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Abstract: The increasing morbidity and mortality of life-threatening Pneumocystis pneumonia (PCP)
in immunocompromised people poses a global concern, prompting the World Health Organization
to list it as one of the 19 priority invasive fungal diseases, calling for increased research and public
health action. In response to this initiative, we provide this review on the epidemiology of PCP in
non-HIV patients with various immunodeficient conditions, including the use of immunosuppressive
agents, cancer therapies, solid organ and stem cell transplantation, autoimmune and inflammatory
diseases, inherited or primary immunodeficiencies, and COVID-19. Special attention is given to
the molecular epidemiology of PCP outbreaks in solid organ transplant recipients; the risk of PCP
associated with the increasing use of immunodepleting monoclonal antibodies and a wide range
of genetic defects causing primary immunodeficiency; the trend of concurrent infection of PCP in
COVID-19; the prevalence of colonization; and the rising evidence supporting de novo infection rather
than reactivation of latent infection in the pathogenesis of PCP. Additionally, we provide a concise
discussion of the varying effects of different immunodeficient conditions on distinct components of
the immune system. The objective of this review is to increase awareness and knowledge of PCP in
non-HIV patients, thereby improving the early identification and treatment of patients susceptible
to PCP.

Keywords: Pneumocystis; non-HIV/AIDS; immunocompromised; epidemiology; primary
immunodeficiency; immunodepleting monoclonal antibodies; organ transplantation

1. Introduction

Pneumocystis jirovecii is an atypical opportunistic fungus that can cause life-threatening
Pneumocystis pneumonia (PCP) in immunodeficient patients. Prior to the advent of the
HIV/AIDS epidemic, PCP was predominantly reported in premature or malnourished
infants and patients with cellular immunodeficiencies due to conditions such as hemato-
logical malignancies, T cell deficiency, and other severe diseases requiring corticosteroid
treatment [1,2]. In the 1980s, the high morbidity of PCP in HIV-infected patients over-
shadowed its prevalence in non-HIV patients. Since the late 1990s, the broad utilization of
prophylaxis and subsequent combination antiretroviral therapy (cART) has significantly
reduced the PCP incidence in HIV-infected patients, but PCP has continued to affect indi-
viduals with other immunodeficient conditions [3,4]. In fact, some studies have reported
an increase in PCP incidence among these patients [5,6]. It has been estimated recently that
healthcare associated with PCP in the United States alone costs $475–$686 million annually,
ranking among the top three or four most serious fungal diseases [7–9].

Compared to PCP in HIV-infected patients, PCP in a non-HIV immunosuppressed
population has a shorter incubation period, a higher risk of respiratory failure and mortality,
and a more rapid disease progression, making it more difficult to diagnose in a timely
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manner [10–14]. Given the serious threat PCP poses to immunodeficient patients, it is
important for clinicians and health care workers to be aware of the new trends in the
epidemiology of PCP and to identify potential susceptible patients at the earlier stage in
order to initiate appropriate and timely prophylaxis or treatment.

Despite the growing public health implications of PCP, this and other invasive fungal
diseases have received little attention and few resources, with limited access to quality
diagnostics and treatment. This situation has recently prompted the World Health Or-
ganization (WHO) to list PCP as one of the 19 priority invasive fungal diseases, calling
for increased research efforts and public health action [15]. In response to this important
initiative, we contributed this review, with a focus on the changing epidemiology of PCP
among non-HIV patients.

2. The Infectious Agent and Infection Chain of PCP

P. jirovecii, the pathogen responsible for PCP in humans, belongs to the genus Pneu-
mocystis, which is closely related to the genera Schizosaccharomyces, Taphrina, and Saitoella
of the subphylum Taphrinomycotina within the phylum Ascomycota phylum [16]. This
genus encompasses a large group of phylogenetically closely related yet clearly distinct
organisms that are potentially capable of infecting all mammalian species with a very
strong, though probably not strict, host specificity. Currently, only six Pneumocystis species
have been formally named, including P. jirovecii (infecting humans or Homo sapiens) [17,18],
P. murina (house mice or Mus musculus) [19], P. carinii (Brown or Norway rats or Rattus
norvegicus) [20], P. wakefieldiae (Brown or Norway rats or Rattus norvegicus) [21], P. orycto-
lagi (rabbits or Oryctolagus cuniculus) [22], and P. canis (dogs or Canis lupus familiaris) [23].
Long-term cultivation of Pneumocystis remains unsuccessful, which impedes research on
many aspects of this pathogen, particularly its life cycle, transmission, immune evasion,
and drug resistance and susceptibility.

