J.; Meijer, M.; Varga, J.; Demirel, R.; Jurjević, Ž.; Kubátová, A.; et al. Polyphasic Taxonomy of Aspergillus Section Aspergillus (Formerly Eurotium), and Its Occurrence in Indoor Environments and Food. Stud. Mycol. 2017, 88, 37–135. [Google Scholar] [CrossRef]
- Glässnerová, K.; Sklenář, F.; Jurjević, Ž.; Houbraken, J.; Yaguchi, T.; Visagie, C.M.; Gené, J.; Siqueira, J.P.Z.; Kubátová, A.; Kolařík, M.; et al. A Monograph of Aspergillus Section Candidi. Stud. Mycol. 2022, 102, 1–51. [Google Scholar] [CrossRef]
- Houbraken, J.; de Vries, R.P.; Samson, R.A. Chapter Four—Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species. Adv. Appl. Microbiol. 2014, 86, 199–249. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, J.; Bhattacharya, D. Chapter Eight—Advances in Fungal Phylogenomics and Their Impact on Fungal Systematics. Adv. Genet. 2017, 100, 309–328. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Logue, M.E.; Stajich, J.E.; Butler, G. A Fungal Phylogeny Based on 42 Complete Genomes Derived from Supertree and Combined Gene Analysis. BMC Evol. Biol. 2006, 6, 99. [Google Scholar] [CrossRef]
- Ebersberger, I.; de Matos Simoes, R.; Kupczok, A.; Gube, M.; Kothe, E.; Voigt, K.; von Haeseler, A. A Consistent Phylogenetic Backbone for the Fungi. Mol. Biol. Evol. 2012, 29, 1319–1334. [Google Scholar] [CrossRef]
- Aime, M.C.; McTaggart, A.R.; Mondo, S.J.; Duplessis, S. Chapter Seven—Phylogenetics and Phylogenomics of Rust Fungi. In Advances in Genetics; Townsend, J.P., Wang, Z., Eds.; Fungal Phylogenetics and Phylogenomics; Academic Press: Cambridge, MA, USA, 2017; Volume 100, pp. 267–307. [Google Scholar] [CrossRef]
- Liimatainen, K.; Kim, J.T.; Pokorny, L.; Kirk, P.M.; Dentinger, B.; Niskanen, T. Taming the Beast: A Revised Classification of Cortinariaceae Based on Genomic Data. Fungal Divers. 2022, 112, 89–170. [Google Scholar] [CrossRef]
- Strassert, J.F.H.; Monaghan, M.T. Phylogenomic Insights into the Early Diversification of Fungi. Curr. Biol. 2022, 32, 3628–3635.e3. [Google Scholar] [CrossRef]
- Zhou, L.-W.; May, T.W. Fungal Taxonomy: Current Status and Research Agendas for the Interdisciplinary and Globalisation Era. Mycology 2023, 14, 52–59. [Google Scholar] [CrossRef]
- Vandepol, N.; Liber, J.; Desirò, A.; Na, H.; Kennedy, M.; Barry, K.; Bonito, G. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Divers. 2022, 104, 267–289. [Google Scholar] [CrossRef]
- Li, Y.; Steenwyk, J.L.; Chang, Y.; Wang, Y.; James, T.Y.; Stajich, J.E.; Rokas, A. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 2021, 31, 1653–1665. [Google Scholar] [CrossRef] [PubMed]
- Steenwyk, J.L.; Balamurugan, C.; Raja, H.A.; Goncalves, C.; Li, N.; Martin, F.; Rokas, A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. bioRxiv 2022, 11, 517304. [Google Scholar] [CrossRef]
- Forin, N.; Vizzini, A.; Nigris, S.; Ercole, E.; Voyron, S.; Girlanda, M.; Baldan, B. Illuminating Type Collections of Nectriaceous Fungi in Saccardo’s Fungarium. Persoonia—Mol. Phylogeny Evol. Fungi 2020, 45, 221–249. [Google Scholar] [CrossRef] [PubMed]
- Wösten, H.A.B. Filamentous Fungi for the Production of Enzymes, Chemicals and Materials. Curr. Opin. Biotechnol. 2019, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Cortesão, M.; Schütze, T.; Marx, R.; Moeller, R.; Meyer, V. Fungal Biotechnology in Space: Why and How? In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Grand Challenges in Biology and Biotechnology; Springer International Publishing: Cham, Switzerland, 2020; pp. 501–535. ISBN 978-3-030-29541-7. [Google Scholar]
- Cao, L.; Zhang, Q.; Miao, R.; Lin, J.; Feng, R.; Ni, Y.; Li, W.; Yang, D.; Zhao, X. Application of Omics Technology in the Research on Edible Fungi. Curr. Res. Food Sci. 2023, 6, 100430. [Google Scholar] [CrossRef]
- Huffnagle, G.B.; Noverr, M.C. The Emerging World of the Fungal Microbiome. Trends Microbiol. 2013, 21, 334–341. [Google Scholar] [CrossRef]
- Lofgren, L.A.; Stajich, J.E. Fungal Biodiversity and Conservation Mycology in Light of New Technology, Big Data, and Changing Attitudes. Curr. Biol. 2021, 31, R1312–R1325. [Google Scholar] [CrossRef]
- Stengel, A.; Stanke, K.M.; Quattrone, A.C.; Herr, J.R. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front. Microbiol. 2022, 13, 847067. [Google Scholar] [CrossRef]
- Gutleben, J.; Chaib De Mares, M.; van Elsas, J.D.; Smidt, H.; Overmann, J.; Sipkema, D. The Multi-Omics Promise in Context: From Sequence to Microbial Isolate. Crit. Rev. Microbiol. 2018, 44, 212–229. [Google Scholar] [CrossRef]
- Huberman, L.B. Developing Functional Genomics Platforms for Fungi. mSystems 2021, 6, e00730-21. [Google Scholar] [CrossRef]
- Bakar, N.A.; Karsani, S.A.; Alias, S.A. Fungal Survival under Temperature Stress: A Proteomic Perspective. PeerJ 2020, 8, e10423. [Google Scholar] [CrossRef]
- Chong, P.P.; Chin, V.K.; Wong, W.F.; Madhavan, P.; Yong, V.C.; Looi, C.Y. Transcriptomic and Genomic Approaches for Unravelling Candida Albicans Biofilm Formation and Drug Resistance—An Update. Genes 2018, 9, 540. [Google Scholar] [CrossRef]
- Štursová, M.; López-Mondéjar, R.; Baldrian, P. Investigating the Bacterial and Fungal Communities Involved in Dead Biomass Degradation in Forest Soils. In Microbial Environmental Genomics (MEG); Martin, F., Uroz, S., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; pp. 157–168. ISBN 978-1-07-162871-3. [Google Scholar]
- Stajich, J.E. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol. Spectr. 2017, 5, 1–15. [Google Scholar] [CrossRef]
- De Vries, R.P.; Benoit, I.; Doehlemann, G.; Kobayashi, T.; Magnuson, J.K.; Panisko, E.A.; Baker, S.E.; Lebrun, M.-H. Post-Genomic Approaches to Understanding Interactions between Fungi and Their Environment. IMA Fungus 2011, 2, 81–86. [Google Scholar] [CrossRef]
