The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species and Sites
2.2. Seed Collection
2.3. Seed Endophyte Extraction
2.4. DNA Extraction and Sequencing
2.5. Data Analyses
3. Results
3.1. Effect of Cone Age on Endophyte Assemblages
3.2. Comparison between Urban and Natural Areas
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strobel, G. The Emergence of Endophytic Microbes and Their Biological Promise. J. Fungi 2018, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noman, M.; Ahmed, T.; Ijaz, U.; Shahid, M.; Azizullah; Li, D.; Manzoor, I.; Song, F. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int. J. Mol. Sci. 2021, 22, 6852. [Google Scholar] [CrossRef]
- Busby, P.E.; Ridout, M.; Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol. 2016, 90, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F., Jr. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, F.; Samsampour, D.; Seyahooei, M.A.; Bagheri, A.; Soltani, J. Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): Toward regulating the ascorbate–glutathione cycle. Sci. Hortic. 2020, 261, 108991. [Google Scholar] [CrossRef]
- Moghaddam, M.S.H.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem. 2021, 160, 225–230. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Shade, A.; Jacques, M.-A.; Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Petit, R.M.; Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Fort, T.; Pauvert, C.; Zanne, A.E.; Ovaskainen, O.; Caignard, T.; Barret, M.; Compant, S.; Hampe, A.; Delzon, S.; Vacher, C. Maternal effects shape the seed mycobiome in Quercus petraea. New Phytol. 2021, 230, 1594–1608. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. What do seedlings die from and what are the implications for evolution of seed size. Oikos 2004, 106, 193–199. [Google Scholar] [CrossRef]
- Mangan, S.A.; Schnitzer, S.A.; Herre, E.A.; Mack, K.M.L.; Valencia, M.C.; Sanchez, E.I.; Bever, J.D. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 2010, 466, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, R.; Gallery, R.E.; Gripenberg, S.; Gurr, S.J.; Narayan, L.; Addis, C.E.; Freckleton, R.P.; Lewis, O.T. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 2014, 506, 85–88. [Google Scholar] [CrossRef]
- Bever, J.D.; Mangan, S.A.; Alexander, H.M. Maintenance of Plant Species Diversity by Pathogens. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 305–325. [Google Scholar] [CrossRef]
- Müller, M.M.; Valjakka, R.; Suokko, A.; Hantula, J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol. Ecol. 2001, 10, 1801–1810. [Google Scholar] [CrossRef]
- Osono, T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can. J. Microbiol. 2006, 52, 701–716. [Google Scholar] [CrossRef]
- Kleczewski, N.; Bauer, J.; Bever, J.; Clay, K.; Reynolds, H. A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol. 2012, 5, 521–529. [Google Scholar] [CrossRef]
- Shearin, Z.R.C.; Filipek, M.; Desai, R.; Bickford, W.A.; Kowalski, K.P.; Clay, K. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 2018, 422, 183–194. [Google Scholar] [CrossRef]
