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Abstract: The fungal secretome is the main interface for interactions between the pathogen and its
host. It includes the most important virulence factors and effector proteins. We integrated different
bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg
of rapeseed fungus) to predict the secretion of 217 proteins, including many cell-wall-degrading
enzymes. All secretory proteins were identified; 85 were classified as CAZyme families and 25 were
classified as protease families. Moreover, 49 putative effectors were predicted and identified, where 39
of them possessed at least one conserved domain. Some pectin-degrading enzymes were noticeable
as a clustering group according to STRING web analysis. The secretome of P. lingam CAN1 was
compared to the other two blackleg fungal species (P. lingam JN3 and P. biglobosus CA1) secretomes
and their CAZymes and effectors were identified. Orthologue analysis found that P. lingam CAN1
shared 14 CAZy effectors with other related species. The Pathogen-Host Interaction database (PHI
base) classified the effector proteins in several categories where most proteins were assigned as
reduced virulence and two of them termed as hypervirulence. Nowadays, in silico approaches can
solve many ambiguous issues about the mechanism of pathogenicity between fungi and plant host
with well-designed bioinformatics tools.

Keywords: computational annotation; network analysis; pathogenic fungi; proteomics

1. Introduction

Blackleg, also known as phoma stem canker, is a destructive disease of Brassica crops
(canola, oilseed rape) that causes about USD 1 billion in global crop losses every year [1–3].
Plenodomus lingam (currently named as Leptosphaeria maculans, https://www.indexfungorum.
org/names/NamesRecord.asp?RecordID=416165 accessed on 4 April 2023) is the main
causal agent of blackleg disease, followed by Plenodomus biglobosus (Syn. Leptosphaeria
biglobosa), a comparatively less aggressive species due to its inability to secrete phytotoxin
sirodesmin PL [4–6]. P. lingam is a hemibiotrophic pathogen that can survive on crop
residues from season to season after the harvest, providing favorable conditions for the
development and maturation of pycnidia and pseudothecia. Pycnidiospores and ascospores
are released from their fruiting bodies as primary inocula for infection [7,8]. In addition,
this fungus can attack and infect all parts of the plant, causing up to 50% yield losses
in individual fields of different countries, including European countries, Canada, and
Australia [2,9].

Fungi secrete a wide range of proteins outside the plasma membrane of the cell, defined
as fungal secretome, which play a pivotal role in decaying their substrates [10,11] and
interacting with their plant hosts [12–15]. The fungal secretome includes lipases, proteases,
Carbohydrate-Active enZymes (CAZymes), proteins of unknown function (hypothetical
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proteins), and Small Secreted Proteins (SSP) [16]. Most secretomes carry a signal peptide
(SP), a signal sequence at the N-terminus that contains 3 parts: a positively charged n-region,
a polar c-region, and a hydrophobic region that forms an alpha helix (h-region) between
the n- and c-regions [17]. This signal peptide leads to translocation of proteins through the
endoplasmic reticulum and the Golgi compartment, allowing them to reach the extracellular
space [18,19]. The important function of extracellular proteins is to interact with the
environment of the fungus for breaking down the needed nutrients and determining its
virulence against the host plant [20].

Effector proteins are the most important class of proteins for the interaction between
the pathogen and host [21]. Their secretions are either inside the host cell (cytoplasmic
effectors) or outside the host cell (apoplastic effectors), where they manipulate the metabolic
processes inside the host and facilitate the effector-triggered susceptibility (ETS) [22,23].
Most effectors that interact with the plant immune system are either virulence (Vir) proteins
or avirulence (Avr) proteins. The successful penetration and colonization of the pathogen
into the host cell relies on overcoming the multiple layers of plant immunity [24]. The first
layer of plant immunity is triggered by a pathogen-associated molecular pattern (PAMP)
that recognizes the pathogen molecules by specific membrane-localized receptors, leading
to a defence response called PAMP-triggered immunity (PTI) [25]. Although PTI is effective
against different microorganisms, pathogens defeat it by effectors. The second layer of plant
immunity is triggered by another type of receptor proteins called resistance (R) proteins [26].
Avirulence proteins are the type of effectors that are recognized by these specific R proteins
in the host to trigger a strong defence response called hypersensitive response (HR), a
programmed cell death at the site of infection [27–29].

Currently, few previous data on Plenodomus lingam secretome are available. Therefore,
our knowledge of important secreted proteins of P. lingam and their functions is still
ambiguous. Until 2021, only three recorded strains of P. lingam were available on the NCBI
genome database (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/1147
3/, accessed on 5 April 2023). The codon sequence (CDS) was described for only one strain
(P. lingam JN3, formerly Leptosphaeria maculans JN3) [30]. Several proteins of this strain were
characterized on the UniprotKb database (https://www.uniprot.org/uniprotkb?query=
leptosphaeria%20maculans%20JN3, accessed on 6 April 2023). In 2022, new data appeared
on the NCBI database for a new strain named P. lingam CAN1, which was chosen for
this study. Its proteome was not previously characterized or annotated. We used the
sequenced draft genome of P. lingam CAN1 for an in silico prediction and annotation of
its secretome. This allowed the characterization and identification of the possible function
of most proteins, to understand their role in pathogenesis. Also, a comparative analysis
between P. lingam CAN1 and two other related strains (P. lingam JN3 and P. biglobosus
CA1) was described especially for CAZymes and effector proteins to detect evolutionary
relationships. Eventually, we predicted effector candidates to define a set of sequences
that will serve as a starting point for further studies on the pathogenicity mechanisms of
Plenodomus species.