Despite great difficulty in studying Pneumocystis, recent advances in genetics have
facilitated our understanding of the basic biology and epidemiology of this pathogen,
including its chain of infection, as summarized in Figure 1.
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Figure 1. Pneumocystis infection chain. The infectious agent is exemplified by the cyst (also known
as ascus) of P. murina in infected mouse lungs revealed by transmission electron microscopy at
a magnification of 5000×. The cyst is characterized by a thick wall with double electron-dense
layers enclosing eight intracystic bodies or spores. For the primary immunodeficiencies (under the
Susceptible Host), only a limited number of conditions are listed as examples to enhance visual clarity,
with more details described in Section 4.5.
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Studies with animal models have confirmed that cysts (also known as asci) serve as
the infectious agent [24]. Other life stages, including the trophic form, presumably cannot
serve as the infectious agent due largely to the lack of a protective cell wall, which prevents
their survival, even for a short transient period, in a natural environment outside the lungs
of the host [16]. It is now evident that human infection with P. jirovecii is not of zoonotic
origin, as strongly supported by the pathogen’s high-degree of host-species specificity and
consistent failure in experimental cross-species infections.

No natural environmental reservoir has been identified, while there is overwhelm-
ing evidence indicating that humans themselves serve as carriers or reservoirs of this
pathogen [16]. Potential human reservoirs include PCP patients and individuals, including
children (particularly infants) and adults with either weakened or competent immunity,
who are either colonized or have subclinical infection with P. jirovecii. There is no doubt that
the respiratory tract serves as both the portal of exit and entry for Pneumocystis infection.
The mode of transmission is now generally believed to be airborne through person-to-
person contact. Efficient transmission likely requires proximity to an infected host—-for
example, in the same room [25,26].

PCP primarily affect individuals with impaired immunity. Susceptible individuals
include those with various congenital or acquired immunodeficiencies, as detailed below.
Excluded from this review are the acquired immunodeficiencies caused by HIV and other
retroviruses, including human T-lymphotrophic virus (HTLV).

3. Increased Incidence of PCP in Patients without HIV/AIDS

Over the past two decades, there has been an increase in the incidence of PCP in non-
HIV patients based on large-scale national studies. According to the national surveillance
data in England, the annual PCP incidence in non-HIV patients rose from 3.15 cases per
million general population between 2000 and 2005 to 5.13 cases between 2006 and 2010 [27].
In France, a study of 604 PCP cases in a single hospital from 2005 to 2013 showed an
increase in the proportion of PCP cases from 63% to 85% in non-HIV patients and a decrease
from 37% to 15% in HIV-infected patients [14]. In Germany, a multi-center, longitudinal
population-base study of 12,455 PCP cases from 2014 to 2019 (including 2,124 HIV-related
and 10,331 non-HIV-related) showed a significant decrease in annual HIV-related PCP cases
from 346 to 331, while the number of non-HIV-related PCP cases increased substantially
from 1511 to 1841 [28].

The increase in PCP incidence is attributed to a variety of factors, including the more
aggressive use of immunosuppressive agents, increased implementation of organ and
stem cell transplantation, application of more sensitive diagnostic methods, and improved
awareness of PCP by physicians (reviewed in references [23,29–33]. The true incidence of
PCP at present is difficult to determine due to the increased use of prophylaxis, which may
lead to underestimation of the actual incidence.