- Vujanovic, V.; St-Arnaud, M.; Barabé, D.; Thibeault, G. Viability Testing of Orchid Seed and the Promotion of Colouration and Germination. Ann. Bot. 2000, 86, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Sánchez, P.; Jiménez-Bremont, J.F.; Guerrero-González, M.D.L.L.; Flores, J. Effect of fungi and light on seed germination of three Opuntia species from semiarid lands of central Mexico. J. Plant Res. 2013, 126, 643–649. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I.-J. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Front. Plant Sci. 2018, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasanthakumari, M.M.; Shridhar, J.; Madhura, R.J.; Nandhitha, M.; Kasthuri, C.; Janardhana, B.; Nataraja, K.N.; Ravikanth, G.; Shaanker, R.U. Role of endophytes in early seedling growth of plants: A test using systemic fungicide seed treatment. Plant Physiol. 2019, 24, 86–95. [Google Scholar] [CrossRef]
- Cockell, C.S.; Jones, H.L. Advancing the case for microbial conservation. Oryx 2009, 43, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, S.; de Cates, C.; Hodgson, J.; Morley, N.J.; Sutton, B.C.; Gange, A.C. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 2014, 4, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Shymanovich, T.; Faeth, S.H. Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecol. Evol. 2019, 9, 6624–6642. [Google Scholar] [CrossRef] [Green Version]
- Oono, R.; Black, D.; Slessarev, E.; Sickler, B.; Strom, A.; Apigo, A. Species diversity of fungal endophytes across a stress gradient for plants. New Phytol. 2020, 228, 210–225. [Google Scholar] [CrossRef]
- Hamilton, C.E.; Faeth, S.H.; Dowling, T.E. Distribution of hybrid fungal symbionts and environmental stress. Microb. Ecol. 2009, 58, 408–413. [Google Scholar] [CrossRef]
- Ziaie-Juybari, H.; Tajick Ghanbary, M.; Rahimian, H.; Karimi, K.; Arzanlou, M. Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. For. Pathol. 2019, 49, e12559. [Google Scholar] [CrossRef]
- López-González, R.C.; Gómez-Cornelio, S.; De la Rosa-García, S.C.; Garrido, E.; Oropeza-Mariano, O.; Heil, M.; Partida-Martínez, L.P. The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecol. 2017, 26, 1–10. [Google Scholar] [CrossRef]
- Arnold, A.E.; Herre, E.A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 2003, 95, 388–398. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, A.; Oki, Y.; Wilson Fernandes, G.; Ball, R.A.; Gamon, J. Relationships between endophyte diversity and leaf optical properties. Trees 2012, 26, 291–299. [Google Scholar] [CrossRef]
- Skaltsas, D.N.; Badotti, F.; Vaz, A.B.M.; Silva, F.F.; Gazis, R.; Wurdack, K.; Castlebury, L.; Góes-Neto, A.; Chaverri, P. Exploration of stem endophytic communities revealed developmental stage as one of the drivers of fungal endophytic community assemblages in two Amazonian hardwood genera. Sci. Rep. 2019, 9, 12685. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Gao, L.; Chang, P.; Li, Z. Endophytic fungal community in grape is correlated to foliar age and domestication. Ann. Microbiol. 2020, 70, 30. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Parris, K.M. Ecology of Urban Environments; Wiley-Blackwell: West Sussex, UK, 2016; pp. 1–240. [Google Scholar]
- Day, S.; Wiseman, P.; Dickinson, S.; Harris, J. Tree Root Ecology in the Urban Environment and Implications for a Sustainable Rhizosphere. Arboric. Urban For. 2010, 36, 193–205. [Google Scholar] [CrossRef]
- Piano, E.; Souffreau, C.; Merckx, T.; Baardsen, L.F.; Backeljau, T.; Bonte, D.; Brans, K.I.; Cours, M.; Dahirel, M.; Debortoli, N.; et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 2020, 26, 1196–1211. [Google Scholar] [CrossRef] [PubMed]