2. Materials and Methods
2.1. Sequence Information and Retrieval

The information data of Plenodomus lingam strain CAN1 (accession no. JACTNS010000001.1)
was released on NCBI database by the Chinese Academy of Inspection and Quarantine in
February 2022 (https://www.ncbi.nlm.nih.gov/genome/11473?genome_assembly_id=17
95175, accessed on 5 April 2023). The genome of this strain has a length of 42,037,800 bp and
contains 11,989 genes encoding 11,837 proteins. Out of these, 11,098 (93.75%) of the proteins
were classified as hypothetical while 739 (6.25%) were fully characterized proteins. The
proteome of P. lingam CAN1 was retrieved from the NCBI database (https://www.ncbi.nlm.
nih.gov/gnome/browse/#!/prteins/11473/1795175%7CPlenodomus%20lingam/Un/, ac-
cessed on 5 April 2023). Moreover, the retrieved protein sequences were further explored
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in UniProt to determine the availability of annotation data using a batch search (accessed
on 5 April 2023).

2.2. Prediction of Secretome

The secretome was predicted in a similar manner to the guidelines of the Fungal
Secretome KnowledgeBase (FunSecKB) [31] and a previously described pipeline [32]. These
pipelines predicted the secreted proteins from the sequences that carry a signal peptide
without any transmembrane helix domain and glycophosphatidylinositol anchor motifs
(GPI). For the prediction of the signal peptide, the first filtration and screening were
performed by SignalP (version 5.0) [33]. DeepTMHMM V1.0.24 servers were used to remove
the transmembrane helix proteins [34,35]. The endoplasmic-reticulum-targeting protein
sequences were excluded by the Prosite database with the ScanProsite web server [36]. The
proteins harboring GPI motifs were predicted using NetGPI (version 1.1) [37].

2.3. Characterization and Annotation of Secretory Proteins

For the prediction of protein families and GO (gene ontology) terms of the refined
secretome, InterPro V93.0 [38] and orthologous matrix browser (Oma browser) [39] were
used. KOBAS 3.0 [40] was used for the KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway enrichment analysis using the hypergeometric test/Fisher’s exact test as a statisti-
cal method and Benjamini and Yekutieli as FDR correction methods, and p < 0.05 was set
as the cut-off criterion. The physicochemical properties of proteins were characterized by
the ProtParam tool [41]. The output properties from this sever include molecular weight
(MW), theoretical isoelectric point (PI), extinction coefficients (EC), instability index (II),
aliphatic index (AI), and grand average of hydropathicity (GRAVY). For a detailed an-
notation of carbohydrate-degrading enzymes, the CAZy database and dbCAN3 server
HMMER (E-Value < 1 × 10−15, coverage > 0.35) and DIAMOND (E-Value < 1 × 10−102)
were used [42,43]. Proteolytic enzymes were annotated using a BlastP search against
MEROPS database release 12.4 [44], while lipases were identified using the Lipase Engi-
neering Database (LED) V4.1.0 (E-Value cutoff 1 × 10−5) [45]. For the effector prediction,
EffectorP 3.0 was used [46].

2.4. Analysis of the Putative Effectors

The predicted effector candidates were scanned against the Pathogen–Host Interaction
database (PHI-base) for exploring the virulence factors [47]. STRING V11.5 was used
to predict protein–protein interaction (PPI) networks, providing functional associations
between proteins to classify the effectors into groups and helping in sieving the dominant
effectors in the pathogenicity process [48]. The KAH9875744.1 protein was selected as
a case study for more confirmatory analysis due to (i) high probability values for both
apoplastic and cytoplasmic effectors, (ii) involving the dominant CAZyme effector groups
according to the STRING web server, and (iii) its unique evolutionary features (outgroup
branch) compared with other related clustering proteins. The 3D structure of the candidate
protein was done with the SWISS-MODEL server [49] based on homology modeling.
Docking analysis was performed using CB-Dock2 software [50] from the downloaded 3D
structure model. It helps the study and prediction of how ligands (pectin, pectic acid,
and digalacturonate) interact with protein (pectate lyase). In addition, a BLASTp search
from NCBI against the non-redundant database with default parameters was run to find
the homologues of the protein. Alignment and a phylogenetic tree were constructed
using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm and
Clustal Omega [51]. The phylogenetic tree was displayed and visualized via iTOl V6 [52].
Signature motifs within the sets of similar proteins were detected using the Multiple
Expectation-maximization for Motif Elicitation (MEME suite) V5.5.2 with a maximum
number of 15 motifs, a range of 2–10 sites per motif, and an E-value of less than 0.05 [53].
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2.5. Comparative Analysis of Effector and CAZymes among Species and Isolates

The secretome, putative effector proteins, and CAZymes of P. lingam CAN1 were
compared with another two blackleg-related strains (P. lingam JN3 and P. biglobosus CA1).
The same workflow was applied using the above-mentioned bioinformatic software for
the fungus P. lingam CAN1. Also, whole-genome comparison and orthologous clustering
annotation between the three strains were done with the OrthoVenn3 web server with
e-value cut-off 1 × 10−5 [54].