- Lofgren, L.A.; Ross, B.S.; Cramer, R.A.; Stajich, J.E. The Pan-Genome of Aspergillus Fumigatus Provides a High-Resolution View of Its Population Structure Revealing High Levels of Lineage-Specific Diversity Driven by Recombination. PLoS Biol. 2022, 20, e3001890. [Google Scholar] [CrossRef]
- Teixeira, M.D.M.; Muszewska, A.; Travis, J.; Moreno, L.F.; Ahmed, S.; Roe, C.; Mead, H.; Steczkiewicz, K.; Lemmer, D.; de Hoog, S.; et al. Genomic Characterization of Parengyodontium Americanum Sp. Nov. Fungal Genet. Biol. 2020, 138, 103351. [Google Scholar] [CrossRef]
- Martins, M.R.; Santos, C.; Soares, C.; Santos, C.; Lima, N. Gongronella Eborensis Sp. Nov., from Vineyard Soil of Alentejo (Portugal). Int. J. Syst. Evol. Microbiol. 2020, 70, 3475–3482. [Google Scholar] [CrossRef]
- Cornut, J.; De Respinis, S.; Tonolla, M.; Petrini, O.; Bärlocher, F.; Chauvet, E.; Bruder, A. Rapid Characterization of Aquatic Hyphomycetes by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Mycologia 2019, 111, 177–189. [Google Scholar] [CrossRef]
- Barker, K.R.; Kus, J.V.; Normand, A.-C.; Gharabaghi, F.; McTaggart, L.; Rotstein, C.; Richardson, S.E.; Campigotto, A.; Tadros, M. A Practical Workflow for the Identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: Database, Medium, and Incubation Optimization. J. Clin. Microbiol. 2022, 60, e01032-22. [Google Scholar] [CrossRef]
- Tartor, Y.H.; Abo Hashem, M.E.; Enany, S. Towards a Rapid Identification and a Novel Proteomic Analysis for Dermatophytes from Human and Animal Dermatophytosis. Mycoses 2019, 62, 1116–1126. [Google Scholar] [CrossRef]
- Tomé, L.M.R.; Badotti, F.; Assis, G.B.N.; Fonseca, P.L.C.; da Silva, G.A.; da Silveira, R.M.B.; Costa-Rezende, D.H.; Dos Santos, E.R.D.; de Carvalho Azevedo, V.A.; Figueiredo, H.C.P.; et al. Proteomic Fingerprinting for the Fast and Accurate Identification of Species in the Polyporoid and Hymenochaetoid Fungi Clades. J. Proteom. 2019, 203, 103390. [Google Scholar] [CrossRef] [PubMed]
- Cañete-Gibas, C.F.; Wiederhold, N.P. The Black Yeasts: An Update on Species Identification and Diagnosis. Curr. Fungal Infect. Rep. 2018, 12, 59–65. [Google Scholar] [CrossRef]
- Zhang, J.; Plowman, J.E.; Tian, B.; Clerens, S.; On, S.L.W. An Improved Method for MALDI-TOF Analysis of Wine-Associated Yeasts. J. Microbiol. Methods 2020, 172, 105904. [Google Scholar] [CrossRef] [PubMed]
- Wijayawardene, N.N.; Phillips, A.J.L.; Pereira, D.S.; Dai, D.Q.; Aptroot, A.; Monteiro, J.S.; Druzhinina, I.S.; Cai, F.; Fan, X.; Selbmann, L.; et al. Forecasting the Number of Species of Asexually Reproducing Fungi (Ascomycota and Basidiomycota). Fungal Divers. 2022, 114, 463–490. [Google Scholar] [CrossRef]
- Niego, A.G.T.; Rapior, S.; Thongklang, N.; Raspé, O.; Hyde, K.D.; Mortimer, P. Reviewing the Contributions of Macrofungi to Forest Ecosystem Processes and Services. Fungal Biol. Rev. 2023, 44, 100294. [Google Scholar] [CrossRef]
- Takahashi, J.A.; da Silva Lima, G.; dos Santos, G.F.; Lyra, F.H.; da Silva-Hughes, A.F.; Goncalves, F.A. Filamentous Fungi and Chemistry: Old Friends, New Allies. Rev. Virtual Quím. 2017, 9, 2351–2382. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.; Wang, Y.; Gao, H.; Gupta, V.K.; Duan, X.; Qu, H.; Jiang, Y. Secretome Profiling Reveals Virulence-Associated Proteins of Fusarium Proliferatum during Interaction with Banana Fruit. Biomolecules 2019, 9, 246. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; He, C.; Qin, G.; Tian, S. Comparative Proteomics Reveals the Potential Targets of BcNoxR, a Putative Regulatory Subunit of NADPH Oxidase of Botrytis cinerea. Mol. Plant-Microbe Interact. 2016, 29, 990–1003. [Google Scholar] [CrossRef]
- Jain, S.; Rustagi, A.; Kumar, D.; Yusuf, M.A.; Shekhar, S.; Sarin, N.B. Meeting the Challenge of Developing Food Crops with Improved Nutritional Quality and Food Safety: Leveraging Proteomics and Related Omics Techniques. Biotechnol. Lett. 2019, 41, 471–481. [Google Scholar] [CrossRef]
- Halbwachs, H.; Simmel, J. Some like It Hot, Some Not—Tropical and Arctic Mushrooms. Fungal Biol. Rev. 2018, 32, 143–155. [Google Scholar] [CrossRef]
- Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019, 10, e01189-18. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Pinto, O.H.B.; Vieira, R.; Neto, A.A.; Convey, P.; Carvalho-Silva, M.; Rosa, C.A.; Câmara, P.E.A.S.; Rosa, L.H. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding. Microb. Ecol. 2021, 82, 157–164. [Google Scholar] [CrossRef]
- Nuankaew, S.; Chuaseeharonnachai, C.; Preedanon, S.; Somrithipol, S.; Saengkaewsuk, S.; Kwantong, P.; Phookongchai, S.; Srikitikulchai, P.; Kobmoo, N.; Wang, X.-C.; et al. Two Novel Species of Talaromyces Discovered in a Karst Cave in the Satun UNESCO Global Geopark of Southern Thailand. J. Fungi 2022, 8, 825. [Google Scholar] [CrossRef]
- Coleine, C.; Stajich, J.E.; Selbmann, L. Fungi Are Key Players in Extreme Ecosystems. Trends Ecol. Evol. 2022, 37, 517–528. [Google Scholar] [CrossRef]
- Rosa, L.H.; de Menezes, G.C.A.; Pinto, O.H.B.; Convey, P.; Carvalho-Silva, M.; Simões, J.C.; Rosa, C.A.; Câmara, P.E.A.S. Fungal Diversity in Seasonal Snow of Martel Inlet, King George Island, South Shetland Islands, Assessed Using DNA Metabarcoding. Polar Biol. 2022, 45, 627–636. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Dai, D.-Q.; Jayasinghe, P.K.; Gunasekara, S.S.; Nagano, Y.; Tibpromma, S.; Suwannarach, N.; Boonyuen, N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J. Fungi 2022, 8, 1141. [Google Scholar] [CrossRef]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Kõljalg, U.; Abarenkov, K. Identifying the ‘Unidentified’ Fungi: A Global-Scale Long-Read Third-Generation Sequencing Approach. Fungal Divers. 2020, 103, 273–293. [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions. Biol. Rev. 2019, 94, 1443–1476. [Google Scholar] [CrossRef]