- Jumpponen, A.; Jones, K.L. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol. 2009, 184, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.; Allison, S.D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Reese, A.T.; Savage, A.; Youngsteadt, E.; McGuire, K.L.; Koling, A.; Watkins, O.; Frank, S.D.; Dunn, R.R. Urban stress is associated with variation in microbial species composition—But not richness—In Manhattan. ISME J. 2016, 10, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hu, Z.; Zhou, M.; Hu, J.; Yao, X.; Zhang, H.; Li, Z.; Lou, L.; Xi, C.; Qian, C.; et al. The distribution variance of airborne microorganisms in urban and rural environments. Environ. Pollut. 2019, 247, 898–906. [Google Scholar] [CrossRef]
- Whitehead, J.; Roy, J.; Hempel, S.; Rillig, M.C. Soil microbial communities shift along an urban gradient in Berlin, Germany. Front. Microbiol. 2022, 13, 972052. [Google Scholar] [CrossRef] [PubMed]
- Abrego, N.; Crosier, B.; Somervuo, P.; Ivanova, N.; Abrahamyan, A.; Abdi, A.; Hämäläinen, K.; Junninen, K.; Maunula, M.; Purhonen, J.; et al. Fungal communities decline with urbanization—More in air than in soil. ISME J. 2020, 14, 2806–2815. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Drenkhan, R.; Pritsch, K.; Buegger, F.; Padari, A.; Hagh-Doust, N.; Mikryukov, V.; Gohar, D.; et al. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front. Microbiol. 2020, 11, 1953. [Google Scholar] [CrossRef] [PubMed]
- Donald, J.; Murienne, J.; Chave, J.; Iribar, A.; Louisanna, E.; Manzi, S.; Roy, M.; Tao, S.; Orivel, J.; Schimann, H.; et al. Multi-taxa environmental DNA inventories reveal distinct taxonomic and functional diversity in urban tropical forest fragments. Glob. Ecol. Conserv. 2021, 29, e01724. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Liu, Y.R.; Sokoya, B.; Wang, J.T.; Hu, H.W.; He, J.Z.; Bastida, F.; Moreno, J.L.; Bamigboye, A.R.; et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 2021, 7, eabg5809. [Google Scholar] [CrossRef]
- Klaedtke, S.; Jacques, M.-A.; Raggi, L.; Préveaux, A.; Bonneau, S.; Negri, V.; Chable, V.; Barret, M. Terroir is a key driver of seed-associated microbial assemblages. Environ. Microbiol. 2016, 18, 1792–1804. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, E.; Fukuda, K. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol. 2013, 117, 191–201. [Google Scholar] [CrossRef]
- Hume, D.E.; Card, S.D.; Rolston, M.P. Effects of storage conditions on endophyte and seed viability in pasture grasses. Int. Grassl. Sci. 2013, 22, 405–408. [Google Scholar]
- Crawford, A.D.; Plummer, J.A.; Probert, R.J.; Steadman, K.J. The influence of cone age on the relative longevity of Banksia seeds. Ann. Bot. 2011, 107, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Mertin, A.A.; Laurence, M.H.; van der Merwe, M.; French, K.; Liew, E.C.Y. The culturable seed mycobiome of two Banksia species is dominated by latent saprotrophic and multi-trophic fungi. Fungal Biol. 2022, 126, 738–745. [Google Scholar] [CrossRef]
- Nelson, A.; Vandegrift, R.; Carroll, G.C.; Roy, B.A. Double lives: Transfer of fungal endophytes from leaves to woody substrates. PeerJ 2020, 8, e9341. [Google Scholar] [CrossRef] [PubMed]
- George, A.S.; Rosser, C. The Banksias; Academic Press: London, UK, 1981; pp. 1–384. [Google Scholar]
- Abbott, I. Reproductive Ecology of Banksia grandis (Proteaceae). New Phytol. 1985, 99, 129–148. [Google Scholar] [CrossRef]
