Anticytokine Autoantibodies and Fungal Infections
Abstract
:1. Introduction
2. Role of Innate Immunity in Fungal Infections
3. Anticytokine Autoantibodies in Health and Disease
4. Autoantibodies in Non-Fungal Infections
5. Autoantibodies in Fungal Infections
6. Talaromyces marneffei and anti-IFN-γ Autoantibodies (AIGAs)
7. Histoplasmosis and anti-IFN-γ Antibodies
8. Cryptococcus gattii Infection and anti-GM-CSF Autoantibodies
9. Chronic Mucocutaneous Candidiasis and anti-IL-17A/F (IL-22) Antibodies
10. Diagnostic Considerations
11. Therapeutic Implications
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathakumari, B.; Liang, G.; Liu, W. Immune defence to invasive fungal infections: A comprehensive review. Biomed. Pharmacother. 2020, 130, 110550. [Google Scholar] [CrossRef] [PubMed]
- Vinh, D.C. Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Ataya, A.; Knight, V.; Carey, B.C.; Lee, E.; Tarling, E.J.; Wang, T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front. Immunol. 2021, 12, 752856. [Google Scholar] [CrossRef]
- Watanabe, M.; Uchida, K.; Nakagaki, K.; Kanazawa, H.; Trapnell, B.C.; Hoshino, Y.; Kagamu, H.; Yoshizawa, H.; Keicho, N.; Goto, H.; et al. Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Lett. 2007, 581, 2017–2021. [Google Scholar] [CrossRef] [Green Version]
- Rieper, C.D.L.; Galle, P.; Hansen, M.B. Characterization and potential clinical applications of autoantibodies against cytokines. Cytokine Growth Factor Rev. 2009, 20, 61–75. [Google Scholar] [CrossRef]
- Howe, H.S.; Leung, B.P.L. Anti-Cytokine Autoantibodies in Systemic Lupus Erythematosus. Cells 2019, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, V. Immunodeficiency and Autoantibodies to Cytokines. J. Appl. Lab. Med. 2022, 7, 151–164. [Google Scholar] [CrossRef]
- Cheng, A.; Holland, S.M. Anticytokine autoantibodies: Autoimmunity trespassing on antimicrobial immunity. J. Allergy Clin. Immunol. 2022, 149, 24–28. [Google Scholar] [CrossRef]
- Zhang, Q.; Pizzorno, A.; Miorin, L.; Bastard, P.; Gervais, A.; Le Voyer, T.; Bizien, L.; Manry, J.; Rosain, J.; Philippot, Q.; et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 2022, 219, e20220514. [Google Scholar] [CrossRef]
- Manry, J.; Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.-H.; Eto, S.; Garcia-Prat, M.; et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA 2022, 119, e2200413119. [Google Scholar] [CrossRef]
- Gupta, S.; Tatouli, I.P.; Rosen, L.B.; Hasni, S.; Alevizos, I.; Manna, Z.G.; Rivera, J.; Jiang, C.; Siegel, R.M.; Holland, S.M.; et al. Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis Rheumatol. 2016, 68, 1677–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doffinger, R.; Helbert, M.R.; Barcenas-Morales, G.; Yang, K.; Dupuis, S.; Ceron-Gutierrez, L.; Espitia-Pinzon, C.; Barnes, N.; Bothamley, G.; Casanova, J.; et al. Autoantibodies to Interferon-γ in a Patient with Selective Susceptibility to Mycobacterial Infection and Organ-Specific Autoimmunity. Clin. Infect. Dis. 2004, 38, e10–e14. [Google Scholar] [CrossRef] [PubMed]
- Puel, A.; Bastard, P.; Bustamante, J.; Casanova, J.-L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 2022, 219, e20211387. [Google Scholar] [CrossRef]