4. Immunodeficient Conditions and Risk Factors for PCP
4.1. Immunosuppressive Agents

Various immunosuppressive or immunomodulatory agents have long been recog-
nized as important risk factors for the development of PCP in non-HIV patients (Table 1).
These agents can cause significant immunosuppression, primarily of cellular immunity,
which is thought to be the major defense against Pneumocystis. Among the most significant
immunosuppressive agents contributing to the occurrence of PCP in non-HIV patients are
corticosteroids, which are widely used to treat various underlying conditions, including
cancers, autoimmune and inflammatory diseases, and organ and stem cell transplantation,
as described below. Several studies have shown that ~90% of PCP patients without HIV
infection received corticosteroid therapy, usually in combination with other immunosup-
pressive agents [3,4,34]. Initially, only long-term and high-dose corticosteroid use was
identified as a high risk for PCP, but recent studies suggest that intermittent corticosteroid
therapy is also an important risk factor for developing PCP [35]. However, underlying
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conditions are a more important risk factor for PCP; for example, asthma patients (usually
not immunocompromised) treated with steroids are typically not at risk for PCP.

In addition to corticosteroids, traditional immunosuppressive or chemotherapeutic
agents associated with the development of PCP include various antimetabolites (methotrex-
ate), alkylating agents (cyclophosphamide), anticalcineurins (cyclosporine and tacrolimus),
and inhibitors of a mammalian target of rapamycin (mTOR) (sirolimus and everolimus)
(Table 1). Beginning in the 1970s, these chemotherapeutic agents have been frequently
reported as risk factors predisposing patients to PCP following their use to treat underlying
disorders, primarily hematological malignancies, solid organ transplantation rejection,
and rheumatoid arthritis. Subsequently, these drugs were gradually extended to other
underlying disease conditions, thereby placing new disease categories at risk for PCP. Since
the early 2000s, new immunotherapeutic agents that are utilized in the treatment of various
diseases, particularly a wide array of monoclonal antibodies targeting TNFα and other
cytokines [36] as well as lymphocyte antigens, have been further recognized as risk factors
for PCP (Table 1).

Table 1. Drugs associated with the development of PCP.

Drugs Mechanisms of
Action Chemical Properties Approved Applications References *

Corticosteroids **

Suppression of inflammation,
leukocyte migration and

activation; induction
of apoptosis

Steroid hormones Various diseases [4,32,37]

Inhibitors of DNA/RNA synthesis

Temozolomide Inhibit DNA and
cellular replication

Alkylating
agent/imidazotetrazine

Brain cancer, astrocytoma, and
glioblastoma multiforme [38,39]

Cyclophosphamide Inhibit DNA and
cellular replication

Alkylating
agent/phosphoramide

mustard

Lymphoma, multiple myeloma,
leukemia, ovarian cancer, breast

cancer, small cell lung cancer,
neuroblastoma, and sarcoma;

organ transplant rejection

[40,41]

Bleomycin Induce DNA strand breaks Nonribosomal peptide Lymphoma, testicular cancer,
ovarian cancer, and cervical cancer [42,43]

Fluorouracil DNA synthesis inhibitor Antimetabolite/pyrimidine
analog Various cancers [43,44]

Cytarabine DNA synthesis inhibitor Antimetabolite Leukemia and lymphoma [43,45]

Methotrexate DNA/RNA synthesis inhibitor Antimetabolite/antifolate Cancers, autoimmune diseases,
and ectopic pregnancy [43,46]

Azathioprine Purine synthesis inhibitor Antimetabolite/Purine
analog

Rheumatoid arthritis, Crohn’s
disease, ulcerative colitis, and

kidney transplant rejection
[43,47,48]

Cladribine Purine synthesis inhibitor Antimetabolite/Purine
analog Leukemia and lymphoma [43,49]

Fludarabine Purine synthesis inhibitor Antimetabolite/Purine
analog Leukemia and lymphoma [43,50–52]

Inhibitors of immune functions

Rituximab B-cell signaling inhibitor Anti-CD20 monoclonal
antibody

Autoimmune diseases,
Hematological cancers [53,54]