- Bradstock, R.A.; O’Connell, M.A. Demography of woody plants in relation to fire: Banksia ericifolia L.f. and Petrophile pulchella (Schrad) R.Br. Aus. J. Ecol. 1988, 13, 505–518. [Google Scholar] [CrossRef]
- Siddiqi, M.Y.; Myerscough, P.J.; Carolin, R.C. Studies in the ecology of coastal heath in New South Wales. Aus. J. Ecol. 1976, 1, 175–183. [Google Scholar] [CrossRef]
- Huss, J.; Fratzl, P.; Dunlop, J.; Merritt, D.; Miller, B.; Eder, M. Protecting Offspring Against Fire: Lessons from Banksia Seed Pods. Front. Plant Sci. 2019, 10, 283. [Google Scholar] [CrossRef]
- Heady, H.F.; Gibbens, R. A comparison of the charting, line intercept, and line point methods of sampling shrub types of vegetation. Rangel. Ecol. Manag. 1959, 12, 180–188. [Google Scholar] [CrossRef]
- Davey, K.G.; Campbell, C.K.; Warnock, D.W. Mycological techniques. J. Clin. Pathol. 1996, 49, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.A.; Liotti, R.G.; Boleti, A.P.A.; Reis, É.M.; Passos, M.B.S.; dos Santos, E.L.; Sampaio, O.M.; Januário, A.H.; Branco, C.L.B.; Silva, G.F.; et al. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS ONE 2018, 13, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-Eplymouth: Plymouth, UK, 2015. [Google Scholar]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, J.F.; Lawrence, D.P.; Morales-Cruz, A.; Travadon, R.; Minio, A.; Hernandez-Martinez, R.; Rolshausen, P.E.; Baumgartner, K.; Cantu, D. Phylogenomics of Plant-associated Botryosphaeriaceae Species. Front. Microbiol. 2021, 12, 652802. [Google Scholar] [CrossRef] [PubMed]
- Cannon, P.F.; Kirk, P.M. Fungal Families of the World; CABI: Wallingford, UK, 2007; p. 155. [Google Scholar]
- Jaklitsch, W.M.; Checa, J.; Blanco, M.N.; Olariaga, I.; Tello, S.; Voglmayr, H. A preliminary account of the Cucurbitariaceae. Stud. Mycol. 2018, 90, 71–118. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Rudramurthy, S.M.; Padhye, A.A.; Hemashetter, B.M.; Iyer, R.; Hallur, V.; Sharma, A.; Agnihotri, S.; Gupta, S.; Ghosh, A.; et al. Clinical Spectrum, Molecular Characterization, Antifungal Susceptibility Testing of Exophiala spp. from India and Description of a Novel Exophiala Species, E. arunalokei sp. nov. Front. Cell. Infect. Microbiol. 2021, 11, 686120. [Google Scholar] [CrossRef]
- Badali, H.; Gueidan, C.; Najafzadeh, M.J.; Bonifaz, A.; van den Ende, A.H.G.; de Hoog, G.S. Biodiversity of the genus Cladophialophora. Stud. Mycol. 2008, 61, 175–191. [Google Scholar] [CrossRef]
- Zhang, N.; Castlebury, L.A.; Miller, A.N.; Huhndorf, S.M.; Schoch, C.L.; Seifert, K.A.; Rossman, A.Y.; Rogers, J.D.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006, 98, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wei, J.G.; Wang, K.W.; Luo, J.; Wu, Y.J.; Luo, J.T.; Yang, X.H.; Yang, X.B. Three phytotoxins produced by Neopestalotiopsis clavispora, the causal agent of ring spot on Kadsura coccinea. Microbiol. Res. 2020, 238, 126531. [Google Scholar] [CrossRef]
- Ören, E.; Karakuş, Y.; Şimşek, M.; Ozan, G.N.; Bayraktar, H. First report of Paecilomyces maximus causing dieback and canker on apricot in Turkey. J. Plant. Pathol. 2023. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Anandham, R.; Krishnamoorthy, R. Chapter 41—Pochonia. In Beneficial Microbes in Agro-Ecology; Academic Press: Amsterdam, The Netherlands, 2020; pp. 793–808. [Google Scholar]
