Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
- Were observational studies (retrospective or prospective);
- Assessed 10 or more patients hospitalized in an ICU with CAPA;
- Obtained the COVID-19 diagnosis through a positive SARS-CoV-2 reverse transcriptase-polymerase chain reaction (PCR) from nasal and/or pharyngeal swabs;
- Described well-established diagnostic criteria for the CAPA diagnosis as reported in the article by Koehler et al. [13];
- Described the mortality of CAPA patients (quantitative method studies).
2.2. Data Extraction and Analysis
3. Results
Author [Reference Number], Publication Year | Study Location | Enrolment | Study Design | Patients n | Age, Years Mean ± SD or Median (IQR) | CAPA Definition | Proven/Probable/Putative/Possible % |
---|---|---|---|---|---|---|---|
Araya-Rojas [19], 2021 | Chile | 5/2020 4/2021 | R | 11 | 56 ± 10 | ECMM/ISHAM | 0/100/0/0 |
Bartoletti [9], 2021 | Italy | 2/2020 4/2020 | P | 30 | 63 (57–70) | Verweij criteria | 0/100/0/0 |
Bentvelsen [20], 2022 | The Netherlands | 3/2020 4/2020 | R | 58 | 69 (60–74) | ECMM/ISHAM | 0/50/0/50 |
Bretagne [21], 2021 | France | 2/2020 5/2020 | R | 154 | 66 ± 9.7 | EORTC/MSGERC | NA |
Calderon-Parra [22], 2022 | Spain | 3/2020 8/2021 | R | 28 | 68 (65–72) | ECMM/ISHAM | 0/57.1/0/42.9 |
Casalini [23], 2022 | Italy | 8/2020 5/2021 | R | 20 | 66 (60–72) | ECMM/ISHAM | 0/100/0/0 |
De Almeida [24], 2022 | Brazil | 4/2020 7/2021 | R | 14 | 70.4 ± 8.5 | ECMM/ISHAM | 0/100/0/0 |
Delliere [25], 2020 | France | 3/2020 5/2020 | R | 21 | 63 (56.8–68.3) | EORTC/MSGERC | 0/100/0/0 |
Dupont [26], 2021 | France | 3/2020 4/2020 | P | 19 | 70 ± 10.5 | AspICU | 0/0/100/0 |
Er [27], 2022 | Turkey | 11/2020 4/2021 | P | 43 | 68.5 ± 12.5 | ECMM/ISHAM | 0/60.5/0/39.5 |
Erami [28], 2022 | Iran | 8/2020 6/2021 | R | 17 | 77 ± 18, 73.8 (45–88) | ECMM/ISHAM | 0/100/0/0 |
Ergun [29], 2021 | The Netherlands, Belgium, France, and UK | 2/2020 5/2020 | P | 39 | 65 (58–75) | ECMM/ISHAM | 2.6/97.4/0/0 |
Fischer [30], 2022 | Switzerland | 3/2020 3/2021 | P | 13 | 70.3 ± 7.8 | ECMM/ISHAM | 7.7/76.9/0/15.4 |
Fortun [31], 2023 | Spain | 3/2020 6/2021 | R | 108 | 65.5 ± 12.1 | ECMM/ISHAM | 100 pr or pb |
Gangneux [32], 2022 | France | 2/2020 7/2020 | R&P | 76 | 63.3 ± 12.5 | ECMM/ISHAM | 100 pr or pb |
Giacobbe [33], 2022 | Austria, Italy, Germany, UK, and Belgium | 3/2020 4/2021 | P | 56 | NA | ECMM/ISHAM | 9/91/0/0 |
Giusiano [34], 2022 | Argentina | 3/2020 10/2020 | P | 19 | 65 ± 8.6 | ECMM/ISHAM | 0/100/0/0 |
Hashim [35], 2022 | India | 3/2020 8/2021 | R&P | 74 | 55 (44.8–64.3) | ECMM/ISHAM | 2.7/68.9/0/28.4 |
Hatzl [36], 2021 | Austria | 9/2020 5/2021 | P | 10 | NA | ECMM/ISHAM | 0/90/0/10 |
Huang [37], 2022 | Taiwan | 5/2021 8/2021 | R | 11 | 71 (62–77) | ECMM/ISHAM | 0/90.9/0/9.1 |
Iqbal [16], 2021 | Pakistan | 6/2020 5/2021 | P | 61 | 60.7 ± 8.7 | ECMM/ISHAM | 0/100/0/0 |
Janssen [38], 2021 | The Netherlands, Belgium, and France | 2/2020 5/2020 | R&P | 42 | 68 (61–73) | ECMM/ISHAM | 14.3/76.2/0/9.5 |
Kim [39], 2022 | The Republic of Korea | 7/2020 3/2021 | R | 17 | 73 (70–77) | ECMM/ISHAM | 0/88.2/0/11.8 |
Koukaki [40], 2022 | Greece | 8/2020 11/2021 | R | 14 | 48 (43–70) | ECMM/ISHAM | 7.1/57.1/0/35.8 |
Lahmer [15], 2021 | Germany | 3/2020 4/2020 | P | 11 | 72 (58–84) | Modified AspICU | 0/0/100/0 |
Lee [41], 2022 | The Republic of Korea | 1/2020 5/2021 | R | 10 | 71.5 (64–77) | ECMM/ISHAM | NA |
Leistner [42], 2022 | Germany | 1/2020 12/2020 | R | 47 | 67.4 (62.4–75.9) | ECMM/ISHAM | 4.3/61.7/0/34 |
Marta [43], 2022 | Spain | 3/2020 12/2020 | P | 35 | 68.8 ± 8.1 | ECMM/ISHAM | 0/20/0/80 |
