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Abstract: Pneumocystis sp. are fungal pathogens and members of the Ascomycota phylum. Immuno-
competent individuals can readily eliminate the fungus, whereas immunocompromised individuals
can develop Pneumocystis jirovecii pneumonia (PJP). Currently, over 500,000 cases occur worldwide,
and the organism is listed on the recently released WHO fungal priority pathogens list. Overall, the
number of PJP cases over the last few decades in developed countries with the use of highly effective
antiretroviral therapy has decreased, but the cases of non-HIV individuals using immunosuppressive
therapies have significantly increased. Even with relatively effective current anti-Pneumocystis thera-
pies, the mortality rate remains 30–60% in non-HIV patients and 10–20% during initial episodes of PJP
in HIV/AIDS patients. Although the role of alveolar macrophages is well studied and established,
there is also well-established and emerging evidence regarding the role of epithelial cells in the
immune response to fungi. This mini review provides a brief overview summarizing the innate
immune response of the lung epithelium and various continuously cultured mammalian cell lines
to Pneumocystis.
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1. Introduction

Pneumocystis is a fungus and a member of Ascomycota [1]. They are also related to
Saccharomyces cerevisiae and Schizosaccharomyces pombe [2]. Furthermore, it has been found in
the lungs of several mammalian species [3–5]. In fact, it has been proposed that these fungi
may have the potential to infect all mammals [6,7]. To date, the complete life cycle model of
the organism is unknown (due to its inability to be grown in continuous axenic cultures [8]).
These culture challenges in the growth of Pneumocystis outside of the mammalian lung
have been nicely summarized by Cushion et al. [9]. The focus of this present minireview is
the summary of the innate immune response of the host lung epithelium and continuous
epithelial cell lines to Pneumocystis.

2. Lung Epithelium Cell Types

The lung epithelium is one of the first contact points in the mammalian host for
Pneumocystis and is critical in the pathogenesis of Pneumocystis pneumonia (PCP). Specifi-
cally, lung-epithelium-cell-type interactions with Pneumocystis include alveolar type 1 (AT1)
and type 2 (AT2), Club (formerly called Clara cells) [10] cells, and goblet cells.