Alemtuzumab Deplete CD52-bearing B and
T cells

Anti-CD52 monoclonal
antibody

Hematological cancers, multiple
sclerosis, and organ
transplant rejection

[43,52,55]

Abatacept T-cell signaling inhibitor Recombinant protein
Rheumatoid arthritis, juvenile

idiopathic arthritis, and
psoriatic arthritis

[56,57]

Belatacept T-cell signaling inhibitor Recombinant protein Organ transplant rejection [58–60]

Tocilizumab Anti–IL-6 receptor Anti-IL6 receptor
monoclonal antibody

Rheumatoid arthritis, juvenile
rheumatoid arthritis [61–63]
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Table 1. Cont.

Drugs Mechanisms of
Action Chemical Properties Approved Applications References *

Adalimumab TNFα inhibitor Anti-TNFα monoclonal
antibody

Rheumatoid arthritis, psoriatic
arthritis, ankylosing spondylitis,

Crohn’s disease, ulcerative colitis,
chronic psoriasis, hidradenitis

suppurativa, and juvenile
idiopathic arthritis

[64,65]

Etanercept TNFα inhibitor Recombinant protein

Rheumatoid arthritis, juvenile
rheumatoid arthritis and psoriatic

arthritis, plaque psoriasis and
ankylosing spondylitis

[43,66,67]

Golimumab TNFα inhibitor Anti-TNFα monoclonal
antibody

Rheumatoid arthritis, psoriatic
arthritis, ankylosing spondylitis,

ulcerative colitis, and rheumatoid
arthritis

[68,69]

Infliximab TNFα inhibitor Anti-TNFα monoclonal
antibody

Crohn’s disease, ulcerative colitis,
psoriasis, psoriatic arthritis, and

ankylosing spondylitis
[43,70,71]

Cyclosporine Calcineurin inhibitor Anticalcineurin Autoimmune diseases, and organ
transplant rejection [43,72–74]

Tacrolimus Calcineurin inhibitor Anticalcineurin/macrolide
lactone

Organ transplant rejection, eczema,
uveitis, and vitiligo [75–77]

Everolimus Inhibitor of mammalian target of
rapamycin (mTOR) Derivative of sirolimus

Organ transplant rejection, kidney
cancer, breast cancer, and
subependymal giant cell

astrocytoma

[78–80]

Sirolimus (rapamycin) Inhibitor of mammalian target of
rapamycin (mTOR) Macrolide compound Organ transplant rejection,

lymphangioleiomyomatosis [43,81–83]

* For the association of the drug with the risk of PCP. ** Including prednisone, prednisolone, dexamethasone,
hydrocortisone, etc.

Of special note is the risk of PCP associated with the growing use of a class of mon-
oclonal antibodies targeting the CD20 antigen on B lymphocytes, including rituximab,
ofatumumab, obinutuzumab, veltuzumab, and ocrelizumab. Among them, rituximab is
the first generation of this class (approved in 1997), and it is frequently used to treat certain
lymphomas and leukemias as well as various autoimmune diseases. It is the first known im-
munosuppressive agent associated with the development of PCP resulting primarily from
suppression of B cell function, as has been documented in more than 100 reports world-
wide [35,53,54,84,85], while there are only sparse reports of PCP in patients receiving the
newer generation of anti-CD20 agents [86]. A range of 1.5–13% incidence rates of PCP has
been reported in patients treated with rituximab for various underlying diseases, such as
hematologic malignancies, rheumatic diseases, and solid organ transplantation [53,84,85,87].
Among these studies is one showing a 10% incidence of PCP in patients with hematologic
malignancies who were treated with rituximab but without concomitant chemotherapy or
significant glucocorticoid exposure [53]. These high incidences, together with the results
of animal studies [88], support the important role of B cells in the host’s immune defense
against PCP.

There are multiple monoclonal antibody agents used to suppress organ transplantation
rejection that can increase the risk of PCP, including alemtuzumab, belatacept, cyclosporine,
tacrolimus, everolimus, and sirolimus [52,55,58,89,90]. There are also multiple monoclonal
antibody agents used to treat rheumatoid arthritis that can increase the risk of PCP, includ-
ing abatacept, tocilizumab, adalimumab, etanercept, and golimumab.