Melchers [44], 2022 | The Netherlands | 1/2021 7/2021 | R | 13 | 68 ± 7 | ECMM/ISHAM | 23/77/0/0 |
Permpalung [45], 2022 | The USA | 3/2020 8/2020 | R | 39 | 66 (55–70) | ECMM/ISHAM | 0/51.3/0/48.7 |
Prattes [46], 2022 | Austria, Belgium, France, Germany, Italy, Pakistan, Spain, the UK, and the USA | 3/2020 5/2021 | P | 109 | 68 (60–75) | ECMM/ISHAM | 10.1/73.4/0/16.5 |
Ranhel [17], 2021 | Portugal | 11/2020 2/2021 | R | 10 | 65.8 ± 8.6 | ECMM/ISHAM | 0/60/0/40 |
Rouze [47], 2022 | France, Spain, Greece, Portugal, and Ireland | 2/2020 5/2020 | R | 14 | 67 (52–75) | AspICU | 0/0/100/0 |
Sivasubramanian [18], 2021 | The USA | 1/2020 3/2021 | R | 48 | 67 (49–86) | ECMM/ISHAM | 4.2/18.8/0/77 |
Velez Pintado [48], 2021 | Mexico | 3/2020 7/2020 | R | 16 | 64 ± 10 | ECMM/ISHAM | 12.5/87.5/0/0 |
White [49], 2020 | The UK | 2020 | P | 19 | NA | Modified AspICU, own CAPA definition | NA |
Xu [50], 2021 | China | 12/2019 4/2020 | R | 78 | 64.3 ± 13.6 | EORTC/MSGERC | NA |
Zhang [51], 2021 | The USA | 3/2020 8/2020 | R | 33 | 63.2 (38–85) | ECMM/ISHAM | 0/48.5/0/51.5 |
Author = [Reference Number], Publication Year | IMV % | R % | Antifungal Therapy % | C % | T % | H and ICU LOS, Days, Mean ± SD or Median (IQR) | Patients Who Died n (%) # |
---|---|---|---|---|---|---|---|
Araya-Rojas [19], 2021 | 100 | 0 | 100 | 100 | 0 | NA | 4 (36.4) |
Bartoletti [9], 2021 | 100 | 10 | 53 | 60 | 73 | 16 ± 13.3 ICU | 13 (44 *) |
Bentvelsen [20], 2022 | 100 | 0 | 72.4 | 29 | 0 | NA | 23 (39.7 *) |
Bretagne [21], 2021 | 100 | 0 | 77.3 | 31.8 | 0 | 26 (16–36) | 71 (46.1) |
Calderon-Parra [22], 2022 | 100 | 14.3 | 96.4 | 100 | 92.9 | 66 (43–88) H 57 (28–85) ICU | 17 (60.7) |
Casalini [23], 2022 | 100 | 0 | 70 | 90 | 0 | NA | 13 (65) |
De Almeida [24], 2022 | 100 | 0 | 84.7 | 92.9 | 0 | NA | 10 (71.4) |
Delliere [25], 2020 | 95.2 | 0 | NA | 28.6 | 9.5 | 21.05 ± 17.6 | 15 (71.4) |
Dupon [26], 2021 | 100 | 0 | 47.4 | 5.3 | 0 | NA | 7 (36.8 **) |
Er [27], 2022 | 88.4 | 2.3 | 39.5 | 92.9 | 0 | 29 (19–41) H 23 (13–40) ICU | 29 (67.4) |
Erami [28], 2022 | 100 | NA | 100 | 35.3 | NA | NA | 13 (76.5) |
Ergun [29], 2021 | NA | 2.6 | 71.8 | 25.6 | 0 | 18 (13–30) ICU | 21 (53.8 *) |
Fischer [30], 2022 | NA | 7.7 | NA | 100 | NA | NA | 8 (62) |
Fortun [31], 2023 | 73.1 | 23.4 | 100 | 7.4 | 29 | 35 ± 25 H 20 ± 20 ICU | 44 (40.7) |
Gangneux [32], 2022 | 100 | 5 | 76 | 46 | 0 | 27 ± 11.9 ICU | 47 (61.8) |
Giacobbe [33], 2022 | NA | NA | NA | NA | NA | NA | 30 (54 ***) |
Giusiano [34], 2022 | NA | NA | 73.7 | NA | NA | 29 ± 20 ICU | 8 (42.1) |
Hashim [35], 2022 | 35.6 | 74.3 | 70.3 | 56.8 | 8.1 | 18 (12.8–29) H | 35 (47.3) |
Hatzl [36], 2021 | 80 | NA | 100 | NA | NA | NA | 8 (80 *) |
Huang [37], 2022 | 100 | 54.5 | 72.7 | 100 | 63.6 | NA | 6 (55) |
Iqbal [16], 2021 | 100 | 57.4 | 100 | 100 | 54.1 | 11 (4–14) ICU | 56 (91.8) |
Janssen [38], 2021 | 98 | NA | NA | NA | NA | 18 (12–27) ICU | 22 (52) |
Kim [39], 2022 | 76.5 | 82.4 | 94.1 | 94.1 | 0 | NA | 6 (36.3 *) 9 (54.3 ***) |
Koukaki [40], 2022 | NA | NA | 100 | 71.4 | 42.9 | NA | 8 (57.1) |
Lahmer [15], 2021 | 100 | NA | 100 | NA | NA | 21 ± 14 ICU | 4 (36) |
Lee [41], 2022 | 60 | NA | 100 | 100 | NA | 23 (16–37) H | 5 (50) |
Leistner [42], 2022 | 100 | NA | 23 | 87.2 | data | 33 (19–53) H 24 (17–43) ICU | 30 (63.8) |
Marta [43], 2022 | 94.3 | NA | NA | 85.7 | 57.1 | 38.8 ± 17.1 H 26.4 ± 15.9 ICU | 11 (40 ***) |
Melchers [44], 2022 | 100 | NA | NA# | 100 | 100 | 40 (23–58) H 29 (17–41) ICU | 5 (38 ***) |
Permpalung [45], 2022 | 100 | 23.1 | 48.7 | 66.7 | 23.1 | 41.1 (20.5–72.4) | 22 (56.4) |
Prattes [46], 2022 | 88.1 | NA | 90.7 | 62.4 | 14.4 | 27 (17–42) ICU | 77 (71) |