- Hurdeal, V.G.; Gentekaki, E.; Hyde, K.D.; Jeewon, R. Where Are the Basal Fungi? Current Status on Diversity, Ecology, Evolution, and Taxonomy. Biologia 2021, 76, 421–440. [Google Scholar] [CrossRef]
- Díaz-Escandón, D.; Tagirdzhanova, G.; Vanderpool, D.; Allen, C.C.G.; Aptroot, A.; Češka, O.; Hawksworth, D.L.; Huereca, A.; Knudsen, K.; Kocourková, J.; et al. Genome-Level Analyses Resolve an Ancient Lineage of Symbiotic Ascomycetes. Curr. Biol. 2022, 32, 5209–5218.e5. [Google Scholar] [CrossRef]
- Cecchi, G.; Ceci, A.; Marescotti, P.; Persiani, A.M.; Di Piazza, S.; Ballirano, P.; Mariotti, M.G.; Zotti, M. The Geological Roles Played by Microfungi in Interaction with Sulfide Minerals from Libiola Mine, Liguria, Italy. Geomicrobiol. J. 2018, 35, 564–569. [Google Scholar] [CrossRef]
- Pellitier, P.T.; Zak, D.R. Ectomycorrhizal Fungi and the Enzymatic Liberation of Nitrogen from Soil Organic Matter: Why Evolutionary History Matters. New Phytol. 2018, 217, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Coleine, C.; Selbmann, L.; Pombubpa, N.; Stajich, J.E. Amplicon Sequencing of Rock-Inhabiting Microbial Communities from Joshua Tree National Park, USA. Microbiol. Resour. Announc. 2021, 10, e0049421. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, R.; Wu, B.; Liu, X.; Xiang, M. Rock-Inhabiting Fungi: Terminology, Diversity, Evolution and Adaptation Mechanisms. Mycology 2022, 13, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A New Order, Entrophosporales, and Three New Entrophospora Species in Glomeromycota. Front. Microbiol. 2022, 13, 962856. [Google Scholar] [CrossRef]
- Crous, P.W.; Boers, J.; Holdom, D.; Osieck; Steinrucken, T.V.; Tan, Y.P.; Vitelli, J.S.; Shivas, R.G.; Barrett, M.; Boxshall, A.-G.; et al. Fungal Planet Description Sheets: 1383–1435. Pers.—Mol. Phylogeny Evol. Fungi 2022, 48, 261–371. [Google Scholar] [CrossRef]
- James, T.Y.; Stajich, J.E.; Hittinger, C.T.; Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 2020, 74, 291–313. [Google Scholar] [CrossRef]
- Hongsanan, S.; Jeewon, R.; Purahong, W.; Xie, N.; Liu, J.-K.; Jayawardena, R.S.; Ekanayaka, A.H.; Dissanayake, A.; Raspé, O.; Hyde, K.D.; et al. Can We Use Environmental DNA as Holotypes? Fungal Divers. 2018, 92, 1–30. [Google Scholar] [CrossRef]
- Ryberg, M.; Nilsson, R.H. New Light on Names and Naming of Dark Taxa. MycoKeys 2018, 30, 31–39. [Google Scholar] [CrossRef]
- Simões, M.F.; Pereira, L.; Santos, C.; Lima, N. Polyphasic Identification and Preservation of Fungal Diversity: Concepts and Applications. In Management of Microbial Resources in the Environment; Malik, A., Grohmann, E., Alves, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 91–117. ISBN 978-94-007-5931-2. [Google Scholar]
- Gautam, A.K.; Verma, R.K.; Avasthi, S.; Sushma; Bohra, Y.; Devadatha, B.; Niranjan, M.; Suwannarach, N. Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J. Fungi 2022, 8, 226. [Google Scholar] [CrossRef]
- Guo, L.; Dai, W.; Xu, Z.; Liang, Q.; Miller, E.T.; Li, S.; Gao, X.; Baldwin, M.W.; Chai, R.; Li, Q. Evolution of Brain-Expressed Biogenic Amine Receptors into Olfactory Trace Amine-Associated Receptors. Mol. Biol. Evol. 2022, 39, msac006. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Bahram, M.; Sánchez-Castro, I.; Dai, D.-Q.; Ariyawansa, K.G.S.U.; Jayalal, U.; Suwannarach, N.; Tedersoo, L. Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J. Fungi 2021, 7, 703. [Google Scholar] [CrossRef]
- Aragona, M.; Haegi, A.; Valente, M.T.; Riccioni, L.; Orzali, L.; Vitale, S.; Luongo, L.; Infantino, A. New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J. Fungi 2022, 8, 737. [Google Scholar] [CrossRef]
- Reynolds, N.K.; Jusino, M.A.; Stajich, J.E.; Smith, M.E. Understudied, Underrepresented, and Unknown: Methodological Biases That Limit Detection of Early Diverging Fungi from Environmental Samples. Mol. Ecol. Resour. 2022, 22, 1065–1085. [Google Scholar] [CrossRef]
- Hibbett, D.S.; Stajich, J.E.; Spatafora, J.W. Toward Genome-Enabled Mycology. Mycologia 2013, 105, 1339–1349. [Google Scholar] [CrossRef]
- Pereira, F. Chapter 28—Metagenomics: A Gateway to Drug Discovery. In Advances in Biological Science Research; Meena, S.N., Naik, M.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 453–468. ISBN 978-0-12-817497-5. [Google Scholar]
- Haridas, S.; Albert, R.; Binder, M.; Bloem, J.; LaButti, K.; Salamov, A.; Andreopoulos, B.; Baker, S.E.; Barry, K.; Bills, G.; et al. 101 Dothideomycetes Genomes: A Test Case for Predicting Lifestyles and Emergence of Pathogens. Stud. Mycol. 2020, 96, 141–153. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Jiang, P.; Lin, Y.; Liu, X.; Yang, H. Recent Advances in the Application of Metabolomics for Food Safety Control and Food Quality Analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 1448–1469. [Google Scholar] [CrossRef]
- Geiser, D.M.; Al-Hatmi, A.M.S.; Aoki, T.; Arie, T.; Balmas, V.; Barnes, I.; Bergstrom, G.C.; Bhattacharyya, M.K.; Blomquist, C.L.; Bowden, R.L.; et al. Phylogenomic Analysis of a 55.1-Kb 19-Gene Dataset Resolves a Monophyletic Fusarium That Includes the Fusarium Solani Species Complex. Phytopathology® 2021, 111, 1064–1079. [Google Scholar] [CrossRef]
- Hoh, D.Z.; Lee, H.-H.; Wada, N.; Liu, W.-A.; Lu, M.R.; Lai, C.-K.; Ke, H.-M.; Sun, P.-F.; Tang, S.-L.; Chung, W.-H.; et al. Comparative Genomic and Transcriptomic Analyses of Trans-Kingdom Pathogen Fusarium Solani Species Complex Reveal Degrees of Compartmentalization. BMC Biol. 2022, 20, 236. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, Z.H.; Li, W.F.; Guo, R.; Xu, J.S.; Dang, X.Q.; Ma, Z.G.; Chen, Y.P.; Evans, J.D. Genome and Evolutionary Analysis of Nosema Ceranae: A Microsporidian Parasite of Honey Bees. Front. Microbiol. 2021, 12, 645353. [Google Scholar] [CrossRef]