4.2. Cancers

Cancers are one of the earliest identified underlying conditions associated with PCP,
as first reported in late 1950s in patients with leukemia and Hodgkin’s disease [91,92].
Hematological malignancies (including various leukaemias and lymphomas as well as
multiple myeloma) remain the most common underlying diseases predisposing patients
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to PCP, accounting for ~30–80% of PCP cases among non-HIV patients [10,29,31]. Solid
tumors are also closely associated with the development of PCP among non-HIV patients,
accounting for 7.9–26% of cases [93–100]. A single-center retrospective study of PCP in
solid tumors in Japan showed lung cancer to be the most common underlying tumor (30%),
followed by breast cancer (15%) [101].

Multiple factors may contribute to the development of PCP in these cancer patients,
including cancer-induced immune dysfunction, chronic use of corticosteroid therapy
and other chemotherapies and immunotherapies, and radiation therapy [101,102]. There
are studies demonstrating that PCP can be effectively prevented by chemoprophylaxis,
as evidenced by the absence of PCP in 80 high-risk patients receiving trimethoprim-
sulfamethoxazole compared to the occurrence of PCP in 21% (17/80) of patients receiving a
placebo [103].

4.3. Solid Organ and Stem Cell Transplantation

The first case of PCP in a transplant recipient was reported in 1964 from the United
States in a boy following renal transplantation [47]. A search of PubMed using keywords
“Pneumocystis AND Transplant” in “Title/Abstract” resulted in 751 articles from 1964 to
2022, with 75% of them published over the past two decades (Figure 2). Most of the recent
cases were reported from outbreaks, as discussed below in Section 5.
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PCP is an important and dangerous cause of morbidity and mortality in transplant
recipients, especially those with delayed diagnosis or no prophylaxis. Studies of transplant
recipients without prophylaxis have reported a PCP incidence of 5–16%, depending on
the type of transplanted organ, the transplant center, and the immunosuppressive regi-
mens utilized (reviewed in references [10,104]). The highest incidences (10–40%) occurred
among lung, combined lung-heart, and kidney transplant recipients [105–107]. Without
prophylaxis, the first 6 months after solid organ transplantation have the highest risk
for developing PCP, presumably due to intensified immune suppression to prevent graft
rejection during this period. Nonetheless, PCP cases may still occur beyond 12 months
after transplantation despite a full course of prophylaxis [108].

The occurrence of PCP after transplantation is associated with many additional risk
factors, such as older ages, concomitant cytomegalovirus (CMV) infection, low CD4 cell
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counts, hypogammaglobulinemia, BK polyomavirus-related diseases, and human leukocyte
antigen mismatches, as has been extensively reviewed [109–111].

4.4. Autoimmune and Inflammatory Diseases

PCP has been reported as a complication of a great variety of autoimmune and
inflammatory diseases (AIIDs), including at least 19 individual diseases, as listed in
Table S1 [4,40,70,97,112–142]. Among them, the most frequently reported diseases as-
sociated with PCP are granulomatosis with polyangiitis (GPA, formerly known as We-
gener’s granulomatosis), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
and inflammatory bowel disease (IBD, including Crohn’s disease and ulcerative coli-
tis) [32,123,143]. Some AIIDs are caused by inherited genetic defects, as discussed below in
the Primary Immunodeficiencies section.

GPA is a rare necrotizing vasculitis characterized by necrotizing granulomas and
pauci-immune vasculitis that most commonly affects small- to medium-sized vessels in
the respiratory tract and kidneys. The first case of PCP associated with GPA was reported
in 1960 from a female American adult [92]. Based on multiple systematic reviews of data
reported worldwide, GPA appears to be the most common AIID associated with PCP,
with an estimated incidence of 6–20% [32,144,145]. The frequency of PCP in GPA in the
United States and France is estimated to be 60–89 and 120 cases per 10,000 patients per
year, respectively [114,124,146]. Godeau et al. [124] reported that GPA is more commonly
associated with PCP (35%) than SLE (18%) and dermatomyositis (15%) among AIIDs. The
main risk factors for developing PCP in GPA patients include the use of glucocorticoids
and other immunosuppressive agents (such as cyclophosphamide and infliximab).