Ranhel [17], 2021 | 100 | 90 | 80 | 50 | 0 | NA | 3 (30) |
Rouze [47], 2022 | 100 | NA | 78.6 | 71.4 | NA | 25 (19–28) ICU | 5 (35.7 *) |
Sivasubramanian [18], 2021 | 100 | 60 | 44 | 93 | 0 | 30 H 23 ICU | 40 (83) |
Velez Pintado [48], 2021 | 100 | NA | NA | 13 | 75 | NA | 5 (31) |
White [49], 2020 | 73.7 | NA | 79 | 73.7 | NA | NA | 11 (57.9 *) |
Xu [50], 2021 | 57.7 | NA | NA | NA | 3.9 | 21 (15–33) H 17 (10–29) ICU | 41 (52.6) |
Zhang [51], 2021 | NA | NA | 61 | NA | NA | NA | 22 (67) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latgé, J.-P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-00118. [Google Scholar] [CrossRef] [PubMed]
- Thompson Iii, G.R.; Cornely, O.A.; Pappas, P.G.; Patterson, T.F.; Hoenigl, M.; Jenks, J.D.; Clancy, C.J.; Nguyen, M.H. Invasive Aspergillosis as an Under-recognized Superinfection in COVID-19. Open Forum Infect. Dis. 2020, 7, ofaa242. [Google Scholar] [CrossRef]
- Taccone, F.S.; Den Abeele, V.; Bulpa, P.; Misset, B.; Meersseman, W.; Cardoso, T.; Paiva, J.-A.; Blasco-Navalpotro, M.; De Laere, E.; Dimopoulos, G. Epidemiology of invasive aspergillosis in critically ill patients: Clinical presentation, underlying conditions, and outcomes. Crit. Care 2015, 19, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewoude, K.; Blot, S.; Benoit, D.; Depuydt, P.; Vogelaers, D.; Colardyn, F. Invasive aspergillosis in critically ill patients: Analysis of risk factors for acquisition and mortality. Acta Clin. Belg. 2004, 59, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Feys, S.; Almyroudi, M.P.; Braspenning, R.; Lagrou, K.; Spriet, I.; Dimopoulos, G.; Wauters, J. A visual and comprehensive review on COVID-19-associated pulmonary aspergillosis (CAPA). J. Fungi 2021, 7, 1067. [Google Scholar] [CrossRef]
- Shi, C.; Shan, Q.; Xia, J.; Wang, L.; Wang, L.; Qiu, L.; Xie, Y.; Lin, N.; Wang, L. Incidence, risk factors and mortality of invasive pulmonary aspergillosis in patients with influenza: A systematic review and meta-analysis. Mycoses 2022, 65, 152–163. [Google Scholar] [CrossRef]
- Gaitonde, D.Y.; Moore, F.C.; Morgan, M.K. Influenza: Diagnosis and treatment. Am. Fam. Physician 2019, 100, 751–758. [Google Scholar]
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef]
- Bartoletti, M.; Pascale, R.; Cricca, M.; Rinaldi, M.; Maccaro, A.; Bussini, L.; Fornaro, G.; Tonetti, T.; Pizzilli, G.; Francalanci, E.; et al. Epidemiology of Invasive Pulmonary Aspergillosis among Intubated Patients with COVID-19: A Prospective Study. Clin. Infect. Dis. 2021, 73, e3606–e3614. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Dingle, T.C.; Kula, B.E.; Vandermeer, B.; Sligl, W.I.; Schwartz, I.S. Defining COVID-19 associated pulmonary aspergillosis: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 920–927. [Google Scholar] [CrossRef]
- Chong, W.H.; Neu, K.P. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): A systematic review. J. Hosp. Infect. 2021, 113, 115–129. [Google Scholar] [CrossRef]
- Singh, S.; Verma, N.; Kanaujia, R.; Chakrabarti, A.; Rudramurthy, S.M. Mortality in critically ill patients with coronavirus disease 2019-associated pulmonary aspergillosis: A systematic review and meta-analysis. Mycoses 2021, 64, 1015–1027. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Lahmer, T.; Kriescher, S.; Herner, A.; Rothe, K.; Spinner, C.D.; Schneider, J.; Mayer, U.; Neuenhahn, M.; Hoffmann, D.; Geisler, F.; et al. Invasive pulmonary aspergillosis in critically ill patients with severe COVID-19 pneumonia: Results from the prospective AspCOVID-19 study. PLoS ONE 2021, 16, e0238825. [Google Scholar] [CrossRef]