- Ojeda-López, M.; Chen, W.; Eagle, C.E.; Gutiérrez, G.; Jia, W.L.; Swilaiman, S.S.; Huang, Z.; Park, H.-S.; Yu, J.-H.; Cánovas, D.; et al. Evolution of Asexual and Sexual Reproduction in the Aspergilli. Stud. Mycol. 2018, 91, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Diez de Ulzurrun, G.; Lee, Y.-Y.; Stajich, J.E.; Schwarz, E.M.; Hsueh, Y.-P. Genomic Analyses of Two Italian Oyster Mushroom Pleurotus Pulmonarius Strains. G3 Genes Genomes Genet. 2021, 11, jkaa007. [Google Scholar] [CrossRef] [PubMed]
- Malar, C.M.; Wang, Y.; Stajich, J.E.; Kokkoris, V.; Villeneuve-Laroche, M.; Yildirir, G.; Corradi, N. Early Branching Arbuscular Mycorrhizal Fungus Paraglomus Occultum Carries a Small and Repeat-Poor Genome Compared to Relatives in the Glomeromycotina. Microb. Genom. 2022, 8, 000810. [Google Scholar] [CrossRef] [PubMed]
- Carlin, A.F.; Beyhan, S.; Peña, J.F.; Stajich, J.E.; Viriyakosol, S.; Fierer, J.; Kirkland, T.N. Transcriptional Analysis of Coccidioides Immitis Mycelia and Spherules by RNA Sequencing. J. Fungi 2021, 7, 366. [Google Scholar] [CrossRef]
- Lau, A.Y.T.; Cheng, X.; Cheng, C.K.; Nong, W.; Cheung, M.K.; Chan, R.H.-F.; Hui, J.H.L.; Kwan, H.S. Discovery of MicroRNA-like RNAs during Early Fruiting Body Development in the Model Mushroom Coprinopsis cinerea. PLoS ONE 2018, 13, e0198234. [Google Scholar] [CrossRef]
- Li, J.; Gu, F.; Wu, R.; Yang, J.; Zhang, K.-Q. Phylogenomic Evolutionary Surveys of Subtilase Superfamily Genes in Fungi. Sci. Rep. 2017, 7, 45456. [Google Scholar] [CrossRef]
- Priest, S.J.; Yadav, V.; Heitman, J. Advances in Understanding the Evolution of Fungal Genome Architecture. F1000Research 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Karahalil, B. Overview of Systems Biology and Omics Technologies. Curr. Med. Chem. 2016, 23, 4221–4230. [Google Scholar] [CrossRef]
- Blaud, A.; Lerch, T.Z.; Phoenix, G.K.; Osborn, A.M. Arctic Soil Microbial Diversity in a Changing World. Res. Microbiol. 2015, 166, 796–813. [Google Scholar] [CrossRef]
- Goordial, J.; Davila, A.; Greer, C.W.; Cannam, R.; DiRuggiero, J.; McKay, C.P.; Whyte, L.G. Comparative Activity and Functional Ecology of Permafrost Soils and Lithic Niches in a Hyper-Arid Polar Desert. Environ. Microbiol. 2017, 19, 443–458. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Gendron, E.M.S.; Vincent, K.; Solon, A.J.; Sommers, P.; Schubert, Z.R.; Vimercati, L.; Porazinska, D.L.; Darcy, J.L.; Sowell, P. Life at Extreme Elevations on Atacama Volcanoes: The Closest Thing to Mars on Earth? Antonie Van Leeuwenhoek 2018, 111, 1389–1401. [Google Scholar] [CrossRef]
- Chettri, D.; Verma, A.K.; Sarkar, L.; Verma, A.K. Role of Extremophiles and Their Extremozymes in Biorefinery Process of Lignocellulose Degradation. Extremophiles 2021, 25, 203–219. [Google Scholar] [CrossRef]
- Bradley, J.A.; Trivedi, C.B.; Winkel, M.; Mourot, R.; Lutz, S.; Larose, C.; Keuschnig, C.; Doting, E.; Halbach, L.; Zervas, A.; et al. Active and Dormant Microorganisms on Glacier Surfaces. Geobiology 2023, 21, 244–261. [Google Scholar] [CrossRef]
- Gostinčar, C.; Zalar, P.; Gunde-Cimerman, N. No Need for Speed: Slow Development of Fungi in Extreme Environments. Fungal Biol. Rev. 2022, 39, 1–14. [Google Scholar] [CrossRef]
- She, Z.; Pan, X.; Yue, Z.; Shi, X.; Gao, Y.; Wang, S.; Chuai, X.; Wang, J. Contrasting Prokaryotic and Eukaryotic Community Assembly and Species Coexistence in Acid Mine Drainage-Polluted Waters. Sci. Total Environ. 2023, 856, 158954. [Google Scholar] [CrossRef]
- Cyske, Z.; Jaroszewicz, W.; Żabińska, M.; Lorenc, P.; Sochocka, M.; Bielańska, P.; Grabowski, Ł.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Unexplored Potential: Biologically Active Compounds Produced by Microorganisms from Hard-to-Reach Environments and Their Applications. Acta Biochim. Pol. 2021, 68, 565–574. [Google Scholar] [CrossRef]
- Lach, J.; Jęcz, P.; Strapagiel, D.; Matera-Witkiewicz, A.; Stączek, P. The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes 2021, 12, 1756. [Google Scholar] [CrossRef]
- Edwards, J.E.; Forster, R.J.; Callaghan, T.M.; Dollhofer, V.; Dagar, S.S.; Cheng, Y.; Chang, J.; Kittelmann, S.; Fliegerova, K.; Puniya, A.K.; et al. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front. Microbiol. 2017, 8, 1657. [Google Scholar] [CrossRef]
- Vargas-Gastélum, L.; Riquelme, M. The Mycobiota of the Deep Sea: What Omics Can Offer. Life 2020, 10, 292. [Google Scholar] [CrossRef]
- Varrella, S.; Barone, G.; Tangherlini, M.; Rastelli, E.; Dell’anno, A.; Corinaldesi, C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J. Fungi 2021, 7, 391. [Google Scholar] [CrossRef]
- Velez, P.; Salcedo, D.L.; Espinosa-Asuar, L.; Gasca-Pineda, J.; Hernandez-Monroy, A.; Soto, L.A. Fungal Diversity in Sediments from Deep-Sea Extreme Ecosystems: Insights into Low- and High-Temperature Hydrothermal Vents, and an Oxygen Minimum Zone in the Southern Gulf of California, Mexico. Front. Mar. Sci. 2022, 9, 802634. [Google Scholar] [CrossRef]
- Cernava, T.; Vasfiu, Q.; Erlacher, A.; Aschenbrenner, I.A.; Francesconi, K.; Grube, M.; Berg, G. Adaptions of Lichen Microbiota Functioning under Persistent Exposure to Arsenic Contamination. Front. Microbiol. 2018, 9, 2959. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.M.; Hassan, M.H.A.; Alhadrami, H.A.; Hassan, H.M.; Goodfellow, M.; Rateb, M.E. Extreme Environments: Microbiology Leading to Specialized Metabolites. J. Appl. Microbiol. 2020, 128, 630–657. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Karaçay, H.A.; Shahi, A.; Gökçe, S.; Ince, B.; Ince, O. Aerobic and Anaerobic Fungal Metabolism and Omics Insights for Increasing Polycyclic Aromatic Hydrocarbons Biodegradation. Fungal Biol. Rev. 2017, 31, 61–72. [Google Scholar] [CrossRef]