SLE patients are immunodeficient as part of their disease pathogenesis and as a result
of their treatment, and are thus prone to opportunistic infections. The occurrence of PCP
in SLE patients has been frequently reported since 1975 [147]. Based on the most recent
review of 18 large-scale studies worldwide, the overall incidence of PCP in SLE patients
is estimated to be 0.17% [148]. Most of these patients received high-dose corticosteroids
and other chemotherapeutic and immunotherapeutic agents, and their disease course was
complicated by lupus nephritis and lymphopenia, with low CD4 cell counts [122,149]. Pul-
monary infections, especially CMV and Pneumocystis, are closely associated with increased
mortality in SLE patients.

Based on reports from the 1990s from France [124] and the United States [114], the
incidence of PCP among patients with RA was estimated to be 1–2 cases per 10,000 pa-
tients/year. Recent reports have shown a similar incidence in the UK [112] and a decrease
incidence (0.6–4.0 PCP cases/100,000 RA patients/year) in the United States [113]. In
contrast, a higher incidence of PCP has been reported from Japan among patients with RA,
especially those receiving various newly developed immunotherapeutic agents, includ-
ing TNFα inhibitors, T cell signaling inhibitors, and anti-IL-6 receptor antibody, with an
incidence of 0.1–0.4% and mortality of 10.1–22.2% [115–117,150]. PCP incidence in RA is
associated with multiple risk factors, such as older age, male sex, coexisting lung diseases,
and therapy with methotrexate and corticosteroids [116,118,119]. Additionally, several
studies have shown a relatively normal lymphocyte and CD4 cell counts in RA patients
with PCP, suggesting the possibility of a different mechanism than T cell deficiency in the
development of PCP in these patients [120,151].

IBD represents a group of intestinal disorders that cause chronic inflammation of the
digestive tract. The two most common types of IBD are Crohn’s disease and ulcerative
colitis. Almost all PCP cases in IBD patients were reported after the 1990s. The reported
incidence of PCP in IBD varies from 0.03% [140] to 0.3% [136]. Based on the most recent
review by Lawrence et al. [137], there have been a total of ~90 PCP cases in IBD patients
reported from ~30 studies across the world. Among these patients, 88% received corticos-
teroids as IBD treatment, 44% received TNF inhibitors, 42% received thiopurines, and 15%
received cyclosporine or tacrolimus. While CD4 cell counts were not available for most of
these patients, 86% of them were lymphopenic. Once PCP has developed, the mortality
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rate of patients with IBD is high (18%) and strongly associated with low serum albumin
levels [139].

4.5. Primary or Congenital Immunodeficiencies in Children

PCP is a significant cause of morbidity and mortality in immunocompromised chil-
dren. In fact, it was the epidemic of interstitial plasma cell pneumonia in premature
infants and malnourished children in the mid-20th century in Europe that led to the first
recognition of Pneumocystis as a human pathogen [152,153]. Infants are at a higher risk
for infection than healthy older children and adults because their immune systems are
not fully developed, with limited or weakened innate and adaptive immune responses
to pathogens [154,155]. Premature birth and malnourishment, along with the use of cor-
ticosteroids and other immunosuppressive agents as part of their treatment, can further
compromise the immune system and increase their susceptibility to infection, including
P. jirovecii infection [153,156–160].

The high susceptibility of infants and children to P. jirovecii is supported by the high
seroprevalence of anti-Pneumocystis antibodies in healthy children early in life [161,162], and
the high prevalence (100%) of P. jirovecii colonization detected by PCR in immunocompetent
infants [163].