- Iqbal, A.; Ramzan, M.; Akhtar, A.; Ahtesham, A.; Aslam, S.; Khalid, J. COVID-Associated Pulmonary Aspergillosis and Its Related Outcomes: A Single-Center Prospective Observational Study. Cureus 2021, 13, e16982. [Google Scholar] [CrossRef]
- Ranhel, D.; Ribeiro, A.; Batista, J.; Pessanha, M.; Cristovam, E.; Duarte, A.; Dias, A.; Coelho, L.; Monteiro, F.; Freire, P.; et al. COVID-19-Associated Invasive Pulmonary Aspergillosis in the Intensive Care Unit: A Case Series in a Portuguese Hospital. J. Fungi 2021, 7, 881. [Google Scholar] [CrossRef]
- Sivasubramanian, G.; Ghanem, H.; Maison-Fomotar, M.; Jain, R.; Libke, R. COVID-19-Associated Pulmonary Aspergillosis: A Single-Center Experience in Central Valley, California, January 2020–March 2021. J. Fungi 2021, 7, 948. [Google Scholar] [CrossRef]
- Araya-Rojas, F.; Lasso-Barreto, M. COVID-19-associated pulmonary aspergillosis in critically ill patients: Experience of a Chilean public hospital. Rev. Chil. Infectol. 2021, 38, 754–760. [Google Scholar] [CrossRef]
- Bentvelsen, R.G.; Arkel, A.; Rijpstra, T.A.; Kant, M.K.M.; Brugge, S.V.S.; Loth, D.W.; Van Wijngaarden, P.; Mée, A.; Yick, D.C.Y.; Diederen, B.M.W.; et al. Regional Impact of COVID-19-Associated Pulmonary Aspergillosis (CAPA) during the First Wave. J. Fungi 2022, 8, 96. [Google Scholar] [CrossRef]
- Bretagne, S.; Sitbon, K.; Botterel, F.; Dellière, S.; Letscher-Bru, V.; Chouaki, T.; Bellanger, A.P.; Bonnal, C.; Fekkar, A.; Persat, F.; et al. COVID-19-Associated Pulmonary Aspergillosis, Fungemia, and Pneumocystosis in the Intensive Care Unit: A Retrospective Multicenter Observational Cohort during the First French Pandemic Wave. Microbiol. Spectr. 2021, 9, e0113821. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Mills-Sanchez, P.; Moreno-Torres, V.; Tejado-Bravo, S.; Romero-Sánchez, I.; Balandin-Moreno, B.; Calvo-Salvador, M.; Portero-Azorín, F.; García-Masedo, S.; Muñez-Rubio, E.; et al. COVID-19-associated pulmonary aspergillosis (CAPA): Risk factors and development of a predictive score for critically ill COVID-19 patients. Mycoses 2022, 65, 541–550. [Google Scholar] [CrossRef]
- Casalini, G.; Giacomelli, A.; Galimberti, L.; Colombo, R.; Ballone, E.; Pozza, G.; Zacheo, M.; Galimberti, M.; Oreni, L.; Carsana, L.; et al. Challenges in Diagnosing COVID-19-Associated Pulmonary Aspergillosis in Critically Ill Patients: The Relationship between Case Definitions and Autoptic Data. J. Fungi 2022, 8, 894. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.N., Jr.; Doi, A.M.; Watanabe, M.J.L.; Maluf, M.M.; Calderon, C.L.; Silva, M., Jr.; Pasternak, J.; Koga, P.C.M.; Santiago, K.A.S.; Aranha, L.F.C.; et al. COVID-19-associated aspergillosis in a Brazilian referral centre: Diagnosis, risk factors and outcomes. Mycoses 2022, 65, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Dellière, S.; Dudoignon, E.; Fodil, S.; Voicu, S.; Collet, M.; Oillic, P.A.; Salmona, M.; Dépret, F.; Ghelfenstein-Ferreira, T.; Plaud, B.; et al. Risk factors associated with COVID-19-associated pulmonary aspergillosis in ICU patients: A French multicentric retrospective cohort. Clin. Microbiol. Infect. 2020, 27, 790.e791–790.e795. [Google Scholar] [CrossRef]
- Dupont, D.; Menotti, J.; Turc, J.; Miossec, C.; Wallet, F.; Richard, J.C.; Argaud, L.; Paulus, S.; Wallon, M.; Ader, F.; et al. Pulmonary aspergillosis in critically ill patients with Coronavirus Disease 2019 (COVID-19). Med. Mycol. 2021, 59, 110–114. [Google Scholar] [CrossRef]
- Er, B.; Er, A.G.; Gülmez, D.; Şahin, T.K.; Halaçlı, B.; Durhan, G.; Ersoy, E.O.; Alp, A.; Metan, G.; Saribas, Z.; et al. A screening study for COVID-19-associated pulmonary aspergillosis in critically ill patients during the third wave of the pandemic. Mycoses 2022, 65, 724–732. [Google Scholar] [CrossRef]