- Wang, F.; Han, R.; Chen, S. An Overlooked and Underrated Endemic Mycosis—Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin. Microbiol. Rev. 2023, 36, e0005122. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.A. Infection Due to Penicillium marneffei, an Emerging Pathogen: Review of 155 Reported Cases. Clin. Infect. Dis. 1996, 23, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.; Lau, S.K.; Yuen, K.-Y.; Woo, P.C. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg. Microbes Infect. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Li, H.-R.; Cai, S.-X.; Chen, Y.-S.; Yu, M.-E.; Xu, N.-L.; Xie, B.-S.; Lin, M.; Hu, X.-L. Comparison of Talaromyces marneffei Infection in Human Immunodeficiency Virus-positive and Human Immunodeficiency Virus-negative Patients from Fujian, China. Chin. Med. J. 2016, 129, 1059–1065. [Google Scholar] [CrossRef]
- Kawila, R.; Chaiwarith, R.; Supparatpinyo, K. Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand: A retrospective study. BMC Infect. Dis. 2013, 13, 464. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Ning, X.-Q.; Ding, J.-Y.; Zheng, Y.-Q.; Shi, N.-N.; Wu, F.-Y.; Lin, Y.-K.; Shih, H.-P.; Ting, H.-T.; Liang, G.; et al. Anti–IFN-γ autoantibodies underlie disseminated Talaromyces marneffei infections. J. Exp. Med. 2020, 217, e20190502. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Li, Z.-T.; Li, S.-Q.; Guan, W.-J.; Qiu, Y.; Lei, Z.-Y.; Zhan, Y.-Q.; Zhou, H.; Lin, S.; Wang, X.; et al. Clinical findings of Talaromyces marneffei infection among patients with anti-interferon-γ immunodeficiency: A prospective cohort study. BMC Infect. Dis. 2021, 21, 587. [Google Scholar] [CrossRef]
- Pruksaphon, K.; Nosanchuk, J.D.; Ratanabanangkoon, K.; Youngchim, S. Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J. Fungi 2022, 8, 200. [Google Scholar] [CrossRef]
- Chi, C.-Y.; Chu, C.-C.; Liu, J.-P.; Lin, C.-H.; Ho, M.-W.; Lo, W.-J.; Lin, P.-C.; Chen, H.-J.; Chou, C.-H.; Feng, J.-Y.; et al. Anti–IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 2013, 121, 1357–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, D.; Menchaca, L.; Rood, H.; Komerofsky, R. New allele frequency database: http://www.allelefrequencies.net. Tissue Antigens 2003, 61, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chi, C.-Y.; Shih, H.-P.; Ding, J.-Y.; Lo, C.-C.; Wang, S.-Y.; Kuo, C.-Y.; Yeh, C.-F.; Tu, K.-H.; Liu, S.-H.; et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat. Med. 2016, 22, 994–1001. [Google Scholar] [CrossRef]
- Araúz, A.B.; Papineni, P. Histoplasmosis. Infect. Dis. Clin. N. Am. 2021, 35, 471–491. [Google Scholar] [CrossRef]
- Browne, S.K.; Burbelo, P.D.; Chetchotisakd, P.; Suputtamongkol, Y.; Kiertiburanakul, S.; Shaw, P.A.; Kirk, J.L.; Jutivorakool, K.; Zaman, R.; Ding, L.; et al. Adult-Onset Immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 2012, 367, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.H.; Ortega-Villa, A.M.; Hunsberger, S.; Chetchotisakd, P.; Anunnatsiri, S.; Mootsikapun, P.; Rosen, L.B.; Zerbe, C.S.; Holland, S.M. Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the United States. Clin. Infect. Dis. 2020, 71, 53–62. [Google Scholar] [CrossRef]
- Meijer, J.A.A.; Sjögren, E.V.; Kuijper, E.; Verbist, B.M.; Visser, L.G. Necrotizing cervical lymphadenitis due to disseminated Histoplasma capsulatum infection. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 574–576. [Google Scholar] [CrossRef]
- Van De Vosse, E.; Van Wengen, A.; Van Der Meide, W.F.; Visser, L.G.; Van Dissel, J.T. A 38-year-old woman with necrotising cervical lymphadenitis due to Histoplasma capsulatum. Infection 2017, 45, 917–920. [Google Scholar] [CrossRef] [Green Version]