- Fongaro, G.; Maia, G.A.; Rogovski, P.; Cadamuro, R.D.; Lopes, J.C.; Moreira, R.S.; Camargo, A.F.; Scapini, T.; Stefanski, F.S.; Bonatto, C.; et al. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr. Genom. 2020, 21, 240–252. [Google Scholar] [CrossRef]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing Global Ruminant Agricultural Challenges through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic Fungi (Phylum Neocallimastigomycota): Advances in Understanding Their Taxonomy, Life Cycle, Ecology, Role and Biotechnological Potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef]
- Swift, C.L.; Louie, K.B.; Bowen, B.P.; Olson, H.M.; Purvine, S.O.; Salamov, A.; Mondo, S.J.; Solomon, K.V.; Wright, A.T.; Northen, T.R.; et al. Anaerobic Gut Fungi Are an Untapped Reservoir of Natural Products. Proc. Natl. Acad. Sci. USA 2021, 118, e2019855118. [Google Scholar] [CrossRef]
- Wilken, S.E.; Monk, J.M.; Leggieri, P.A.; Lawson, C.E.; Lankiewicz, T.S.; Seppälä, S.; Daum, C.G.; Jenkins, J.; Lipzen, A.M.; Mondo, S.J.; et al. Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. mSystems 2021, 6, e00002-21. [Google Scholar] [CrossRef]
- Hess, M.; Paul, S.S.; Puniya, A.K.; van der Giezen, M.; Shaw, C.; Edwards, J.E.; Fliegerová, K. Anaerobic Fungi: Past, Present, and Future. Front. Microbiol. 2020, 11, 584893. [Google Scholar] [CrossRef]
- Seppälä, S.; Wilken, S.E.; Knop, D.; Solomon, K.V.; O’Malley, M.A. The Importance of Sourcing Enzymes from Non-Conventional Fungi for Metabolic Engineering and Biomass Breakdown. Metab. Eng. 2017, 44, 45–59. [Google Scholar] [CrossRef]
- Lillington, S.P.; Leggieri, P.A.; Heom, K.A.; O’Malley, M.A. Nature’s Recyclers: Anaerobic Microbial Communities Drive Crude Biomass Deconstruction. Curr. Opin. Biotechnol. 2020, 62, 38–47. [Google Scholar] [CrossRef]
- Maldonado-Carmona, N.; Vázquez-Hernández, M.; Patiño Chávez, O.J.; Rodríguez-Luna, S.D.; Jiménez Rodríguez, O.; Sanchez, S.; Ceapă, C.D. Impact of ~omics in the Detection and Validation of Potential Anti-Infective Drugs. Curr. Opin. Pharmacol. 2019, 48, 1–7. [Google Scholar] [CrossRef]
- Moreno, L.F.; Vicente, V.A.; de Hoog, S. Black Yeasts in the Omics Era: Achievements and Challenges. Med. Mycol. 2018, 56, S32–S41. [Google Scholar] [CrossRef]
- Soare, A.Y.; Watkins, T.N.; Bruno, V.M. Understanding Mucormycoses in the Age of “Omics”. Front. Genet. 2020, 11, 699. [Google Scholar] [CrossRef]
- Mosier, A.C.; Justice, N.B.; Bowen, B.P.; Baran, R.; Thomas, B.C.; Northen, T.R.; Banfield, J.F. Metabolites Associated with Adaptation of Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-Enabled Metabolomics. mBio 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Jiménez-Gómez, I.; Valdés-Muñoz, G.; Moreno-Ulloa, A.; Pérez-Llano, Y.; Moreno-Perlín, T.; Silva-Jiménez, H.; Barreto-Curiel, F.; Sánchez-Carbente, M.D.R.; Folch-Mallol, J.L.; Gunde-Cimerman, N.; et al. Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus Aspergillus Sydowii at Saturated NaCl Concentration. Front. Microbiol. 2022, 13, 840408. [Google Scholar] [CrossRef]
- Fiedler, M.R.M.; Nitsche, B.M.; Wanka, F. Aspergillus: A Cell Factory with Unlimited Prospects. In Applications of Microbial Engineering; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–51. ISBN 978-0-429-07232-1. [Google Scholar]
- Garcia-Cela, E.; Verheecke-Vaessen, C.; Magan, N.; Medina, A. The “-Omics” Contributions to the Understanding of Mycotoxin Production under Diverse Environmental Conditions. Curr. Opin. Food Sci. 2018, 23, 97–104. [Google Scholar] [CrossRef]
- Djemiel, C.; Dequiedt, S.; Karimi, B.; Cottin, A.; Horrigue, W.; Bailly, A.; Boutaleb, A.; Sadet-Bourgeteau, S.; Maron, P.-A.; Chemidlin Prévost-Bouré, N.; et al. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front. Microbiol. 2022, 13, 889788. [Google Scholar] [CrossRef]
- Challa, S.; Dutta, T.; Neelapu, N.R.R. Fungal White Biotechnology Applications for Food Security: Opportunities and Challenges. In Recent Advancement in White Biotechnology through Fungi: Volume 2: Perspective for Value-Added Products and Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–148. ISBN 978-3-030-14846-1. [Google Scholar]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C.; et al. Current Challenges of Research on Filamentous Fungi in Relation to Human Welfare and a Sustainable Bio-Economy: A White Paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef]
- Xu, Y.-J. Foodomics: A Novel Approach for Food Microbiology. TrAC Trends Anal. Chem. 2017, 96, 14–21. [Google Scholar] [CrossRef]
- Younas, A.; Rashid, M.; Riaz, N.; Munawar, M.; Fiaz, S.; Noreen, Z. Emerging Techniques to Develop Biotic Stress Resistance in Fruits and Vegetables. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 269–296. ISBN 978-3-031-15568-0. [Google Scholar]
- Josic, D.; Gašo-Sokač, D.; Šrajer Gajdošik, M.; Clifton, J. Microbial Omics for Food Safety. J. Hyg. Eng. Des. 2014, 6, 116–129. [Google Scholar]
- Ghorai, S.; Banik, S.P.; Verma, D.; Chowdhury, S.; Mukherjee, S.; Khowala, S. Fungal Biotechnology in Food and Feed Processing. Food Res. Int. 2009, 42, 577–587. [Google Scholar] [CrossRef]
- Feeney, M.J.; Dwyer, J.; Hasler-Lewis, C.M.; Milner, J.A.; Noakes, M.; Rowe, S.; Wach, M.; Beelman, R.B.; Caldwell, J.; Cantorna, M.T.; et al. Mushrooms and Health Summit Proceedings. J. Nutr. 2014, 144, 1128S–1136S. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Samsudin, N.I.P.; Abdullah, N. Edible Mushrooms from Malaysia; a Literature Review on Their Nutritional and Medicinal Properties. Int. Food Res. J. 2019, 26, 11–31. [Google Scholar]
- Willis, K.J. State of the World’s Fungi 2018 Report; Royal Botanic Gardens: Kew, Australia, 2018. [Google Scholar]
- FAOSTAT. FAO’s Statistical Yearbook for 2022 Goes Live. Available online: https://www.fao.org/newsroom/detail/fao-s-statistical-yearbook-for-2022-goes-live/en (accessed on 7 March 2023).