- Erami, M.; Hashemi, S.J.; Raiesi, O.; Fattahi, M.; Getso, M.I.; Momen-Heravi, M.; Daie Ghazvini, R.; Khodavaisy, S.; Parviz, S.; Mehri, N.; et al. COVID-19-associated pulmonary aspergillosis (CAPA) in Iranian patients admitted with severe COVID-19 pneumonia. Infection 2023, 51, 223–230. [Google Scholar] [CrossRef]
- Ergün, M.; Brüggemann, R.J.M.; Alanio, A.; Dellière, S.; van Arkel, A.; Bentvelsen, R.G.; Rijpstra, T.; van der Sar-van der Brugge, S.; Lagrou, K.; Janssen, N.A.F.; et al. Aspergillus Test Profiles and Mortality in Critically Ill COVID-19 Patients. J. Clin. Microbiol. 2021, 59, e0122921. [Google Scholar] [CrossRef]
- Fischer, T.; Baz, Y.E.; Graf, N.; Wildermuth, S.; Leschka, S.; Kleger, G.R.; Pietsch, U.; Frischknecht, M.; Scanferla, G.; Strahm, C.; et al. Clinical and Imaging Features of COVID-19-Associated Pulmonary Aspergillosis. Diagnostics 2022, 12, 1201. [Google Scholar] [CrossRef]
- Fortún, J.; Mateos, M.; de la Pedrosa, E.G.-G.; Soriano, C.; Pestaña, D.; Palacios, J.; López, J.; Moreno, S. Invasive Pulmonary Aspergillosis in Patients with and without SARS-CoV-2 Infection. J. Fungi 2023, 9, 130. [Google Scholar] [CrossRef]
- Gangneux, J.P.; Dannaoui, E.; Fekkar, A.; Luyt, C.E.; Botterel, F.; De Prost, N.; Tadié, J.M.; Reizine, F.; Houzé, S.; Timsit, J.F.; et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: The French multicentre MYCOVID study. Lancet Respir. Med. 2022, 10, 180–190. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Prattes, J.; Wauters, J.; Dettori, S.; Signori, A.; Salmanton-García, J.; Maertens, J.; Bourgeois, M.; Reynders, M.; Rutsaert, L.; et al. Prognostic Impact of Bronchoalveolar Lavage Fluid Galactomannan and Aspergillus Culture Results on Survival in COVID-19 Intensive Care Unit Patients: A Post Hoc Analysis from the European Confederation of Medical Mycology (ECMM) COVID-19-Associated Pulmonary Aspergillosis Study. J. Clin. Microbiol. 2022, 60, e0229821. [Google Scholar]
- Giusiano, G.; Fernández, N.B.; Vitale, R.G.; Alvarez, C.; Ochiuzzi, M.E.; Santiso, G.; Cabeza, M.S.; Tracogna, F.; Farías, L.; Afeltra, J.; et al. Usefulness of Sōna Aspergillus Galactomannan LFA with digital readout as diagnostic and as screening tool of COVID-19 associated pulmonary aspergillosis in critically ill patients. Data from a multicenter prospective study performed in Argentina. Med. Mycol. 2022, 60, myac026. [Google Scholar] [CrossRef]
- Hashim, Z.; Nath, A.; Khan, A.; Neyaz, Z.; Marak, R.S.K.; Areekkara, P.; Tiwari, A.; Srivastava, S.; Agarwal, V.; Saxena, S.; et al. New insights into development and mortality of COVID-19-associated pulmonary aspergillosis in a homogenous cohort of 1161 intensive care patients. Mycoses 2022, 65, 1010–1023. [Google Scholar] [CrossRef]
- Hatzl, S.; Reisinger, A.C.; Posch, F.; Prattes, J.; Stradner, M.; Pilz, S.; Eller, P.; Schoerghuber, M.; Toller, W.; Gorkiewicz, G.; et al. Antifungal prophylaxis for prevention of COVID-19-associated pulmonary aspergillosis in critically ill patients: An observational study. Crit. Care 2021, 25, 335. [Google Scholar] [CrossRef]
- Huang, J.R.; Shen, H.C.; Sun, C.Y.; Chen, W.C.; Chen, Y.M.; Feng, J.Y.; Yang, K.Y. COVID-19-associated pulmonary aspergillosis is associated with increased in-hospital mortality and prolonged SARS-CoV-2 viral shedding. J. Formos. Med. Assoc. 2022, 121, 2617–2625. [Google Scholar] [CrossRef]