Various primary or hereditary immunodeficient diseases caused by genetic defects
in germline variants in single genes can also increase the risk of PCP in children. In some
early studies, primary immunodeficiency constitutes the most frequent underlying dis-
eases associated with PCP in infants [164]. We provided a comprehensive list of primary
immunodeficient diseases associated with PCP (Table 2 and Table S2 [86,165–219]). There
have been a total of 485 primary immunodeficient diseases or inborn errors of immunity
(IEI) recognized by the International Union of Immunological Societies Expert Commit-
tee, which are classified into 10 major categories, including immunodeficiencies affecting
cellular and humoral immunity, combined immunodeficiencies with associated or syn-
dromic features, predominantly antibody deficiencies, diseases of immune dysregulation,
congenital defects of phagocyte number or function, defects in intrinsic and innate im-
munity, autoinflammatory disorders, complement deficiencies, bone marrow failure, and
phenocopies of inborn errors of immunity [220]. Out of these 485 diseases, 44 from nine
categories (without the last one) have been associated with PCP, including 13 (30%) from
immunodeficiencies affecting cellular and humoral immunity, and another 13 (30%) from
combined immunodeficiencies with associated or syndromic features. More than half of
the 44 diseases associated with PCP were reported in the past 5 years (Table S2). While
individually rare, the cumulative number of individuals with these inherited diseases poses
a significant health burden due to their prevalence of 1–5 cases per 1000 people and an
annual increase in ~20 new types of genetic defect [220]. Children with these diseases may
require long-term immunosuppressive therapy or stem cell transplantation, which can
further increase their risk of developing PCP.

A serial cross-sectional study of US pediatric hospital discharges (aged 0–18 years)
from 1997–2012 identified 1902 PCP cases. Cases with HIV infection decreased from 285 in
1997 to 29 cases in 2012, whereas hematologic malignancy and primary immunodeficiency
became more prominent. All-cause in-hospital mortality was 12% and was particularly
high among cases with hematopoietic stem cell transplant (32%) [221].

A recent single-center study of hospitalized children (<3 years old) in France found that
11% (32/279) of them were infected with P. jirovecii, with the highest positivity rate found
in children with cardiopulmonary pathologies (22%), followed by SCID (19%), hyaline
membrane disease (16%), asthma (9%), and acute leukaemia (6%) [222]. Of the infected
children, 40% were considered colonization cases while 56% had confirmed PCP, mainly
associated with SCID and other congenital diseases.
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Table 2. Primary immunodeficiencies associated with PCP.

Immunodeficiency Category (according to the Classification by the
Inborn Errors of Immunity Committee 2022 [220]) Genetic Defects

I. Immunodeficiencies affecting cellular and humoral immunity:
T-B+ SCID IL2RG, JAK3, ADA

CID generally less profound than SCID CARD11, CD40, CD40LG, DOCK8, IKBKB, IKZF1, IL21R,
MALT1, RFXANK, ZAP70

II. CID with associated or syndromic features:
DNA repair defects other than those in Category I DNMT3B, ZBTB24
Hyper IgE syndromes (HIES) STAT3
Defects of vitamin B12 and folate metabolism MTHFD1, SLC46A1, TCN2
Anhidrotic ectodermodysplasia with immunodeficiency IKBKB, IKBKG
Calcium channel defects ORAI1
Other combined immunodeficiencies with syndromic features IKZF3, KMT2A, SKIV2L, SP110

III. Predominantly antibody deficiencies:
Agammaglobulinemia BTK
Common variable immune deficiency NFKB1

IV. Diseases of immune dysregulation:
Regulatory T cell defects CTLA4

V. Congenital defects of phagocyte number or function:
Defects of motility CFTR
Defects of respiratory burst CYBB, G6PD
Other non-lymphoid defects GATA2

VI. Defects in intrinsic and innate immunity:
Predisposition to severe viral infection NOS2
Predisposition to mucocutaneous candidiasis IL17RA, STAT1
Other inborn errors of immunity related to leukocytes IRF4

VII. Autoinflammatory disorders IFIH1, IL36RN, TNFRSF1A
VIII. Complement deficiencies C7
IX. Bone marrow failure RTEL1, TERC, TP53

Details on genetic defects and references for PCP in patients with the genetic defects shown are provided in
Supplemental Table S2. This table excludes genetic defects without reports of PCP clinical cases. SCID, severe
combined immunodeficiencies; CID, combined Immunodeficiencies; CVID, common variable immune deficiency.
T-B+, decreased T cell counts, and normal B cell counts but loss of function.