- Pérez-Moreno, J.; Guerin-Laguette, A.; Rinaldi, A.C.; Yu, F.; Verbeken, A.; Hernández-Santiago, F.; Martínez-Reyes, M. Edible Mycorrhizal Fungi of the World: What Is Their Role in Forest Sustainability, Food Security, Biocultural Conservation and Climate Change? Plants People Planet 2021, 3, 471–490. [Google Scholar] [CrossRef]
- Horie, T.; Kusakabe, T.; Tsuda, M. Glutamatergic Networks in the Ciona Intestinalis Larva. J. Comp. Neurol. 2008, 508, 249–263. [Google Scholar] [CrossRef]
- Pandohee, J.; Basu, R.; Dasgupta, S.; Sundarrajan, P.; Shaikh, N.; Patel, N.; Noor, A. Applications of Multi-Omics Approaches for Food and Nutritional Security. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 103–118. ISBN 978-3-031-15568-0. [Google Scholar]
- Malik, G.; Arora, R.; Chaturvedi, R.; Paul, M.S. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. Bull. Environ. Contam. Toxicol. 2022, 108, 443–450. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a Circular Economy with Fungal Biotechnology: A White Paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Davies, H. A Role for “Omics” Technologies in Food Safety Assessment. Food Control 2010, 21, 1601–1610. [Google Scholar] [CrossRef]
- Devi, R.; Kaur, T.; Guleria, G.; Rana, K.L.; Kour, D.; Yadav, N.; Yadav, A.N.; Saxena, A.K. Chapter 9—Fungal Secondary Metabolites and Their Biotechnological Applications for Human Health. In New and Future Developments in Microbial Biotechnology and Bioengineering; Rastegari, A.A., Yadav, A.N., Yadav, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–161. ISBN 978-0-12-820528-0. [Google Scholar]
- Manikprabhu, D.; Lingappa, K. γ Actinorhodin a Natural and Attorney Source for Synthetic Dye to Detect Acid Production of Fungi. Saudi J. Biol. Sci. 2013, 20, 163–168. [Google Scholar] [CrossRef]
- Poorniammal, R.; Prabhu, S.; Dufossé, L.; Kannan, J. Safety Evaluation of Fungal Pigments for Food Applications. J. Fungi 2021, 7, 692. [Google Scholar] [CrossRef]
- De Carvalho, J.C.; Oishi, B.O.; Pandey, A.; Soccol, C.R. Biopigments from Monascus: Strains Selection, Citrinin Production and Color Stability. Braz. Arch. Biol. Technol. 2005, 48, 885–894. [Google Scholar] [CrossRef]
- Kallscheuer, N.; Classen, T.; Drepper, T.; Marienhagen, J. Production of Plant Metabolites with Applications in the Food Industry Using Engineered Microorganisms. Curr. Opin. Biotechnol. 2019, 56, 7–17. [Google Scholar] [CrossRef]
- Gallage, N.J.; Møller, B.L. Vanilla: The Most Popular Flavour. In Biotechnology of Natural Products; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–24. [Google Scholar]
- Pozo-Bayón, M.A.; Guichard, E.; Cayot, N. Flavor Control in Baked Cereal Products. Food Rev. Int. 2006, 22, 335–379. [Google Scholar] [CrossRef]
- Lomascolo, A.; Stentelaire, C.; Asther, M.; Lesage-Meessen, L. Basidiomycetes as New Biotechnological Tools to Generate Natural Aromatic Flavours for the Food Industry. Trends Biotechnol. 1999, 17, 282–289. [Google Scholar] [CrossRef]
- Brochado, A.R.; Matos, C.; Møller, B.L.; Hansen, J.; Mortensen, U.H.; Patil, K.R. Improved Vanillin Production in Baker’s Yeast through in Silico Design. Microb. Cell Factories 2010, 9, 84. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Siveen, K.S.; Kuttikrishnan, S.; Iskandarani, A.N.; Khan, A.Q.; Merhi, M.; Omri, H.E.; Dermime, S.; El-Elimat, T.; Oberlies, N.H.; et al. Greensporone C, a Freshwater Fungal Secondary Metabolite Induces Mitochondrial-Mediated Apoptotic Cell Death in Leukemic Cell Lines. Front. Pharmacol. 2018, 9, 720. [Google Scholar] [CrossRef]
- Brakhage, A.A. Regulation of Fungal Secondary Metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef]
- Bigelis, R. Flavor Metabolites and Enzymes from Filamentous Fungi. In Food Technology; Springer: New York, NY, USA, 1992. [Google Scholar]
- Jòzef, S. The Use of Starch Processing Enzymes in the Food Industry. In Industrial Enzymes: Structure, Function and Applications; Polaina, J., MacCabe, A.P., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 19–34. ISBN 978-1-4020-5377-1. [Google Scholar]
- Copetti, M.V. Fungi as Industrial Producers of Food Ingredients. Curr. Opin. Food Sci. 2019, 25, 52–56. [Google Scholar] [CrossRef]
- Krings, U.; Berger, R.G. Dynamics of Sterols and Fatty Acids during UV-B Treatment of Oyster Mushroom. Food Chem. 2014, 149, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, J.R.; Jambari, N.N.; Ahmad-Kamil, E.I. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J. Fungi 2021, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Gilani, G.; Lee, N. Protein, Quality. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press Inc.: Cambridge, MA, USA, 2003. [Google Scholar]
- Jayaratne, W.M.S.C.; Abeyratne, A.H.M.A.K.; De Zoysa, H.K.S.; Dissanayake, D.M.R.B.N.; Bamunuarachchige, T.C.; Waisundara, V.Y.; Chang, S. Detection and Quantification of Aflatoxin B1 in Corn and Corn-Grown Soils in the District of Anuradhapura, Sri Lanka. Heliyon 2020, 6, e05319. [Google Scholar] [CrossRef]
- Giacometti, J.; Josic, D. Foodomics in Microbial Safety. TrAC Trends Anal. Chem. 2013, 52, 16–22. [Google Scholar] [CrossRef]
- Eshelli, M.; Qader, M.M.; Jambi, E.J.; Hursthouse, A.S.; Rateb, M.E. Current Status and Future Opportunities of Omics Tools in Mycotoxin Research. Toxins 2018, 10, 433. [Google Scholar] [CrossRef]
- Chen, F.; Ma, R.; Chen, X.-L. Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites 2019, 9, 169. [Google Scholar] [CrossRef]
- Rai, P.; Singh, A.K.; Anand, K.B.; Singh, S.P.; Tomar, K. Time versus Tissue: Timely Identification of Scedosporium Rhinosinusitis in a Post-COVID-19 Case by MALDI-TOF MS Leading to Successful Management. Med. J. Armed Forces India 2022, 78, 360–364. [Google Scholar] [CrossRef]
- Rai, N.; Keshri, P.K.; Gupta, P.; Verma, A.; Kamble, S.C.; Singh, S.K.; Gautam, V. Bioprospecting of Fungal Endophytes from Oroxylum Indicum (L.) Kurz with Antioxidant and Cytotoxic Activity. PLoS ONE 2022, 17, e0264673. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Bae, H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int. J. Mol. Sci. 2021, 22, 7182. [Google Scholar] [CrossRef]
- Bahraminia, M.; Zarei, M.; Ronaghi, A.; Sepehri, M.; Etesami, H. Ionomic and Biochemical Responses of Maize Plant (Zea mays L.) Inoculated with Funneliformis Mosseae to Water-Deficit Stress. Rhizosphere 2020, 16, 100269. [Google Scholar] [CrossRef]
- Soni, P.; Gangurde, S.S.; Ortega-Beltran, A.; Kumar, R.; Parmar, S.; Sudini, H.K.; Lei, Y.; Ni, X.; Huai, D.; Fountain, J.C.; et al. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (Arachis hypogaea L.) and Maize (Zea mays L.). Front. Microbiol. 2020, 11, 227. [Google Scholar] [CrossRef]