- Janssen, N.A.F.; Nyga, R.; Vanderbeke, L.; Jacobs, C.; Ergün, M.; Buil, J.B.; van Dijk, K.; Altenburg, J.; Bouman, C.S.C.; van der Spoel, H.I.; et al. Multinational Observational Cohort Study of COVID-19-Associated Pulmonary Aspergillosis(1). Emerg. Infect. Dis. 2021, 27, 2892–2898. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, J.Y.; Bae, S.; Lee, H.; Wi, Y.M.; Ko, J.H.; Kim, B.; Joo, E.J.; Seok, H.; Shi, H.J.; et al. Risk Factors for Coronavirus Disease 2019 (COVID-19)-Associated Pulmonary Aspergillosis in Critically Ill Patients: A Nationwide, Multicenter, Retrospective Cohort Study. J. Korean Med. Sci. 2022, 37, e134. [Google Scholar] [CrossRef]
- Koukaki, E.; Rovina, N.; Tzannis, K.; Sotiropoulou, Z.; Loverdos, K.; Koutsoukou, A.; Dimopoulos, G. Fungal Infections in the ICU during the COVID-19 Era: Descriptive and Comparative Analysis of 178 Patients. J. Fungi 2022, 8, 881. [Google Scholar] [CrossRef]
- Lee, R.; Cho, S.Y.; Lee, D.G.; Ahn, H.; Choi, H.; Choi, S.M.; Choi, J.K.; Choi, J.H.; Kim, S.Y.; Kim, Y.J.; et al. Risk factors and clinical impact of COVID-19-associated pulmonary aspergillosis: Multicenter retrospective cohort study. Korean J. Intern. Med. 2022, 37, 851–863. [Google Scholar] [CrossRef]
- Leistner, R.; Schroeter, L.; Adam, T.; Poddubnyy, D.; Stegemann, M.; Siegmund, B.; Maechler, F.; Geffers, C.; Schwab, F.; Gastmeier, P.; et al. Corticosteroids as risk factor for COVID-19-associated pulmonary aspergillosis in intensive care patients. Crit. Care 2022, 26, 30. [Google Scholar] [CrossRef] [PubMed]
- Marta, G.C.; Lorena, F.E.; Laura, M.V.; Angela, L.M.; Blanca, L.G.; Rodrigo, A.A.; Marta, S.G.; Santiago, M.G.; Liliana, P.M.; Maria Luisa, S.N.; et al. COVID-19-Associated Pulmonary Aspergillosis in a Tertiary Hospital. J. Fungi 2022, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Melchers, M.; van Zanten, A.R.H.; Heusinkveld, M.; Leeuwis, J.W.; Schellaars, R.; Lammers, H.J.W.; Kreemer, F.J.; Haas, P.J.; Verweij, P.E.; van Bree, S.H.W. Nebulized Amphotericin B in Mechanically Ventilated COVID-19 Patients to Prevent Invasive Pulmonary Aspergillosis: A Retrospective Cohort Study. Crit. Care Explor. 2022, 4, e0696. [Google Scholar] [CrossRef] [PubMed]
- Permpalung, N.; Chiang, T.P.; Massie, A.B.; Zhang, S.X.; Avery, R.K.; Nematollahi, S.; Ostrander, D.; Segev, D.L.; Marr, K.A. Coronavirus Disease 2019-Associated Pulmonary Aspergillosis in Mechanically Ventilated Patients. Clin. Infect. Dis. 2022, 74, 83–91. [Google Scholar] [CrossRef]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Salmanton-García, J.; Maertens, J.; Bourgeois, M.; Reynders, M.; Rutsaert, L.; Van Regenmortel, N.; Lormans, P.; et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients-a multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 2022, 28, 580–587. [Google Scholar] [CrossRef]
- Rouzé, A.; Lemaitre, E.; Martin-Loeches, I.; Povoa, P.; Diaz, E.; Nyga, R.; Torres, A.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; et al. Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: A European multicenter comparative cohort study. Crit. Care 2022, 26, 11. [Google Scholar] [CrossRef]
- Vélez Pintado, M.; Camiro-Zúñiga, A.; Aguilar Soto, M.; Cuenca, D.; Mercado, M.; Crabtree-Ramirez, B. COVID-19-associated invasive pulmonary aspergillosis in a tertiary care center in Mexico City. Med. Mycol. 2021, 59, 828–833. [Google Scholar] [CrossRef]
- White, L.; Dhillon, R.; Cordey, A. A national strategy to diagnose COVID-19 associated invasive fungal disease in the ICU. Clin. Infect. Dis. 2021, 73, e1634–e1644. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.; Lv, Z.; Zhou, T.; Liu, H.; Zou, X.; Cao, F.; Zhang, L.; Liu, B.; Chen, W.; et al. Risk Factors for Invasive Aspergillosis in Patients Admitted to the Intensive Care Unit with Coronavirus Disease 2019: A Multicenter Retrospective Study. Front. Microbiol. 2021, 8, 753659. [Google Scholar] [CrossRef]