2.1. Alveolar Type 1 (AT1)

Alveolar type 1 (AT1) cells are squamous cells that account for 95% of the alveolar
surface area. Extremely thin in nature (0.1 µM thick) [11], they lie in close proximity to
lung endothelial cells, allowing efficient gas exchange [12]. The AT1 cell interactions with
Pneumocystis have been known for some time now. Lanken et al. used electron microscopy
in a rat PCP model to trace the course of infection. He reported the trophic form of the
fungus bound to the AT1 cells, and, after 8 days of infection, the host cells remained
intact and no damage as a result of inflammation was apparent. After one month of PCP,
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the Type 1 pneumocytes in contact with the trophic forms displayed significant necrosis.
Additionally, an infiltration of AT2 cells was noted, presumably to replace injured/dead
AT1 cells. Interestingly, in the same timeframe, the alveolar-capillary membrane remained
intact [13]. Yoshida et al. also noted, through electron microscopy studies in the early
stages of PCP infections in rats, the alignment of numerous tropic forms with AT1 cells.
In addition, they noted that AT1 cell cytoplasm often protruded from the pneumocyte,
and thus hypothesized that this close association (often referred to as interdigitating [1])
was important for nutrient acquisition from the host [14], which is a hypothesis with
growing support [9,15,16]. Others have also reported, in ultrathin paraffin and plastic-
embedded lung tissue from PCP infected mice, the tight associations of trophic as well as
cyst forms with the AT1 cell type. In exuberant PCP infections, these researchers reported
an abundance of both fungal life forms along with host cell debris and an infiltration of
myeloid cells, including macrophages and neutrophils [17]. Beck et al. were one of the
first labs to culture alveolar epithelial cells (AECs) to study AEC/Pneumocystis interactions
in vitro. They showed that fluorescently labeled Pneumocystis carinii cultured with alveolar
epithelial cells over 3 days remained metabolically active, as did the lung cell substrate.
They noted by immunofluorescent staining that AEC cell E-cadherin and occludin, as well
as the measures of transepithelial resistance, were unchanged. This led to the hypothesis
that the influx of inflammatory cells was needed for epithelial cell damage [18]. In 2003,
Limper et al. showed, for the first time, the role of AECs in the innate immune response to
Pneumocystis. Briefly, stimulating AT1 cells in vitro with Pneumocystis β-glucans stimulated
the production of macrophage inflammatory protein-2 (MIP-2) at both the mRNA and
protein level via a lactosylceramide-dependent mechanism. The addition of a blocking
antibody to glycosphingolipid lactosylceramide (CDw17) resulted in a significant reduction
in the MIP-2 secretion in Pneumocystis-β-glucans-stimulated AT1 cells. Additionally, these
authors demonstrated that targeting de novo glycosphingolipid biosynthesis with a specific
inhibitor significantly reduced MIP-2 AT1 secretion [19]. Later, this same lab linked p65
NF-κB, via the observation of the significant nuclear translocation of the transcription
factor in this cell type, with Pneumocystis β-glucans stimulation. Inhibiting NF-κB also
resulted in a subsequent downstream of MIP-2 and tumor necrosis factor alpha (TNF-α)
mRNA production [20]. Evans et al. concluded these studies in 2012 by showing that
incubating AECs with glycosphingolipids and cholesterol microdomain inhibitors resulted
in a significant reduction in the expression of TNF-α and MIP-2. They also showed that,
by various microscopy analyses, the carbohydrates were internalized by microdomain-
mediated mechanisms. The authors’ data demonstrated, for the first time, the vital role the
AEC microdomains plays in the innate response to Pneumocystis, and that microdomain-
targeted therapeutic intervention might be a promising avenue through which to treat
PCP-associated lung inflammation [21]. In 2014, it was demonstrated that the specific
deletion of the inhibitor of kB Kinase 2 (IKK2) from mouse lung epithelial cells led to a
delayed onset of Th17 and B cell responses in the PCP lung. Additionally, the significant
delay in the clearance of Pneumocystis organisms in the IKK2 epithelial cell knockout in
the lung when compared to wildtypes was noted. This study was the first to link the
importance of the host lung epithelial cell response to Pneumocystis with the regulation
effects of adaptive immune responses [22].

2.2. Alveolar Type 2 (AT2)

Alveolar type 2 (AT2) are cuboidal surfactant secreting cells that aid in surface tension
reduction and prevent alveolar collapse [23]. As before with the first reports of Pneumocystis
AT1 cell interactions, electron microscopy was utilized to examine fungal + type II pneumo-
cyte interactions. Yoshida et al. reported that as noted above, unlike with AT1 cells where
numerous trophic forms were found bound to these cells, these life forms were absent from
AT2 cells [14]. Another electron microscopy study around that time determined that there
were indeed some trophic life forms bound to AT2 cells, but these were much less frequent
then noted with AT1 cells [24]. Pesanti provided the first in vitro analysis of AT2 cells and
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Pneumocystis, linking the possibility of this epithelial cell type having an innate immune
response to the fungus. He separated Pneumocystis organisms from the AT2 cells using
transwell inserts. TNF-α was added to the wells, and after incubating the co-cultures for
16–18 h, he observed significant dose-responsive decreases in Pneumocystis viability. This
was measured by the 14CO2 release generated by the fungi. The author did not determine
the exact cause of the fungal killing by the AT2 cells but stated that the “secretions” of
the AT2 cells may be responsible in this co-culture system. This study demonstrated, for
the first time, that AT2 cells mount a host immune response to the organism. [25]. The
first observation of a known innate immune response to Pneumocystis in AT2 cells was
reported in 2005. It was shown that when Pneumocystis murina was incubated with AT2
cells (purity determined by modified Papanicolaou staining and intracellular staining for
human surfactant protein C (SPC)), a detectable kB binding activity was noted, suggesting
NF-kB signaling in this cell type [26]. Next, this same lab group demonstrated that mono-
cyte chemotactic protein-1 (MCP-1) was shown to be co-localized to the lungs of a PCP
mouse model with AT2 cells (purity determined by SPC staining). Isolated mouse AT2 cells
cultured in vitro and incubated with Pneumocystis activated JNK were followed by MCP-1
protein release. The specificity of this activation was demonstrated with the pharmaco-
logical inhibition of this pathway [27]. These studies with AT2 cells were important initial
findings that demonstrated the potential contribution of this cell type to immune-mediated
lung injury in PCP.