- Gupta, S.; Verma, R.; Ravi, R.K. Multiomics Approach for Crop Improvement under Climate Change. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 17–36. ISBN 978-3-031-15568-0. [Google Scholar]
- Gupta, S.M.; Arora, S.; Mirza, N.; Pande, A.; Lata, C.; Puranik, S.; Kumar, J.; Kumar, A. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Front. Plant Sci. 2017, 8, 643. [Google Scholar] [CrossRef]
- Abbas, A.; Shah, A.A.; Shah, A.N.; Niaz, Y.; Ahmed, W.; Ali, H.; Nawaz, M.; Hassan, M.U. CRISPR Revolution in Gene Editing: Targeting Plant Stress Tolerance and Physiology. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 315–325. ISBN 978-3-031-15568-0. [Google Scholar]
- Hussain, K.; Mahrukh; Nisa, R.T.; Zaid, A.; Mushtaq, M. The Utilization of Speed Breeding and Genome Editing to Achieve Zero Hunger. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–15. ISBN 978-3-031-15568-0. [Google Scholar]
- Sarfraz, S.; Ali, F.; Hameed, A.; Ahmad, Z.; Riaz, K. Sustainable Agriculture through Technological Innovations. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 223–239. ISBN 978-3-031-15568-0. [Google Scholar]
- Borges, F.; Briandet, R.; Callon, C.; Champomier-Vergès, M.-C.; Christieans, S.; Chuzeville, S.; Denis, C.; Desmasures, N.; Desmonts, M.-H.; Feurer, C.; et al. Contribution of Omics to Biopreservation: Toward Food Microbiome Engineering. Front. Microbiol. 2022, 13, 951182. [Google Scholar] [CrossRef]
- Apaliya, M.T.; Osae, R.; Kwaw, E.; Mahunu, G.K.; Osei-Kwarteng, M.; Hardi, I.M. Omics in Traditional Fermented Foods and Beverages. In African Fermented Food Products-New Trends; Elhadi Sulieman, A.M., Adam Mariod, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 551–563. ISBN 978-3-030-82902-5. [Google Scholar]
- Kumari, C.; Sharma, M.; Kumar, V.; Sharma, R.; Kumar, V.; Sharma, P.; Kumar, P.; Irfan, M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineering 2022, 9, 176. [Google Scholar] [CrossRef]
- Hegazy, R. Post-Harvest Situation and Losses in India. J. Contrib. 2016, 1–21. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Chen, T.; Li, B.-Q.; Qin, G.-Z.; Tian, S.-P. Molecular Basis of Pathogenesis of Postharvest Pathogenic Fungi and Control Strategy in Fruits: Progress and Prospect. Mol. Hortic. 2021, 1, 2. [Google Scholar] [CrossRef]
- Lee, M.-H.; Chiu, C.-M.; Roubtsova, T.; Chou, C.-M.; Bostock, R.M. Overexpression of a Redox-Regulated Cutinase Gene, MfCUT1, Increases Virulence of the Brown Rot Pathogen Monilinia fructicola on Prunus Spp. Mol. Plant-Microbe Interact. 2010, 23, 176–186. [Google Scholar] [CrossRef]
- Brito, N.; Espino, J.J.; González, C. The Endo-β-1,4-Xylanase Xyn11A Is Required for Virulence in Botrytis cinerea. Mol. Plant-Microbe Interact. 2006, 19, 25–32. [Google Scholar] [CrossRef]
- Tian, S.; Qin, G.; Li, B. Reactive Oxygen Species Involved in Regulating Fruit Senescence and Fungal Pathogenicity. Plant Mol. Biol. 2013, 82, 593–602. [Google Scholar] [CrossRef]
- Tian, S.; Torres, R.; Ballester, A.-R.; Li, B.; Vilanova, L.; González-Candelas, L. Molecular Aspects in Pathogen-Fruit Interactions: Virulence and Resistance. Postharvest Biol. Technol. 2016, 122, 11–21. [Google Scholar] [CrossRef]
- Seo, J.-K.; Wu, J.; Lii, Y.; Li, Y.; Jin, H. Contribution of Small RNA Pathway Components in Plant Immunity. Mol. Plant-Microbe Interact. 2013, 26, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Weiberg, A.; Wang, M.; Lin, F.-M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H.-D.; Jin, H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science 2013, 342, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Sun, X.; Wang, M.; Gai, Y.; Chung, K.-R.; Li, H. The Citrus Postharvest Pathogen Penicillium Digitatum Depends on the PdMpkB Kinase for Developmental and Virulence Functions. Int. J. Food Microbiol. 2016, 236, 167–176. [Google Scholar] [CrossRef]
- Son, H.; Seo, Y.-S.; Min, K.; Park, A.R.; Lee, J.; Jin, J.-M.; Lin, Y.; Cao, P.; Hong, S.-Y.; Kim, E.-K.; et al. A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum. PLoS Pathog. 2011, 7, e1002310. [Google Scholar] [CrossRef]
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications-detail-redirect/9789240060241 (accessed on 7 March 2023).
- Osherov, N.; Kontoyiannis, D.P. The Anti-Aspergillus Drug Pipeline: Is the Glass Half Full or Empty? Med. Mycol. 2017, 55, 118–124. [Google Scholar] [CrossRef]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Perfect, J.R. The Antifungal Pipeline: A Reality Check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef]
- Denning, D.W.; Bromley, M.J. Infectious Disease. How to Bolster the Antifungal Pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef]
- Denning, D.W.; Hope, W.W. Therapy for Fungal Diseases: Opportunities and Priorities. Trends Microbiol. 2010, 18, 195–204. [Google Scholar] [CrossRef]
- Chen, S.C.A.; Sorrell, T.C. Antifungal Agents. Med. J. Aust. 2007, 187, 404–409. [Google Scholar] [CrossRef]
- Grover, N.D. Echinocandins: A Ray of Hope in Antifungal Drug Therapy. Indian J. Pharmacol. 2010, 42, 9–11. [Google Scholar] [CrossRef]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol. 2017, 8, 36. [Google Scholar] [CrossRef]
- Morschhäuser, J. The Genetic Basis of Fluconazole Resistance Development in Candida albicans. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2002, 1587, 240–248. [Google Scholar] [CrossRef]
- Prasad, R.; Rawal, M.K. Efflux Pump Proteins in Antifungal Resistance. Front. Pharmacol. 2014, 5, 202. [Google Scholar] [CrossRef]
- Cannon, R.D.; Lamping, E.; Holmes, A.R.; Niimi, K.; Tanabe, K.; Niimi, M.; Monk, B.C. Candida Albicans Drug Resistance—Another Way to Cope with Stress. Microbiology 2007, 153, 3211–3217. [Google Scholar] [CrossRef]
- Bondaryk, M.; Kurzątkowski, W.; Staniszewska, M. Review Papers<br>Antifungal Agents Commonly Used in the Superficial and Mucosal Candidiasis Treatment: Mode of Action and Resistance Development. Adv. Dermatol. Allergol. Dermatol. Alergol. 2013, 30, 293–301. [Google Scholar] [CrossRef]
- Hope, W.W.; Tabernero, L.; Denning, D.W.; Anderson, M.J. Molecular Mechanisms of Primary Resistance to Flucytosine in Candida albicans. Antimicrob. Agents Chemother. 2004, 48, 4377–4386. [Google Scholar] [CrossRef]
- Gonçalves, S.S.; Souza, A.C.R.; Chowdhary, A.; Meis, J.F.; Colombo, A.L. Epidemiology and Molecular Mechanisms of Antifungal Resistance in Candida and Aspergillus. Mycoses 2016, 59, 198–219. [Google Scholar] [CrossRef]