- Zhang, S.X.; Balada-Llasat, J.M.; Pancholi, P.; Sullivan, K.V.; Riedel, S. COVID-Associated Pulmonary Aspergillosis in the United States: Is It Rare or Have We Missed the Diagnosis? J. Clin. Microbiol. 2021, 59, e0113521. [Google Scholar] [CrossRef]
- Armstrong, R.; Kane, A.; Cook, T. Outcomes from intensive care in patients with COVID-19: A systematic review and meta-analysis of observational studies. Anaesthesia 2020, 75, 1340–1349. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19—Preliminary Report. medRxiv 2020, 2020.2006.2022.20137273. [Google Scholar]
- Group, R.C. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Gillenwater, S.; Rahaghi, F.; Hadeh, A. Remdesivir for the treatment of Covid-19-preliminary report. N. Engl. J. Med. 2020, 383, 992. [Google Scholar]
- Leding, C.; Bodilsen, J.; Brieghel, C.; Harboe, Z.B.; Helleberg, M.; Holm, C.; Israelsen, S.B.; Jensen, J.; Jensen, T.Ø.; Johansen, I.S. Treatment effect modifiers in hospitalised patients with COVID-19 receiving remdesivir and dexamethasone. Infect. Dis. 2023, 55, 351–360. [Google Scholar] [CrossRef]
- Benfield, T.; Bodilsen, J.; Brieghel, C.; Harboe, Z.B.; Helleberg, M.; Holm, C.; Israelsen, S.B.; Jensen, J.; Jensen, T.Ø.; Johansen, I.S. Improved survival among hospitalized patients with coronavirus disease 2019 (COVID-19) treated with remdesivir and dexamethasone. A nationwide population-based cohort study. Clin. Infect. Dis. 2021, 73, 2031–2036. [Google Scholar] [CrossRef]
- Garibaldi, B.T.; Wang, K.; Robinson, M.L.; Zeger, S.L.; Bandeen-Roche, K.; Wang, M.-C.; Alexander, G.C.; Gupta, A.; Bollinger, R.; Xu, Y. Comparison of time to clinical improvement with vs without remdesivir treatment in hospitalized patients with COVID-19. JAMA Netw. Open 2021, 4, e213071. [Google Scholar] [CrossRef]
- Investigators, R.-C. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Selvaraj, V.; Finn, A.; Lal, A.; Khan, M.S.; Dapaah-Afriyie, K.; Carino, G.P. Baricitinib in hospitalised patients with COVID-19: A meta-analysis of randomised controlled trials. eClinicalMedicine 2022, 49, 101489. [Google Scholar] [CrossRef]
- Vlaar, A.P.J.; Witzenrath, M.; van Paassen, P.; Heunks, L.M.A.; Mourvillier, B.; de Bruin, S.; Lim, E.H.T.; Brouwer, M.C.; Tuinman, P.R.; Saraiva, J.F.K.; et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2022, 10, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.; Leazer, S.; Alcover, K.C.; Farley, J.; Berk, J.; Jayne, C.; Mcnutt, R.; Olsen, M.; Allard, R.; Yang, J. Intensive Care and Organ Support Related Mortality in Patients with COVID-19: A Systematic Review and Meta-Analysis. Crit. Care Explor. 2023, 5, e0876. [Google Scholar] [CrossRef] [PubMed]
- Krzych, Ł.J.; Putowski, Z.; Gruca, K.; Pluta, M.P. Mortality in critically ill COVID-19 patients with fungal infections: A comprehensive systematic review and meta-analysis. Pol. Arch. Intern. Med. 2022, 132, 16221. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Almyroudi, M.-P.; Myrianthefs, P.; Rello, J. COVID-19-associated pulmonary aspergillosis (CAPA). J. Intensive Med. 2021, 1, 71–80. [Google Scholar] [CrossRef]
- Koehler, P.; Cornely, O.A.; Kochanek, M. Bronchoscopy safety precautions for diagnosing COVID-19 associated pulmonary aspergillosis—A simulation study. Mycoses 2021, 64, 55–59. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Nseir, S. COVID-19-associated pulmonary aspergillosis: An underdiagnosed or overtreated infection? Curr. Opin. Crit. Care 2022, 28, 470–479. [Google Scholar] [CrossRef]