2.3. Club Cells

Club cells, first described in 1881 by Kolliker [28] are cuboidal in shape, non-ciliated,
and located in the terminal bronchioles. Their primary functions are secretion (source of
club cell secretory protein (CCSP)), barrier integrity, and metabolism [29]. An eloquent
in vivo study by Méndez et al. described how an organism can induce the overproduction
of mucin in the distal airways of a rat PCP infection. They noted an increase in mucin
production in PCP rat lungs compared to the respective control animals at 60 and 80 days
of age. Conversely, they noted a significant decrease in the club cell marker CC10 after
80 days in the PCP infected rats. Furthermore, club cells can go through the process of trans
differentiation to goblet cells via the activation of the Notch pathway [30]. Although these
researchers noted no activation of this pathway in the club cells that were in the presence
of Pneumocystis, they did report transformation of club to goblet cells in a Pneumocystis
infection [31].

3. Continuous Cultured Lung Epithelial Cell Lines (Table 1)
3.1. A549

The A549 cell line is a human-lung-derived adenocarcinoma alveolar-basal epithelial
cell that was isolated in 1972 [32]. Highly characterized, they are used as a model for primary
AT2 cells [33]. A number of studies have shown the importance of A549 interactions with
Pneumocystis in the context of attachment and/or organism proliferation/viability [34–41].
This cell line is the most studied in regard to Pneumocystis lung epithelial cell line innate
immune responses. Limper et al. was the first to show that the media from alveolar
macrophages incubated with Pneumocystis enhanced the intercellular adhesion molecule-1
(ICAM-1) expression in A549 cells. The addition of a blocking antibody to TNF-α inhibited
this response. Next, this paper reported that when Pneumocystis was directly cultured on
this cell line, ICAM-1 was also significantly increased. Overall, the ICAM-1 secretion by
A549 was noted to be less with the fungus on the cell line alone versus the supernatant
from the macrophages being exposed to the organisms [42].

Pottratz et al. was the next to show the inflammatory potential of Pneumocystis
on A549 cells. They showed that, as soon as after 2 h incubation of A549 cells with
Pneumocystis, interleukin 6 (IL-6) was detectable in culture media and that this synthesis
continued for 48 h. Fascinatingly, as IL-6 levels increased in the cultured environment, the
production of fibronectin increased, with the authors suggesting that IL-6 is responsible
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for this increase in the matrix protein. Additionally, the overall organism attachment
also increased, indicating potential pathogen modulation of the host epithelial cells that
promote organism proliferation [43]. Our lab has previously demonstrated that PCINT1, a
potential receptor for Pneumocystis, binds to fibronectin and may play a role in organism
attachment and proliferation in vivo [44]. Furthermore, these same researchers previously
demonstrated that Pneumocystis could modify lung epithelial fibronectin-binding integrins
in cultured cells [37].

Subsequently, it was shown that purified Pneumocystis major surface glycoprotein
(Msg), when applied to this cell line, could enhance the IL-8 response of A549 cells from
4 to 24 h post treatment. Competition studies with the co-incubation of yeast mannan
or fungal β-glucans significantly reduced the release of IL-8, suggesting the presence
of carbohydrates epitope(s) that are present in the Msg fraction. The data presented in
this manuscript are the first to link the alterations of the A549 immune response to the
predominant surface glycoprotein of the organism [45].