3. Results and Discussion

Agricultural crops supply over 80% of the food consumed by humans and are an
important source of nutrition for livestock. Unfortunately, plant diseases often threaten
the availability of plants for human and animal consumption [55,56]. Fungi are the main
microbial pathogens that cause huge yield losses in agricultural crops and post-harvest
products, thus threatening food security all over the world [57]. As a result, the global
economy loses about $220 billion annually due to fungal diseases [55]. To prevent such
fungal invasions against plants, a deep understanding of the effector proteins secreted by
the fungal pathogens and the plant immune response is necessary to achieve more durable
resistance against the pathogens [58]. In silico analysis of the secretome is a powerful tool
to aid in the management of fungal infection in plants [59].

3.1. Prediction of Secretome

Our workflow starts with the complete proteome of P. lingam strain CAN1 (accession
no. JACTNS010000001.1) extracted from NCBI (Table S1). From a total of 11,098 hypo-
thetical proteins, 1005 signal peptides were predicted using SignalP V5.0. The prediction
was then refined using DeepTMHMM V1.0.24 servers to remove 202 proteins harboring
transmembrane helix proteins. A total of 572 proteins containing endoplasmic-reticulum-
targeting protein sequences were excluded by the ScanProsite web server. Fourteen proteins
were then identified by NetGPI to harbor GPI motifs, resulting finally in a list of 217 refined
secreted proteins (Figure 1).

3.2. Characterization of Physicochemical Properties of Secretory Proteins

The work pipeline on the refined secretome proceeded in two directions. The first was
the characterization and annotation of the 217 secreted proteins. The second was exploring
and identifying effector proteins and virulence factors. Physiochemical parameters in
proteins can define their behavior and stability under different in vitro conditions [60]. The
physicochemical properties of the secreted proteins, including molecular weight (MW),
theoretical isoelectric point (PI), extinction coefficients (EC), instability index (II), aliphatic
index (AI), and grand average of hydropathicity (GRAVY) were computed using the
Expasy ProtParam tool (Table S2, Figure 2). The maximum observed molecular weight was
248,642.97 Daltons (da), whereas the minimum molecular weight observed was 9042.34 da.
For the theoretical PI values, only 45 proteins were basic (7.01–9.63), while 172 proteins were
acidic (4.28–6.91). The PI of any protein is the pH at which the net charge carried by the
molecule surface is zero (Figure 2a) [61]. It determines the stability, solubility, and activity
of a protein and its interactions with other molecules in different pH environments [62].
Only 60 (27.6%) proteins of the refined secretome were considered unstable according to
their instability indices. Cut-off values of <40 and >40 were used to identify the stable
and unstable proteins (Figure 2b). The instability index estimates the stability of a protein
in vitro; a stability index of less than 40 is considered stable [61].

The values of computed EC ranged from 2115 to 265,185 M−1 cm−1. EC is a measure of
how much light a mole of protein absorbs at a specific wavelength, most commonly 280 nm.
It reflects the concentration of tryptophan, cysteine, and tyrosine in that protein, where
high EC values indicate the presence of high concentrations of these amino acids (Table S2).
EC allows studying protein–ligand and protein–protein interactions [61,63]. Proteins rich
in cysteine residues display high stability against high temperature, proteolysis, and pH
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changes and are predicted to play an important role during host–pathogen interactions [64].
The AI refers to the relative volume occupied by a protein’s aliphatic hydrophobic side
chains of amino acids such as V (valine), A (alanine), L (leucine), and I (isoleucine). It is an
indicator of the thermal stability of proteins: the higher the AI value, the more stable the
protein is at high temperatures [63,65]. AI values of the studied secretome reflected high
thermostability of 177 proteins (70.09–95.97) over wide temperature ranges (Table S2).
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Figure 2. Physicochemical characteristics of the secretome using ProtParam tool: (a) Isoelectric point
vs. molecular weight properties of the refined secretome; (b) Instability index property that classifies
stable proteins (blue box densities) and unstable proteins (faint blue box densities); (c) Protein length
vs. GRAVY scores, where positive values were categorized as hydrophobic (membrane) proteins,
while negative values were categorized as hydrophilic (globular) proteins.

Another important parameter studied was the GRAVY score. It determines the hy-
drophobic or hydrophilic nature of proteins [63]. The GRAVY score is the sum of hydropa-
thy values of all amino acids present in the protein, divided by the number of residues
in the same protein. Negative gravy score values indicate hydrophilicity, while positive
values indicate hydrophobicity [63]. The GRAVY score of 200 proteins was found to be
negative, with values ranging from −0.002 to 0.721 (Figure 2c). The negative GRAVY score
predicts that these proteins could be hydrophilic (polar) with good solubility, rather than
hydrophobic (non-polar) [65].
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3.3. Characterization and Annotation of Secretory Proteins