- Verweij, P.E.; Brüggemann, R.J.; Azoulay, E.; Bassetti, M.; Blot, S.; Buil, J.B.; Calandra, T.; Chiller, T.; Clancy, C.J.; Cornely, O.A. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef]
- Fekkar, A.; Neofytos, D.; Nguyen, M.-H.; Clancy, C.J.; Kontoyiannis, D.P.; Lamoth, F. COVID-19-associated pulmonary aspergillosis (CAPA): How big a problem is it? Clin. Microbiol. Infect. 2021, 27, 1376–1378. [Google Scholar] [CrossRef]
- Haiduven, D. Nosocomial aspergillosis and building construction. Med. Mycol. 2009, 47, S210–S216. [Google Scholar] [CrossRef] [Green Version]
- Hashim, Z.; Neyaz, Z.; Marak, R.S.; Nath, A.; Nityanand, S.; Tripathy, N.K. Practice guidelines for the diagnosis of COVID-19-associated pulmonary aspergillosis in an intensive care setting. J. Intensive Care Med. 2022, 37, 985–997. [Google Scholar] [CrossRef]
- Shah, M.; Reveles, K.; Moote, R.; Hand, E.; Kellogg, D., III; Attridge, R.L.; Maselli, D.J.; Gutierrez, G.C. Risk of Coronavirus Disease 2019–Associated Pulmonary Aspergillosis Based on Corticosteroid Duration in Intensive Care Patients. Open Forum Infect. Dis. 2023, 10, ofad062. [Google Scholar] [CrossRef]
- Van der Linden, J.; Arendrup, M.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.; Chryssanthou, E.; Mellado, E.; Kidd, S.; Tortorano, A. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041. [Google Scholar] [CrossRef]
- Douglas, A.P.; Smibert, O.C.; Bajel, A.; Halliday, C.L.; Lavee, O.; McMullan, B.; Yong, M.K.; van Hal, S.J.; Chen, S.C.A.; The Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern. Med. J. 2021, 51, 143–176. [Google Scholar] [CrossRef]
- Egger, M.; Bellmann, R.; Krause, R.; Boyer, J.; Jakšić, D.; Hoenigl, M. Salvage Treatment for Invasive Aspergillosis and Mucormycosis: Challenges, Recommendations and Future Considerations. Infect. Drug Resist. 2023, 16, 2167–2178. [Google Scholar] [CrossRef]
- Kably, B.; Launay, M.; Derobertmasure, A.; Lefeuvre, S.; Dannaoui, E.; Billaud, E.M. Antifungal drugs TDM: Trends and update. Ther. Drug Monit. 2022, 44, 166–197. [Google Scholar] [CrossRef]
- Yi, W.M.; Schoeppler, K.E.; Jaeger, J.; Mueller, S.W.; MacLaren, R.; Fish, D.N.; Kiser, T.H. Voriconazole and posaconazole therapeutic drug monitoring: A retrospective study. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Gangneux, J.P.; Bougnoux, M.E.; Dannaoui, E.; Cornet, M.; Zahar, J.R. Invasive fungal diseases during COVID-19: We should be prepared. J. Mycol. Med. 2020, 30, 100971. [Google Scholar] [CrossRef]
- Hamam, J.; Navellou, J.-C.; Bellanger, A.-P.; Bretagne, S.; Winiszewski, H.; Scherer, E.; Piton, G.; Millon, L. New clinical algorithm including fungal biomarkers to better diagnose probable invasive pulmonary aspergillosis in ICU. Ann. Intensive Care 2021, 11, 41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrame, A.; Stevens, D.A.; Haiduven, D. Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis. J. Fungi 2023, 9, 689. https://doi.org/10.3390/jof9060689
Beltrame A, Stevens DA, Haiduven D. Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis. Journal of Fungi. 2023; 9(6):689. https://doi.org/10.3390/jof9060689
Chicago/Turabian StyleBeltrame, Anna, David A. Stevens, and Donna Haiduven. 2023. "Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis" Journal of Fungi 9, no. 6: 689. https://doi.org/10.3390/jof9060689
APA StyleBeltrame, A., Stevens, D. A., & Haiduven, D. (2023). Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis. Journal of Fungi, 9(6), 689. https://doi.org/10.3390/jof9060689