- May, R.C.; Stone, N.; Wiesner, D.L.; Bicanic, T.; Nielsen, K.V. Cryptococcus: From environmental saprophyte to global pathogen. Nat. Rev. Genet. 2016, 14, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Lo, Y.-F.; Shih, H.-P.; Ho, M.-W.; Yeh, C.-F.; Peng, J.-J.; Ting, H.-T.; Lin, K.-H.; Huang, W.-C.; Chen, Y.-C.; et al. Cryptococcus gattii Infection as the Major Clinical Manifestation in Patients with Autoantibodies Against Granulocyte–Macrophage Colony-Stimulating Factor. J. Clin. Immunol. 2022, 42, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.H.; Wu, U.I.; Pan, Y.H.; Wang, J.T.; Wang, Y.C.; Sun, H.Y.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Neutralizing Anti–Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in Patients with Central Nervous System and Localized Cryptococcosis: Longitudinal Follow-up and Literature Review. Clin. Infect. Dis. 2022, 75, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Dolen, W.K.; Green, L.S.; Wray, B.B. Chapter 20. Mucocutaneous candidiasis. In Primary and Secondary Immunodeficiency: A Case-Based Guide to Evaluation and Management, 1st ed.; Springer: Cham, Switzerland, 2022; pp. 349–359. [Google Scholar]
- Puel, A.; Döffinger, R.; Natividad, A.; Chrabieh, M.; Barcenas-Morales, G.; Picard, C.; Cobat, A.; Ouachée-Chardin, M.; Toulon, A.; Bustamante, J.; et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 2010, 207, 291–297. [Google Scholar] [CrossRef]
- Kisand, K.; Wolff, A.S.B.; Podkrajšek, K.T.; Tserel, L.; Link, M.; Kisand, K.V.; Ersvaer, E.; Perheentupa, J.; Erichsen, M.M.; Bratanic, N.; et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010, 207, 299–308. [Google Scholar] [CrossRef]
- Suárez, I.; Lehmann, C.; Grüll, H.; Graeb, J.; Kochanek, M.; Fätkenheuer, G.; Plum, G.; Van Wengen, A.; Van De Vosse, E.; Hartmann, P.; et al. Repurposing QuantiFERON for Detection of Neutralizing Interferon-γ Autoantibodies in Patients with Nontuberculous Mycobacterial Infections. Clin. Infect. Dis. 2017, 65, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Wu, U.-I.; Chuang, Y.-C.; Sheng, W.-H.; Sun, H.-Y.; Jhong, Y.-T.; Wang, J.-Y.; Chang, S.-C.; Chen, Y.-C. Use of QuantiFERON-TB Gold In-tube assay in screening for neutralizing anti-interferon-γ autoantibodies in patients with disseminated nontuberculous mycobacterial infection. Clin. Microbiol. Infect. 2018, 24, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawansuntati, K.; Rattanathammethee, K.; Wipasa, J. Minireview: Insights into anti-interferon-γ autoantibodies. Exp. Biol. Med. 2021, 246, 790–795. [Google Scholar] [CrossRef]
- Browne, S.K.; Zaman, R.; Sampaio, E.P.; Jutivorakool, K.; Rosen, L.B.; Ding, L.; Pancholi, M.J.; Yang, L.M.; Priel, D.L.; Uzel, G.; et al. Anti-CD20 (rituximab) therapy for anti–IFN-γ autoantibody–associated nontuberculous mycobacterial infection. Blood 2012, 119, 3933–3939. [Google Scholar] [CrossRef]
- Laisuan, W.; Pisitkun, P.; Ngamjanyaporn, P.; Suangtamai, T.; Rotjanapan, P. Prospective Pilot Study of Cyclophosphamide as an Adjunct Treatment in Patients with Adult-Onset Immunodeficiency Associated with Anti-interferon-γ Autoantibodies. Open Forum Infect. Dis. 2020, 7, ofaa035. [Google Scholar] [CrossRef]
- Koizumi, Y.; Sakagami, T.; Nishiyama, N.; Hirai, J.; Hayashi, Y.; Asai, N.; Yamagishi, Y.; Kato, H.; Hagihara, M.; Sakanashi, D.; et al. Rituximab Restores IFN-γ-STAT1 Function and Ameliorates Disseminated Mycobacterium avium Infection in a Patient with Anti-Interferon-γ Autoantibody. J. Clin. Immunol. 2017, 37, 644–649. [Google Scholar] [CrossRef]