KEGG pathway enrichment analysis was used for functional annotation of the pre-
dicted secretome by KOBAS 3.0, a bioinformatic tool that consists of two parts: the annota-
tion module and the enrichment module [66]. The annotation module accepts a protein
list as input and annotates each protein based on multiple databases of known pathways.
The enrichment module gives an answer about which pathways and GO terms are sta-
tistically significantly associated with the input list [66,67]. Enriched functional terms
associated with KEGG pathways are summarized in Figure 3. KEGG analysis catego-
rized 43 secreted proteins into 12 pathways (p < 0.05). Among all pathways, biosynthesis
of secondary metabolites, starch and sucrose metabolism, protein processing in the en-
doplasmic reticulum, and tyrosine metabolism were the top four pathways. Secondary
metabolites have been shown to play an important role in the pathogenicity of several
fungal pathogens. They are beneficial for the infection process and contribute to adjusting
the disease progress [68]. They act in multiple ways and increase the pathogen’s ability to
overcome unfavorable conditions in their host environment in addition to tolerance to sev-
eral stressful environmental factors, including heat, drought, and UV light [69]. Moreover,
starch and sucrose metabolism are responsible for host starvation by direct depletion of
the host’s carbon reserves and increased carbon consumption, as mentioned in previous
studies [70].
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The results also showed that the predicted secretome was functionally annotated
in many biological processes, cellular components, and molecular functions. We filtered
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54 GO terms at each time point in which the secretome was described (Figure 4). The most
annotated GO terms in the biological processes were the carbohydrate metabolic process
(GO:0005975), and proteolysis (GO:0006508), while the extracellular region (GO:0005615)
and membrane (GO:0005886) were the most encountered GO terms in the cellular compo-
nent. Hydrolase activity, O-glycosyl compounds (GO:0004553), flavin adenine dinucleotide
binding (GO:0071949), and oxidoreductase activity (GO:0016491) were the most enriched
terms in the molecular functions. Being a plant pathogen, it is not surprising that the secre-
tome of P. lingam CAN1 consists mainly of proteins responsible for carbohydrate metabolic
process and in catabolic processes. Pathogens usually utilize their plant hosts as a source of
nutrients, and so carbohydrate-degrading and catabolic enzymes are crucial [71].
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lar Function) for the predicted secretome describing the protein functions.

Out of the 217 proteins of the predicted secretome, 85 were identified as carbohydrate-
active enzymes, representing 39.17% of the secretome (Figure 5a,b). Peptidases constituted
approximately 11.52%, with a total of 25 enzymes (Figure 5a–c). Eight lipases were recorded,
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representing 4.14% of the secretome. Oxidoreductases, peroxidases, and phosphatases
represented 11.14% of all the enzymes combined (Figure 5a). Plant cell-wall-degrading
enzymes play significant roles in fungal pathogenicity [71], allowing them to attack and pen-
etrate their host’s cell wall. Cellobiose-related enzymes included 10 gluco-oligosaccharide
oxidase and 7 GMC oxidoreductases, belonging to families AA7 and AA3, respectively,
were the most identified CAZy proteins (Table 1).

Five multicopper oxidases (AA1) and 4 lignin peroxidases (AA2) were also recorded.
These enzymes can exhibit important auxiliary roles in lignocellulose degradation [72].
Five galactanase enzymes (GH16) were also identified which are important for hydrol-
ysis of galactan (components of many plant cell walls) [73]. Many secreted peptidases
are described as virulence factors in fungal pathogens. They can suppress their host’s
defense responses through inactivation or modification of the host defense proteins [74].
In our study, the most frequently identified peptidases were subtilisin-related (8 out of
25), belonging to family peptidase S8 (Figure 5a–c). Moreover, the lipases (8) included in
the predicted secretome could be one of the virulence factors, because lipases hydrolyze
phospholipids, which are the main constituent of the plasma membrane [75].
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Table 1. List of CAZymes in the secretome of Plenodomus lingam CAN1.

CAZy Family Annotation InterPro ID EC Number Substrate Copy No.

AA1 Multicopper oxidase IPR045087 1.10.3.2 Lignin 5
AA2 Lignin peroxidase IPR001621 na Lignin 4
AA3 GMC oxidoreductase IPR012132 1.1.99.18 Cellobiose 7
AA5 Radical Copper oxidase - 1.3.3.9 Galactose 3
AA7 Glucooligosaccharide oxidase - 1.3.3.- Cellobiose 10
AA9 lytic cellulose monooxygenase IPR005103 1.14.99.56 Cellulose 4

CBM63 Cellulose binding IPR007112 na Cellulose 1
CE4 chitin deacetylase - 3.5.1.41 Chitin 4
CE5 acetyl xylan esterase IPR000675 3.1.1.72 Xylan 4

Cutinase IPR011150 3.1.1.74 Cutin
CE8 Pectin methylesterase - 3.1.1.11 Pectin 2
GH2 β -mannosidase - 3.2.1.25 Mannose 1
GH3 β-glucosidase IPR017736 3.2.1.21 Cellulose 3
GH6 1, 4- β-cellobiohydrolase IPR016288 3.2.1.91 Cellulose 1

GH10 Endo-β-1,4-xylanase IPR044846 3.2.1.8 Xylan 3
GH11 Endo-β-1,4-xylanase IPR001137 3.2.1.8 Xylan 2
GH12 Endo-β-1,4-glucanase IPR002594 3.2.1.4 Cellulose 1