Four years later, this same author confirmed the binding of Msg via A549 mannose
and glucan receptors, and that the administration of glucocorticosteriods can dampen the
IL-8 release from this cell line [46]. Liu et al. further showed the usefulness of the A549 cell
line in studying the lung epithelial response to Pneumocystis. Through the use of siRNA
technology, they inhibited the expression of A549 MUC1 mRNA expression. MUC1, a
member of cell surface mucins, is expressed by epithelial cells and protects the apical cell
membrane [47]. The inhibition of A549 MUC1 RNA resulted in decreased epithelial cell
binding, as well as downstream ERK1/2 phosphorylation [48].

Lastly, Kottom et al. utilized oligonucleotide microarrays to survey the A549 tran-
scriptome after incubation of the cell line with Pneumocystis for 3 h. Mixed Pneumocystis
life forms were allowed to incubate in transwell inserts above the cell line or directly on
the epithelial cell line itself. Additionally, separated cyst or trophic life forms directly
in contact with the cell line were analyzed. Transcript abundance from approximately
18,400 human genes was analyzed. Depending on the Pneumocystis life forms in contact
with the A549 cell, an increase in total mRNA fold change (>4-fold) was noted with the
mixed life form populations showing greater fold changes than the isolated cyst and trophic
populations or the mixed populations in the transwell inserts. This study confirmed the
previously described upregulated immune response proteins induced in the presence of
Pneumocystis, including ICAM-1, IL-8, and MCP-1 [19,42,45,46]. In addition, a number of
additional innate immune response transcripts were identified upon organism contact with
A549 cells, including superoxide dismutase precursor (SOD2), TNF-α induced protein 2,
3 (TNFAIP2/3), CXCL2, GM-CSF, CCL20, and IL-1a. Regarding specific genes that were
upregulated or downregulated (4-fold) in cyst life forms, a total of 26 genes were identified.
Specific transcripts altered in A549 cells upon contact with this life form include ID2, a
helix–loop–helix (HLH) transcription regulator that plays a crucial role in cell growth and
differentiation [49], and superoxide dismutase precursor 2 (SOD2), which is involved in
cellular cytokine responses [50]. Recently, SOD2 has been associated with Scedosporium spp.,
the second most common filamentous fungus found in cystic fibrosis patients [51]. Genes
that were upregulated upon trophic/A549 contact include an unknown gene/protein prod-
uct (AL556438) and an inhibitory of DNA binding (ID-1H) transcript, which may have
roles in cell growth, senescence, and differentiation [49]. Lastly, mitogen-activated protein
kinase (MAPK) phosphatase 1 (MKP-1) was significantly induced upon its binding to the
A549 epithelial cell line. MKP-1 upregulation was also observed in mice with systemic
Candida albicans infection. In these infected animals, reduced MKP-1 protein levels due to
glutathione reductase (Gsr−/−) knock-in resulted in elevated p38 and JNK activity [52].
It is interesting to hypothesize that Pneumocystis trophic forms may upregulate this tran-
script to enhance lung MAPK phosphatase activity, thereby creating an anti-inflammatory
environment in the lung to promote organism survival or proliferation.
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This survey report provides an initial template for studying these and many other
transcripts that are important in both mixed populations as well as in the isolated life forms
of Pneumocystis and lung epithelial innate immune responses [53].

3.2. HAEo−

1HAEo− is a human airway epithelial cell line that is immortalized with an aberrant
SV40 origin of replication. Physiologically, it retains many of the characteristics of normal
airway epithelia, such as tight junction formation and cytokeratin expression [54]. This
cell line was used to show that when Pneumocystis β-glucans were applied to the airway
cells, they release IL-8 in a dose-dependent fashion, and this response was also calcium-
dependent. Furthermore, through the use of a transfected reporter assay, IL-8 release was
shown to be mediated by NF-kB/AP-1 which activates the downstream MAPK, ERK1/2
pathways. These authors concluded that Pneumocystis binding to human airway epithelial
cells causes IL-8 secretion, which may help contribute to the early neutrophil immune
response in PCP [55]. Currently, it remains unknown if this cell line would display similar
cytokine responses to normal non-immortalized human airway epithelial cells.