- Lawrence, D.P.; Holland, L.A.; Nouri, M.T.; Travadon, R.; Abramians, A.; Michailides, T.J.; Trouillas, F.P. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. IMA Fungus 2018, 9, 333–370. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, Z.; Jiang, X.; Fang, L.; Qiao, M. Endophytic Colletotrichum Species from Aquatic Plants in Southwest China. J. Fungi 2022, 8, 87. [Google Scholar] [CrossRef]
- De Silva, D.D.; Groenewald, J.Z.; Crous, P.W.; Ades, P.K.; Nasruddin, A.; Mongkolporn, O.; Taylor, P.W.J. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus 2019, 10, s43008. [Google Scholar] [CrossRef] [PubMed]
- Jayasiri, S.C.; Gareth Jones, E.B.; Kang, J.; Promputtha, I.; Bahkali, A.H.; Hyde, K.D. A new species of genus Anteaglonium (Anteagloniaceae, Pleosporales) with its asexual morph. Phytotaxa 2016, 263, 233–244. [Google Scholar] [CrossRef]
- Sprute, R.; Salmanton-García, J.; Sal, E.; Malaj, X.; Ráčil, Z.; de Alegría Puig, C.R.; Falces-Romero, I.; Barać, A.; Desoubeaux, G.; Kindo, A.J.; et al. Invasive infections with Purpureocillium lilacinum: Clinical characteristics and outcome of 101 cases from FungiScope and the literature. J. Antimicrob. Chemother. 2021, 76, 1593–1603. [Google Scholar] [CrossRef]
- Bashiri, S.; Abdollahzadeh, J.; Di Lecce, R.; Alioto, D.; Górecki, M.; Pescitelli, G.; Masi, M.; Evidente, A. Rabenchromenone and Rabenzophenone, Phytotoxic Tetrasubstituted Chromenone and Hexasubstituted Benzophenone Constituents Produced by the Oak-Decline-Associated Fungus Fimetariella rabenhorstii. J. Nat. Prod. 2020, 83, 447–452. [Google Scholar] [CrossRef]
- Mostert, L.; Groenewald, J.Z.; Summerbell, R.C.; Gams, W.; Crous, P.W. Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs. Stud. Mycol. 2006, 54, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Hongsanan, S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; McKenzie, E.H.C.; Sarma, V.V.; Lücking, R.; Boonmee, S.; Bhat, J.D.; Liu, N.; et al. Refined families of Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. Fungal Divers. 2020, 105, 17–318. [Google Scholar] [CrossRef]
- Huhndorf, S.; Miller, A.N. A new species of Camarops and phylogenetic analysis of related taxa in the Boliniaceae. N. Am. Fungi 2008, 3, 231–239. [Google Scholar] [CrossRef]
- Goh, T.; Hyde, K.D. Brachydesmiella anthostomelloidea, a new species of dematiaceous hyphomycete from Australia. Mycol. Res. 1996, 100, 1364–1366. [Google Scholar] [CrossRef]
- Perdomo, H.; Sutton, D.A.; García, D.; Fothergill, A.W.; Gené, J.; Cano, J.; Summerbell, R.C.; Rinaldi, M.G.; Guarro, J. Molecular and Phenotypic Characterization of Phialemonium and Lecythophora Isolates from Clinical Samples. J. Clin. Microbiol. 2011, 49, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Ragazzi, A.; Moricca, S.; Dellavalle, I. Water Stress and the Development of Cankers by Diplodia mutila on Quercus robur. J. Phytopathol. 2008, 147, 425–428. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Downes, K.S. Banksia born to burn. New Phytol. 2011, 191, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Suryanarayanan, T.S. Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: Evidence for the role of endophytes in mangrove litter degradation. Fungal Divers. 2002, 9, 81–91. [Google Scholar]
- Arnold, A.E.; Lutzoni, F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 2007, 88, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chaturvedi, P. Foliar Endophytic Diversity of Centella asiatica (L.) Urban in Relation to Different Seasons and Leaf Age. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 468–477. [Google Scholar] [CrossRef]