Xyloglucanase - 3.2.1.151 Xylan
GH15 Glucoamylase IPR000165 3.2.1.3 Starch 1
GH16 Endo-β-1,3-galactanase IPR000757 3.2.1.181 Galactan 5
GH17 Endo-1,3-β-glucosidase IPR017853 na Polysaccharides 1
GH18 Chitinase IPR001223 3.2.1.14 Chitin 5
GH26 Endo-β-1,4-glucanase IPR000805 3.2.1.4 Cellulose 1
GH27 α-galactosidase IPR002241 3.2.1.22 Hemicellulose 3
GH28 Polygalacturonase IPR000743 3.2.1.15 Pectin 4
GH31 α -glucosidase IPR000322 3.2.1.20 Amylose 1
GH35 β-galactosidase IPR001944 3.2.1.23 Hemicellulose 1
GH37 α, α-trehalase IPR001661 3.2.1.28 Trehalose 1
GH45 Endo-β-1,4-glucanase - 3.2.1.4 Cellulose 1
GH63 α-glucosidase IPR004888 3.2.1.106 Oligosaccharides 1
GH92 α-mannosidases IPR044846 na Mannose 1

GH105 Rhamnogalacturonyl hydrolase IPR010905 3.2.1.172 Pectin 1
PL1 Pectate lyase - 4.2.2.2 Pectin 1
PL3 Pectate lyase IPR004898 4.2.2.2 Pectin 1
PL4 Rhamnogalacturonan lyase IPR029413 4.2.2.- Galacturonan 1
PL26 Rhamnogalacturonan exolyase - 4.2.2.24 Galacturonan 1

Additionally, the secretomes of other blackleg fungal pathogens (P. lingam JN3 and
P. biglobosus) were predicted for further comparison with P. lingam CAN1 (Table 2). The
secretomes of P. lingam JN3 and P. biglobosus CA1 were retrieved from the NCBI database.
The number of protein models in the Plendomus strains ranged from 11,837 to 12,469. A
pipeline of programs was used to predict the secretome of each strain. The highest total
number of predicted secretomes was recorded in P. biglobosus CA1, representing 1.95% of
its total proteome. For the two P. lingam strains, the number of predicted proteins in the
secretome of CAN1 is greater than that of JN3.

Table 2. Comparison of secretome data between the three blackleg fungal strains.

Fungal Species Total Proteome Secretome (%) CAZymes Effectors

P. lingam CAN1 11,837 217 (1.83%) 85 49
P. lingam JN3 12,469 209 (1.67%) 90 42

P. biglobosus CA1 12,183 238 (1.95%) 103 63
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For comparative genomic studies, orthologous clustering analysis was performed by
OrthVenn3, which provides effective cluster identification for numerous species (Figure 6).
Results revealed that the studied strains shared 7978 cluster genes with the strongest
association between the two strains of P. lingam (1284 clusters), which was further confirmed
by the overlapping cluster information in pairwise fashion among the three blackleg
pathogens using heatmap analysis (Figure S1). A phylogenetic tree of the three pathogenic
strains was designed (Figure 7). This ultrametric tree was constructed using protein
sequences of three species, showing gene family expansion and contraction (Figure 7). The
variation of gene family was calculated by CAFE5 [76]. P. lingam CAN1 and P. lingam JN3
were clustered into one branch. Differentiation time analysis showed that the two strains
differentiated approximately one million years ago. This analysis illustrates the closer
evolutionary relationship between P. lingam CAN1 and P. biglobosus, where P. lingam CAN1
is considered the intermediate strain between P. lingam JN3 and P. biglobosus.
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When comparing the studied strains in terms of their gene ontology terms (Figure 8),
it was found that the most shared biological processes were carbohydrate catabolic process,
metabolic process, and cellular metabolic process, while oxidoreductase activity, monooxy-
genase activity, and transferase activity were the most identified molecular function. Also,
the most common shared cellular components were membrane, cellular component, and
extracellular region. The three studied strains showed a similar pattern of CAZymes
(Figure 9): glucooligosaccharide oxidase (AA7), GMC oxidoreductase (AA3), chitin deacety-
lase (CE4), and acetyl xylan esterase (CE5) were the most identified CAZymes.

J. Fungi 2023, 9, x FOR PEER REVIEW 13 of 24 
 

 

component, and extracellular region. The three studied strains showed a similar pa�ern 

of CAZymes (Figure 9): glucooligosaccharide oxidase (AA7), GMC oxidoreductase (AA3), 

chitin deacetylase (CE4), and acetyl xylan esterase (CE5) were the most identified CA-

Zymes. 

 

Figure 8. Biological process (BP), molecular function (MF), and cellular component (CC) of: (a) P. 

lingam CAN1 vs. P. lingam JN3; (b) P. lingam CAN1 vs. P. biglobosus CA1; (c) P. lingam CAN1 vs. P. 

lingam JN3 vs. P. biglobosus CA1. 

Figure 8. Biological process (BP), molecular function (MF), and cellular component (CC) of:
(a) P. lingam CAN1 vs. P. lingam JN3; (b) P. lingam CAN1 vs. P. biglobosus CA1; (c) P. lingam CAN1 vs.
P. lingam JN3 vs. P. biglobosus CA1.



J. Fungi 2023, 9, 740 13 of 22J. Fungi 2023, 9, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 9. Comparison of carbohydrate-activating enzymes (CAZymes) between Plenodomus species: 

(a) Bubble plot showed different CAzymes in the secretome between the species; (b) Bar graph 

showed different CAZy families of effector proteins between species; (c) UpsetR plot showed num-

ber of CAZY families of effectors shared between species to each other. 