- Czaja, C.A.; Merkel, P.A.; Chan, E.D.; Lenz, L.L.; Wolf, M.L.; Alam, R.; Frankel, S.K.; Fischer, A.; Gogate, S.; Perez-Velez, C.M.; et al. Rituximab as Successful Adjunct Treatment in a Patient with Disseminated Nontuberculous Mycobacterial Infection Due to Acquired Anti-Interferon- Autoantibody. Clin. Infect. Dis. 2014, 58, e115–e118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa, S.; Ding, L.; Kreuzburg, S.; Treat, J.; Holland, S.M.; Zerbe, C.S. Daratumumab (Anti-CD38) for Treatment of Disseminated Nontuberculous Mycobacteria in a Patient With Anti–Interferon-γ Autoantibodies. Clin. Infect. Dis. 2021, 72, 2206–2208. [Google Scholar] [CrossRef]
- Lorenzetti, R.; Janowska, I.; Smulski, C.R.; Frede, N.; Henneberger, N.; Walter, L.; Schleyer, M.-T.; Hüppe, J.M.; Staniek, J.; Salzer, U.; et al. Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J. Autoimmun. 2019, 101, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.; Cheng, Q.; Klotsche, J.; Khodadadi, L.; Waka, A.; Biesen, R.; Hoyer, B.F.; Burmester, G.R.; Radbruch, A.; Hiepe, F. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur. J. Immunol. 2018, 48, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.P.; Cupps, T.R.; Whalen, G.; Fauci, A.S. Selective effects of cyclophosphamide therapy on activation, proliferation, and differentiation of human B cells. J. Clin. Investig. 1987, 79, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Chetchotisakd, P.; Anunnatsiri, S.; Nanagara, R.; Nithichanon, A.; Lertmemongkolchai, G. Intravenous Cyclophosphamide Therapy for Anti-IFN-Gamma Autoantibody-Associated Mycobacterium abscessus Infection. J. Immunol. Res. 2018, 2018, 6473629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Fang, G.; Ye, F.; Zeng, W.; Tang, M.; Wei, X.; Yang, J.; Li, Z.; Zhang, J. Pathogen spectrum and immunotherapy in patients with anti-IFN-γ autoantibodies: A multicenter retrospective study and systematic review. Front. Immunol. 2022, 13, 1051673. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Tang, M.; Yang, M.; Fang, G.; Tang, S.; Zhang, J. Intravenous Cyclophosphamide Therapy for Anti-IFN-γ Autoantibody-Associated Talaromyces marneffei Infection. Open Forum Infect. Dis. 2022, 9, ofac612. [Google Scholar] [CrossRef]
Immunotherapy | Target | Mechanism | Citations |
---|---|---|---|
Rituximab | CD20 | B cell depletion | [39] [40] [41] [42] |
Daratumumab | CD38 | Plasmablast, plasma cell, early B cell depletion | [43] |
Abatacept | CD80 and CD86 on antigen-presenting cells | Block CD28 costimulation | [44] |
Bortezomib | Proteasome | Plasma cell depletion | [45] |
Cyclophosphamide | B cells | Impaired activation, proliferation, and differentiation | [46] [47] [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappagoda, S.; Deresinski, S. Anticytokine Autoantibodies and Fungal Infections. J. Fungi 2023, 9, 782. https://doi.org/10.3390/jof9080782
Kappagoda S, Deresinski S. Anticytokine Autoantibodies and Fungal Infections. Journal of Fungi. 2023; 9(8):782. https://doi.org/10.3390/jof9080782
Chicago/Turabian StyleKappagoda, Shanthi, and Stanley Deresinski. 2023. "Anticytokine Autoantibodies and Fungal Infections" Journal of Fungi 9, no. 8: 782. https://doi.org/10.3390/jof9080782
APA StyleKappagoda, S., & Deresinski, S. (2023). Anticytokine Autoantibodies and Fungal Infections. Journal of Fungi, 9(8), 782. https://doi.org/10.3390/jof9080782