3.3. Murine Lung Epithelial Cell Line 12 (MLE-12)

MLE-12 cells have certain features of normal type II airway epithelial cells [56], in-
cluding the expression of lung phospholipids and surfactant proteins [57]. This line has
been used in the past to study epithelial cell lung interactions with pathogens, such as
Pseudomonas aeruginosa and influenza A [58,59]. After demonstrating that this cell line could
be used for studying the binding kinetics of Pneumocystis, these researchers showed that the
binding of Pneumocystis β-glucans to this cell line, can also result in the phosphorylation of
the EphA2 receptor itself, resulting in IL-6 cytokine release [60].

3.4. Murine Lung Epithelial Cell Line 12 (MLE-15)

The MLE-15 lung epithelial cell line has the characteristics of distal bronchiolar and
alveolar epithelial cells with many AT2 phenotypes, including surfactant protein synthe-
sis/secretion and phospholipid secretion [57]. Wang et al. reported that, in this cell line, a
timed and Pneumocystis organism dose-dependent increase in macrophage inflammatory
protein-2 (MIP-2) was noted. Next, via transient transfection experiments with consensus
kB binding sequences, Pneumocystis organisms were shown to activate the NF-kB signal-
ing pathway. The data combined suggest that Pneumocystis can affect epithelial cell gene
expression, promoting an inflammatory environment in the PCP lung [26].

Table 1. List of lung epithelial cell lines used in immune response studies to Pneumocystis.

Cell Line Source Immune Response Reference

A549 Lung explant culture,
epithelial-like (human)

CCL20
CXCL2

GM-CSF
ICAM-1

IL-1a
IL-6
IL-8

MCP-1
TNF-α

TNFA IP2/3

[19,42,43,45,46,48,53]

1HAEo− Airway epithelial
(human) IL-8 [55]

MLE-12 Airway epithelial
(mouse) IL-6 [60]

MLE-15 Airway epithelial
(mouse) MIP-2 [26]
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4. Concluding Remarks

As noted above, lung epithelial cells are some of the first cell types encountered
by Pneumocystis in the host lung, and they provide vital innate immune responses to the
fungus (Figure 1). Although, at baseline, lung epithelial cells express few or no C-type lectin
receptors (CLRs) [53,60,61] that bind fungal mannoproteins or the embedded carbohydrates
that line the fungal cell wall, they do also possess other receptors with different immune
signaling pathways, such as the EphA2 receptor kinase pathway recognizing fungal β-
glucans, which leads to Stat3 and MAPK phosphorylation, as well as the subsequent release
of alarmins, cytokines, and chemokines [60,62]. It has been reported that there are more
pattern recognition receptors for fungi than any other organisms [63]. As reported above,
our understanding of the roles of specific bona fide epithelial receptors to the organism
and the downstream inflammatory host response to Pneumocystis is still in its infancy.
As a result, the role of lung epithelial cells immune responses to Pneumocystis is lacking.
With the recent progress and contributions of new technologies, such as single cell RNA
transcriptomics in fungal pathogenesis [64–67], as well as exciting preliminary work via the
use of lung organoids for the culture and potential propagation of Pneumocystis, these new
methods may be extremely beneficial for understanding the role of host epithelial cells in
the immune response to the fungus. Tisdale-Macioce et al. recently reported that, through
the injection of these cultured organoids with P. murina, the fungal cell wall component
Msg was observed in the organoids themselves. Additionally, AT1- and AT2-cell-specific
staining were noted within the lung organoids [68]. This system better represents the host
lung environment and is, perhaps, therefore an excellent resource for the understanding
of Pneumocystis/lung epithelium interactions leading to proinflammatory responses. In
addition, this study has also potentially uncovered therapeutic targets for dampening the
detrimental inflammation in the lungs of those with PCP.
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adapted from Wang et al. [69] of the most characterized lung epithelial cell carbohydrate recognition
receptors for the fungal organism and brief description of the host response. Both major surface
glycoprotein (gpA/Msg) and Pneumocystis β-glucan epitopes are shown with black arrows and are
host receptor ligands on the Pneumocystis cell surface. Mechanism(s) for the IL-6 secretion via EphA2
receptor/Pneumocystis β-glucans engagement in airway epithelial cells is unknown.
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