3.4. Analysis of Putative Effectors 

Most effectors’ prediction approaches use structural characteristics of proteins and 

conserved domain (CD) of motifs. However, all effector proteins don’t share all these 

structural characteristics between species even if they share li�le sequence similarities. All 

these reasons make the prediction of effectors a challenging task [17]. We used a machine 

learning program (EffectorP) for building a model depending on a variety of features that 

predict cytoplasmic effectors (rich with positively charged amino acids) and apoplastic 

effectors (rich with cysteine residues) [46,77]. The entire predicted secretome of P. lingam 

CAN1 was screened for protein effectors, as illustrated in the pipeline scheme of this work 

(Figure 1). From the refined secretome, 49 effector proteins were described (Table 3). Seven 

candidates were found with both apoplastic and cytoplasmic effectors. Of the 49 putative 

effectors, the functional domain of 39 proteins was annotated. One putative effector 

(KAH9872288.1) possessed an unknown function domain (DUF6060), and the rest had no 

annotation. The absence of prediction to some sequences might be of interest for further 

analysis [78,79]. 

Figure 9. Comparison of carbohydrate-activating enzymes (CAZymes) between Plenodomus species:
(a) Bubble plot showed different CAzymes in the secretome between the species; (b) Bar graph
showed different CAZy families of effector proteins between species; (c) UpsetR plot showed number
of CAZY families of effectors shared between species to each other.

3.4. Analysis of Putative Effectors

Most effectors’ prediction approaches use structural characteristics of proteins and
conserved domain (CD) of motifs. However, all effector proteins don’t share all these
structural characteristics between species even if they share little sequence similarities.
All these reasons make the prediction of effectors a challenging task [17]. We used a
machine learning program (EffectorP) for building a model depending on a variety of
features that predict cytoplasmic effectors (rich with positively charged amino acids) and
apoplastic effectors (rich with cysteine residues) [46,77]. The entire predicted secretome
of P. lingam CAN1 was screened for protein effectors, as illustrated in the pipeline scheme
of this work (Figure 1). From the refined secretome, 49 effector proteins were described
(Table 3). Seven candidates were found with both apoplastic and cytoplasmic effectors. Of
the 49 putative effectors, the functional domain of 39 proteins was annotated. One putative
effector (KAH9872288.1) possessed an unknown function domain (DUF6060), and the rest
had no annotation. The absence of prediction to some sequences might be of interest for
further analysis [78,79].
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Table 3. Characterization of putative effectors in the refined secretome of P. lingam CAN1.

Protein ID
Effector Probabilities PHI-Blast

Domain
Apoplastic Cytoplasmic PHI ID Classification

KAH9881423.1 0.646 - PHI:10423 Reduced virulence -
KAH9881503.1 0.658 - PHI:10461 Reduced virulence -
KAH9880351.1 - 0.844 PHI:5599 Unaffected pathogenicity -
KAH9880478.1 - 0.549 PHI:9191 Reduced virulence SET_dom
KAH9880542.1 0.677 - PHI:2138 Unaffected pathogenicity Cellulose/chitin-bd_N
KAH9880554.1 0.78 - PHI:6391 Unaffected pathogenicity Chitin-bd_1/NODB_dom
KAH9879448.1 0.826 - PHI:652 Avirulence determinant Trypsin_dom
KAH9876765.1 0.504 - PHI:6228 Reduced virulence GH16_dom
KAH9876928.1 - 0.666 PHI:1028 Reduced virulence Pectinesterase_cat
KAH9876931.1 0.627 PHI:1034 Unaffected pathogenicity Pectin_lyase_fold
KAH9876991.1 - 0.791 PHI:9553 Unaffected pathogenicity ML_PG-PI_TP
KAH9877485.1 0.698 - PHI:2817 Unaffected pathogenicity Glyco_hydro_28
KAH9877596.1 0.652 - PHI:6391 Unaffected pathogenicity Chitin-bd_1/NODB_dom
KAH9874320.1 0.861 0.527 PHI:8520 Reduced virulence AltA1
KAH9874600.1 0.883 - PHI:571 Unaffected pathogenicity GH11_dom
KAH9875744.1 0.835 0.631 PHI:180 Reduced virulence Pectin_lyas_fold
KAH9875764.1 0.723 - PHI:2044 Loss of pathogenicity Lipocln_cytosolic-bd
KAH9875892.1 - 0.525 PHI:10926 Reduced virulence -
KAH9873589.1 0.793 - PHI:6832 Avirulence determinant LysM_dom
KAH9873703.1 - 0.619 PHI:9867 Reduced virulence Thioredoxin
KAH9873874.1 - 0.544 PHI:10459 Reduced virulence MRH_dom
KAH9874050.1 0.826 - PHI:3214 Unaffected pathogenicity CFEM_dom
KAH9872236.1 0.518 - PHI:9546 Reduced virulence Aspergillopepsin-like
KAH9872288.1 0.758 - - - DUF6060
KAH9870266.1 0.525 - PHI:6823 Reduced virulence -
KAH9871448.1 - 0.698 PHI:9867 Reduced virulence ERp29_C/Thioredoxin
KAH9869412.1 - 0.863 PHI:3440 Reduced virulence -
KAH9869498.1 - 0.532 PHI:9903 Reduced virulence PCSK9_ProteinaseK
KAH9869606.1 0.794 0.56 PHI:8208 Reduced virulence -
KAH9867862.1 - 0.659 PHI:401 Unaffected pathogenicity -
KAH9868053.1 - 0.703 PHI:1380 Unaffected pathogenicity -
KAH9868081.1 0.504 - PHI:2210 Reduced virulence GH11_dom
KAH9867052.1 0.693 - PHI:653 Avirulence dominant Trypsin
KAH9867270.1 0.723 - PHI:2383 Hypervirulence Cutinase_monf
KAH9867337.1 0.713 0.79 PHI:6834 Avirulence dominant LysM
KAH9864751.1 0.527 - PHI:197 Reduced virulence Oxid_FAD_bind_N
KAH9865909.1 - 0.676 PHI:10459 Reduced virulence MRH_dom/PRKCSH_N
KAH9864831.1 - 0.639 PHI:4231 Reduced virulence Fasciclin (FAS1)
KAH9865021.1 0.844 0.649 PHI:3972 Unaffected pathogenicity Chitin-bd_1
KAH9865263.1 0.78 0.602 PHI:2383 Hypervirulence Cutinase/axe
KAH9861880.1 - 0.757 PHI:5236 Reduced virulence DnaJ_dom
KAH9861890.1 0.777 - PHI:1008 Reduced virulence Ubiquitin3-bd_dom
KAH9861931.1 - 0.578 PHI:9867 Reduced virulence Thioredoxin
KAH9862482.1 - 0.575 PHI:181 Reduced virulence Znf_C2H2_type
KAH9860991.1 0.562 - PHI:3503 Reduced virulence Pectin_lyas_fold
KAH9861149.1 0.505 - PHI:1087 Unaffected pathogenicity Tyrosinase_Cu-bd
KAH9861329.1 0.816 - PHI:11528 Reduced virulence NODB_dom
KAH9862149.1 0.501 - PHI:10358 Reduced virulence Cellulose-bd_dom_fun
KAH9859690.1 0.698 - PHI:7283 Reduced virulence Pectin_lyas_fold