- Arikan, S.; Rex, J.H. Lipid-Based Antifungal Agents Current Status. Curr. Pharm. Des. 2001, 7, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Shekhar-Guturja, T.; Tebung, W.A.; Mount, H.; Liu, N.; Köhler, J.R.; Whiteway, M.; Cowen, L.E. Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida Albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Antimicrob. Agents Chemother. 2016, 60, 7468–7480. [Google Scholar] [CrossRef]
- Chandra, J.; Patel, J.D.; Li, J.; Zhou, G.; Mukherjee, P.K.; McCormick, T.S.; Anderson, J.M.; Ghannoum, M.A. Modification of Surface Properties of Biomaterials Influences the Ability of Candida Albicans To Form Biofilms. Appl. Environ. Microbiol. 2005, 71, 8795–8801. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.H.; dos Santos, J.M.; Zaia, J.E.; Martins, C.H.G.; Mendes-Giannini, M.J.S. Candida Parapsilosis Complex Water Isolates from a Haemodialysis Unit: Biofilm Production and in Vitro Evaluation of the Use of Clinical Antifungals. Mem. Inst. Oswaldo Cruz 2011, 106, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Sharma, K.K. Fungal Secondary Metabolites in Food and Pharmaceuticals in the Era of Multi-Omics. Appl. Microbiol. Biotechnol. 2022, 106, 3465–3488. [Google Scholar] [CrossRef] [PubMed]
- Culibrk, L.; Croft, C.A.; Tebbutt, S.J. Systems Biology Approaches for Host–Fungal Interactions: An Expanding Multi-Omics Frontier. OMICS J. Integr. Biol. 2016, 20, 127–138. [Google Scholar] [CrossRef]
- Miyauchi, S.; Navarro, D.; Grigoriev, I.V.; Lipzen, A.; Riley, R.; Chevret, D.; Grisel, S.; Berrin, J.-G.; Henrissat, B.; Rosso, M.-N. Visual Comparative Omics of Fungi for Plant Biomass Deconstruction. Front. Microbiol. 2016, 7, 1335. [Google Scholar] [CrossRef]
- Peršoh, D. Plant-Associated Fungal Communities in the Light of Meta’omics. Fungal Divers. 2015, 75, 1–25. [Google Scholar] [CrossRef]
- Lamping, E.; Baret, P.V.; Holmes, A.R.; Monk, B.C.; Goffeau, A.; Cannon, R.D. Fungal PDR Transporters: Phylogeny, Topology, Motifs and Function. Fungal Genet. Biol. 2010, 47, 127–142. [Google Scholar] [CrossRef]
- Dean, M.; Hamon, Y.; Chimini, G. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. J. Lipid Res. 2001, 42, 1007–1017. [Google Scholar] [CrossRef]
- Madani, G.; Lamping, E.; Cannon, R.D. Engineering a Cysteine-Deficient Functional Candida Albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1. mSphere 2021, 6, e01318-20. [Google Scholar] [CrossRef]
- Niimi, M.; Niimi, K.; Tanabe, K.; Cannon, R.D.; Lamping, E. Inhibitor-Resistant Mutants Give Important Insights into Candida Albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrob. Agents Chemother. 2022, 66, e01748-21. [Google Scholar] [CrossRef]
- Ranaweera, C.B. Bacterial AAA+ Disaggregase ClpB: Mechanism and Inhibition. Available online: https://krex.k-state.edu/handle/2097/41435 (accessed on 11 January 2023).
- Glaza, P.; Ranaweera, C.B.; Shiva, S.; Roy, A.; Geisbrecht, B.V.; Schoenen, F.J.; Zolkiewski, M. Repurposing P97 Inhibitors for Chemical Modulation of the Bacterial ClpB–DnaK Bichaperone System. J. Biol. Chem. 2021, 296, 100079. [Google Scholar] [CrossRef]
- Ranaweera, C.B.; Glaza, P.; Yang, T.; Zolkiewski, M. Interaction of Substrate-Mimicking Peptides with the AAA+ ATPase ClpB from Escherichia Coli. Arch. Biochem. Biophys. 2018, 655, 12–17. [Google Scholar] [CrossRef]
- Shorter, J. Designer Protein Disaggregases to Counter Neurodegenerative Disease. Curr. Opin. Genet. Dev. 2017, 44, 1–8. [Google Scholar] [CrossRef]
- Shorter, J.; Southworth, D.R. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Cold Spring Harb. Perspect. Biol. 2019, 11, a034033. [Google Scholar] [CrossRef]
- Spaulding, Z.; Thevarajan, I.; Schrag, L.G.; Zubcevic, L.; Zolkiewska, A.; Zolkiewski, M. Human Mitochondrial AAA+ ATPase SKD3/CLPB Assembles into Nucleotide-Stabilized Dodecamers. Biochem. Biophys. Res. Commun. 2022, 602, 21–26. [Google Scholar] [CrossRef]
- Ning, M.; Lo, E.H. Opportunities and Challenges in Omics. Transl. Stroke Res. 2010, 1, 233–237. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, Advances and Future Approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef]
- Canzler, S.; Schor, J.; Busch, W.; Schubert, K.; Rolle-Kampczyk, U.E.; Seitz, H.; Kamp, H.; von Bergen, M.; Buesen, R.; Hackermüller, J. Prospects and Challenges of Multi-Omics Data Integration in Toxicology. Arch. Toxicol. 2020, 94, 371–388. [Google Scholar] [CrossRef]
- Lay, J.O.; Liyanage, R.; Borgmann, S.; Wilkins, C.L. Problems with the “Omics”. TrAC Trends Anal. Chem. 2006, 25, 1046–1056. [Google Scholar] [CrossRef]
- Krassowski, M.; Das, V.; Sahu, S.K.; Misra, B.B. State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing. Front. Genet. 2020, 11, 610798. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, S.; Arzalluz-Luque, A.; Conesa, A. Undisclosed, Unmet and Neglected Challenges in Multi-Omics Studies. Nat. Comput. Sci. 2021, 1, 395–402. [Google Scholar] [CrossRef]
Fungal Name | Pigment | Color |
---|---|---|
Penicillium purpurogenum | Mitorubrino Mitorubrin Purpurogenone Azaphilone | Orange–red Yellow Yellow–orange |
Rhodotorula glutinis | Torulene β-Carotene Torularhodin | Red and orange |
Thermomyces sp. | Naphthoquinone | Yellow |
Yarrowia lipolytica | β-Carotene | Orange |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijayawardene, N.N.; Boonyuen, N.; Ranaweera, C.B.; de Zoysa, H.K.S.; Padmathilake, R.E.; Nifla, F.; Dai, D.-Q.; Liu, Y.; Suwannarach, N.; Kumla, J.; et al. OMICS and Other Advanced Technologies in Mycological Applications. J. Fungi 2023, 9, 688. https://doi.org/10.3390/jof9060688
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai D-Q, Liu Y, Suwannarach N, Kumla J, et al. OMICS and Other Advanced Technologies in Mycological Applications. Journal of Fungi. 2023; 9(6):688. https://doi.org/10.3390/jof9060688
Chicago/Turabian StyleWijayawardene, Nalin N., Nattawut Boonyuen, Chathuranga B. Ranaweera, Heethaka K. S. de Zoysa, Rasanie E. Padmathilake, Faarah Nifla, Dong-Qin Dai, Yanxia Liu, Nakarin Suwannarach, Jaturong Kumla, and et al. 2023. "OMICS and Other Advanced Technologies in Mycological Applications" Journal of Fungi 9, no. 6: 688. https://doi.org/10.3390/jof9060688
APA StyleWijayawardene, N. N., Boonyuen, N., Ranaweera, C. B., de Zoysa, H. K. S., Padmathilake, R. E., Nifla, F., Dai, D. -Q., Liu, Y., Suwannarach, N., Kumla, J., Bamunuarachchige, T. C., & Chen, H. -H. (2023). OMICS and Other Advanced Technologies in Mycological Applications. Journal of Fungi, 9(6), 688. https://doi.org/10.3390/jof9060688