- Macarthur, D.; McGee, P. A comparison of the endophytic fungi from leaves of Banksia integrifolia at three sites on the east coast of Australia. Australas. Mycol. 2000, 19, 80–83. [Google Scholar]
- Kumaresan, V.; Suryanarayanan, T.S. Occurrence and distribution of endophytic fungi in a mangrove community. Mycol. Res. 2001, 105, 1388–1391. [Google Scholar] [CrossRef]
- Espinosa-Garcia, F.J.; Langenheim, J.H. The endophytic fungal community in leaves of a coastal redwood population diversity and spatial patterns. New Phytol. 1990, 116, 89–97. [Google Scholar] [CrossRef]
- Fróhlich, J.; Hyde, K.D.; Petrini, O. Endophytic fungi associated with palms. Mycol. Res. 2000, 104, 1202–1212. [Google Scholar] [CrossRef]
- Beaton, G.; Weste, G. Banksiamyces gen. nov., a discomycete on dead Banksia cones. Trans. Br. Mycol. Soc. 1982, 79, 271–277. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance generated by plant/fungal symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef] [PubMed]
- Nishie, K.; Cole, R.J.; Dorner, J.W. Toxicity of citreoviridin. Res. Commun. Chem. Pathol. Pharmacol. 1988, 59, 31–52. [Google Scholar] [PubMed]
- Nelson, E.B.; Simoneau, P.; Barret, M.; Mitter, B.; Compant, S. Editorial special issue: The soil, the seed, the microbes and the plant. Plant Soil 2018, 422, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Barradas, C.; Phillips, A.; Alves, A. Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal. Mycosphere 2016, 7, 906–920. [Google Scholar] [CrossRef]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Newbound, M.; McCarthy, M.; Lebel, T. Fungi and the urban environment: A review. Lands. Urban Plan. 2010, 96, 138–145. [Google Scholar] [CrossRef]
- Damm, U.; Mostert, L.; Crous, P.W.; Fourie, P.H. Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia 2008, 20, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Laureijssen-van de Sande, W.W.J.; Moreno, L.F.; Gerrits van den Ende, B.; Li, R.; de Hoog, S. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans. Front Microbiol. 2017, 8, 2514. [Google Scholar] [CrossRef] [Green Version]
- Prenafeta-Boldú, F.X.; Summerbell, R.; Sybren de Hoog, G. Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiol. Rev. 2006, 30, 109–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.C.Y.; Ngan, A.H.Y.; Tsang, C.C.C.; Ling, I.W.H.; Chan, J.F.W.; Leung, S.-Y.; Yuen, K.-Y.; Lau, S.K.P. Clinical Spectrum of Exophiala infections and a Novel Exophiala Species, Exophiala hongkongensis. J. Clin. Microbiol. 2013, 51, 260. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Ding, H.; Shen, K.; Bu, F.; Newcombe, G.; Liu, H. Foliar endophytes in trees varying greatly in age. Eur. J. Plant Pathol. 2021, 160, 375–384. [Google Scholar] [CrossRef]
- Helander, M.; Ahlholm, J.; Sieber, T.N.; Hinneri, S.; Saikkonen, K. Fragmented environment affects birch leaf endophytes. New Phytol. 2007, 175, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.A. Community-Assembly Mechanics and the Structure of an Experimental Species Ensemble. Am. Nat. 1991, 137, 1–26. [Google Scholar] [CrossRef]
Species | OTU | PotentialFunctions | Royal NP | Patonga | Lane Cove NP | Botany NP | ||
---|---|---|---|---|---|---|---|---|
Cones | Old | Young | Old | Young | Urban | Urban | ||
Penicillium citreonigrum | 0 | Saprotrophic, Pathogenic | ||||||