The protein–protein interaction between putative effectors was analyzed by STRING
V11.5 [48]. The dominant associated effector proteins were disulfide isomerase enzyme
and pectin hydrolytic enzymes belonging to different families such as GH28, PL1, and PL2
(Figure 10). The other disconnected nodes were hidden from the network. Pectinolytic
enzymes have a pivotal role in cell wall degradation and softening plant tissues [80]. The
disulfide isomerase is an endoplasmic reticulum (ER) protein involved in protein fold-
ing and production of reactive oxygen species (ROS) that play a role in host–pathogen
interaction [81]. Phylogenetic tree and MEME motifs were analyzed to CAZy families
related to pectin degradation, as shown in Figure 7. Phylogenetic analysis illustrated
that KAH9875744.1 (pectate lyase) was grouped into a single branch, although there are
other proteins with the same domain such as KAH9859690.1 and KAH9860991.1. M1–M15
motifs of pectinolytic-related proteins were compared. KAH9859690.1 and KAH9859690.1
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had more similar motifs, while KAH9876931.1 and KAH9875744.1 showed obviously dif-
ferent motifs (Figure 11). From this comparison, we discovered that M15 was found
only in KAH9876931.1 protein and M10 specifically presented in KAH9875744.1 and
KAH9876928.1. According to phylogenetic relationships, KAH9875744.1 was grouped
singly despite protein–protein interaction results and similarity with other protein domains.
The results of MEME analysis were mostly inconsistent with those of the phylogenetic anal-
ysis, except in the middle clade. These findings are different from previous work [82,83].
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Figure 10. Protein–protein interactions between the associated effector proteins: (a) Interactions
between pectate hydrolytic effector groups; (b) Interactions between protein disulphide isomerase
effectors.; (c) Interactions between hemi-cellulase effector groups; (d) Interactions between peptidase
S1 family effectors.
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For more confirmation, structure protein prediction (homology modeling) and molec-
ular docking were investigated for the KAH9875744.1 protein by SWISS-MODEL and
CB-Dock2, respectively. The best model match with the candidate protein KAH9875744.1
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was pectate lyase template of Colletotrichum nymphaeae SA-01 with GMQE equal to 0.93,
70.59% sequence identity, and 87.57% Ramachandran favored, all indicating the good
quality of the modeling protein (Figure 12a–c). Also, the same result was obtained when
AlphaFold was applied [84] to the protein database and gave pLDDT about 98% confidence
(very high model confidence, Figure 12b). These results confirm that the KAH9875744.1
protein is pectate lyase, where the 3D protein structure is highly related to its function;
they also predict the binding sites of the protein [85]. The downloaded 3D structure model
(pectate lyase) was used for docking analysis against three ligands (pectin, digalacturonate,
and pectate). The estimated free energy of binding between the protein and pectin is
−6.1 Kcal/mol (Figure 13a) and the free energy between the protein and digalacturonate
is −6.17 Kcal/mol (Figure 13b), while it is estimated about −7.5 Kcal/mol between the
protein and pectic acid (Figure 13c). Also, pectate forms a stronger hydrogen bond than
other ligands for binding to the receptor protein. These results indicate that pectate is a
good ligand for the 3D model protein, which confirms the previous findings about the
KAH9875744.1 protein.
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expected prediction error using AlphaFold2 database; (c) Ramachandran plot of the model structure
validation shows favorable β-sheet and α-helix angles.
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In comparison to effector proteins secreted by other related blackleg fungi, P. lingam
JN3 and P. biglobosus secrete 42 and 63 effectors, respectively (Tables 2, S3 and S4). CAZyme
classifications for P. lingam JN3 and P. biglobosus were annotated (Tables S5 and S6). The
three Plenodomus species shared six CAZy enzyme families: CE4, CE5, GH11, GH16, GH28,
and PL1 (Figure 9b,c). P. lingam CAN1 and P. lingam JN3 shared only the AA9 family,
while two CAZy families (AA13 and PL3) were secreted from both P. lingam CAN1 and
P. biglobosus (Figure 9b,c). Orthologue analysis found that P. lingam CAN1 shared 14 CAZy
effectors with other related species. The comparison of putative effectors and CAZy families
between the three pathogenic fungi ensures the role of pectinolytic and hemicellulolytic
enzymes for starting the pathogenesis process against the rapeseed plants.
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3.5. Analysis of Virulence Factors