Neofusicoccum hellenicum | 1 | Saprotrophic, Pathogenic | ||||||
Penicillium glabrum | 2 | Saprotrophic, Pathogenic | ||||||
Banksiamyces sp. | 3 | Saprotrophic | ||||||
Neocucurbitaria sp. | 4 | Saprotrophic | ||||||
Penicillium catalonicum | 5 | Saprotrophic, Pathogenic | ||||||
Cladosporium perangustum | 6 | Saprotrophic | ||||||
Exophiala bergeri | 7 | Saprotrophic, Pathogenic | ||||||
Cladophialophora mycetomatis | 8 | Pathogenic | ||||||
Talaromyces chlorolomus | 9 | Saprotrophic, Pathogenic | ||||||
Penicillium dierckxii | 10 | Saprotrophic, Pathogenic | ||||||
Penicillium sp. | 11 | Saprotrophic, Pathogenic | ||||||
Penicillium sp. | 12 | Saprotrophic, Pathogenic | ||||||
Sordariomycetes sp. | 13 | Saprotrophic, Pathogenic | ||||||
Neopestalotiopsis clavispora | 14 | Pathogenic | ||||||
Pestalotiopsis sp. | 15 | Pathogenic | ||||||
Anthostomelloides sp. | 16 | Saprotrophic, Pathogenic | ||||||
Paecilomyces maximus | 17 | Saprotrophic, Pathogenic | ||||||
Fusarium sp. | 18 | Saprotrophic, Pathogenic | ||||||
Penicillium olsonii or sp. | 19 | Saprotrophic, Pathogenic | ||||||
Cytospora eucalypticola | 20 | Pathogenic | ||||||
Colletotrichum endophyticum | 21 | Saprotrophic, Pathogenic | ||||||
Penicillium Sumatraense | 22 | Saprotrophic, Pathogenic | ||||||
Anteaglonium sp. | 23 | Saprotrophic | ||||||
Purpureocillium lilacinum | 24 | Saprotrophic | ||||||
Heleiosa barbatula | 25 | Saprotrophic | ||||||
Fimetariella rabenhorstii | 26 | Pathogenic | ||||||
Neofusicoccum parvum | 27 | Pathogenic | ||||||
Phaeoacremonium scolyti | 28 | Pathogenic | ||||||
Penicillium citrinum | 29 | Saprotrophic, Pathogenic | ||||||
Camaropella pugillus | 30 | Saprotrophic | ||||||
Xylomelasma sp. | 31 | Saprotrophic | ||||||
Anthostomelloides brabeji | 32 | Saprotrophic, Pathogenic | ||||||
Exophiala oligosperma | 33 | Saprotrophic | ||||||
Rasamsonia columbiensis | 34 | Saprotrophic | ||||||
Phialemonium sp. | 35 | Saprotrophic, Pathogenic | ||||||
Botryosphaeria stevensii | 36 | Pathogenic | ||||||
Phaeoacremonium argentinense | 37 | Pathogenic |
Source | df | MS | Pseudo-F | p (perm) |
---|---|---|---|---|
Old Cones versus Young Cones a | ||||
Age | 1 | 30,438 | 18.598 | 0.001 * |
Site | 1 | 6965.4 | 4.2559 | 0.001 * |
Age × Site | 1 | 6432.5 | 3.9303 | 0.001 * |
Error | 34 | 1636.6 | ||
Total | 37 | |||
Urban versus Native b | ||||
Habitat | 1 | 16,148 | 4.3171 | 0.333 n.s |
Site (Habitat) | 2 | 3740.5 | 1.4886 | 0.121 n.s |
Error | 32 | 2512.7 | ||
Total | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philpott, M.; Liew, E.C.Y.; van der Merwe, M.M.; Mertin, A.; French, K. The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. J. Fungi 2023, 9, 706. https://doi.org/10.3390/jof9070706
Philpott M, Liew ECY, van der Merwe MM, Mertin A, French K. The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. Journal of Fungi. 2023; 9(7):706. https://doi.org/10.3390/jof9070706
Chicago/Turabian StylePhilpott, Merize, Edward C. Y. Liew, Marlien M. van der Merwe, Allison Mertin, and Kristine French. 2023. "The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia" Journal of Fungi 9, no. 7: 706. https://doi.org/10.3390/jof9070706
APA StylePhilpott, M., Liew, E. C. Y., van der Merwe, M. M., Mertin, A., & French, K. (2023). The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. Journal of Fungi, 9(7), 706. https://doi.org/10.3390/jof9070706