The Pathogen-Host Interaction database (PHI base) was used to compare and blast the
putative effector proteins with pathogenicity genes homologous to other phytopathogens [86].
These data classify the proteins into different categories, such as reduced virulence, unaf-
fected pathogenicity, hypervirulence, loss of pathogenicity, and effector (plant avirulent
determinant), among others [87]. Based on the PHI annotation, most effector proteins were
classified as reduced virulence and unaffected pathogenicity (Table 3), meaning that the
transgenic strain which expresses no, or reduced, levels of a specific gene product has
wild-type disease. These findings agreed with Urban et al. [47], who classified 44% of data
entries as phenotype term ‘reduced virulence’, followed by the unaffected pathogenicity
term (26%). Two effectors (KAH9867270.1 and KAH9865263.1) were classified as hyper-
virulence (increased virulence). Both proteins are homologous to the same organism and
MfCUT1 gene in Monilia fruticola (Table S7). This gene is a redox-regulated cutinase gene
that increases the virulence of the brown rot caused by the fungus [88]. Four proteins were
assigned as effector (plant avirulence determinant), including two genes (Vd5LysM and
GIP) [89]. The KAH9861890.1 protein (Ubiquitin3-bd_dom) was encoded by the NPS6 gene
that is involved in siderophore-mediated iron metabolism (conserved virulence determi-
nant of plant pathogenic ascomycetes) [90]. The three effectors containing a chitin-binding
domain (KAH9880554.1, KAH9877596.1, and KAH9865021.1) might be of interest because
the interactions of protein effectors with chitin to suppress the chitin-induced defence
response is a mechanism used by known effectors such as Avr4 or Ecp6 [91]. Surprisingly,
these proteins were encoded by the CDA2 (cytidine deaminase) gene, and none of these
contain a LysM domain which is found in the Ecp6, so these proteins were classified as
unaffected pathogenicity. Also, two effectors (KAH9879448.1 and KAH9867052.1) were
found by a BLAST against the PHI database as an effector (plant avirulence determinant)
that were encoded by GIP1 (PHI:652) and GIP2 (PHI:653) of Phytophthora sojae (Table S7).
These proteins are serine endopeptidases acting as inhibitors of the endo-β-1,3-glucanases
of the plant host to suppress its elicitor-mediated defence response [92]. Four proteins
were matched with protein disulphide isomerase pdi genes (PHI:9867) of Ustilago maydis.
Because P. lingam has a hemibiotrophic lifestyle, such cell-death-inducing genes might have
a substantial role during the necrotrophic stage of the pathogen.

4. Conclusions

This work provides the first in silico exploration of P. lingam CAN1 global secretome
and compares it with other related species (P. lingam JN3 and P. biglobosus). To shed light on
the infection mechanisms of P. lingam CAN1 on Brassica napus, we annotated the first draft
genome of the pathogenic fungus and analyzed its secretory proteins, including putative
effectors and virulence factors. Out of the refined secretome (217 proteins), 85 CAZymes,
25 proteases, 8 lipases, and 49 putative effector proteins were characterized. Varieties of
effector virulence factors were detected when matched to the PHI-base database. Most
of them were categorized as reduced and unaffected pathogenicity, while two effectors
were classified as hypervirulence. The effector proteins include all cell-wall-degrading
enzymes, especially pectinolytic and hemicellulolytic enzymes where the degradation of
xylan and pectin is required for penetrating and proliferating the pathogen inside host
cells. Also, the comparative genetic analysis between P. lingam CAN1 and other closely
related strains shared most of the CAZYmes and effectors. The present study will be a
worthy source for studies related to understating the pathogenicity mechanisms between
pathogenic Plenodomus species and their plant hosts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof9070740/s1, Figure S1: Pairwise heatmap showing the relationship
between the species after the clustering orthologue analysis; Table S1: List of the proteins that
represent the proteome of P. lingam CAN1; Table S2: Physicochemical characters of P. lingam CAN1
refined secretome; Table S3: Effector proteins secreted from P. lingam JN3 that were detected by
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EffectorP; Table S4: Effector proteins secreted from P. biglobosus CA1 that were detected by EffectorP;
Table S5: CAZy families of P. lingam JN3 secreted proteins that were annotated by dbCAN3; Table S6:
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