4.6. COVID-19

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), can weaken the host’s immune system and increase the risk of secondary infections
with bacterial and fungal pathogens, including P. jirovecii [223–225]. There have been
approximately 100 reports of coinfection of P. jirovecii in COVID-19 patients, with some of
them reviewed recently by Gioia et al. [226] and Khodadadi et al. [227]. The largest number
of coinfection cases (in non-HIV/AIDS) was reported from France (34 cases), followed by
Italy (22 cases) and Pakistan (10 cases) (Figure 3 and Table S3 [15,224–226,228–271]).

While there is evidence of significant depletion of CD4 T cells in COVID-19 pa-
tients [272] and CD4 cell deficiency is the most important driving factor for the devel-
opment of PCP, as seen in AIDS, the incidence of PCP in COVID-19 appears to be far lower
than that reported in AIDS. This may reflect the differences in T cell deficiency between
COVID-19 and AIDS. AIDS is a chronic disease; its T cell deficiency is usually progressive
and irreversible if untreated. In contrast, COVID-19 is primarily an acute illness; its T
cell deficiency is generally temporary, reversible, and less severe, and, in most cases, T
cell numbers and function improve as the patient recovers from the infection [273–279].
Another potential difference is that AIDS primarily targets CD4 T cells while COVID-19
appears to affect CD8 T cells more than CD4 T cells in mild cases of COVID-19, as evidenced
by a greater reduction or cytotoxic response of CD8 T cells compared with CD4 T cells
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in these cases in several studies [280–283], though this trend was not supported by other
studies [284,285].
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While it is clear that the incidence of PCP is much lower in COVID-19 than that in AIDS,
the incidence of PCP in COVID-19 seems to be underestimated for various reasons [223,226,286],
including the difficulties in distinguishing between these two diseases due to their similari-
ties in clinical symptoms and manifestations, the lack of awareness or attention to PCP, and
the lack of access to sensitive diagnostic tests for PCP, particularly during the challenging
pandemic era. A study using a highly sensitive qPCR assay identified a prevalence of 9%
of P. jirovecii infection in critically ill COVID-19 patients [228], supporting the possibility of
a high prevalence of PCP in COVID-19 patients and highlighting the importance of using a
sensitive, pathogen-specific diagnostic method. Early diagnosis of PCP is crucial for the
timely treatment of patients because coinfection with PCP may increase the severity and
mortality of COVID-19 [286,287].

There are multiple potential risk factors for the development of PCP in COVID-19,
including cytokine storm, damage to the airway epithelial barrier, mechanical ventilation,
admissions to intensive care units (ICU), use of glucocorticoids and other immunosuppres-
sive agents, underlying diseases (pulmonary diseases, acute respiratory distress syndrome,
and kidney disease), and prolonged hospitalization [224,227,287]. Nonetheless, in some
cases, it may be challenging to determine whether the onset of PCP in COVID-19 patients
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is solely due to COVID-19-induced immune defects, the administration of immunosup-
pressive agents during COVID-19 treatment, or underlying conditions prior to COVID-19
infection [288]. Further research is needed to better understand the role of these risk factors
and thus help to develop appropriate and effective strategies to prevent or reduce the risk
of PCP in COVID-19, ultimately improving patient outcomes.

4.7. Other Underlying Conditions

In addition to the underlying diseases described above, other conditions associated
with a high risk of P. jirovecii infection, though not necessarily PCP, include chronic lung
diseases, nephrotic diseases, diabetes mellitus, dermatologic diseases, CMV infection, BK
polyomavirus-related infections, and surgical operation [109,289–291]. The prevalence of
P. jirovecii in these conditions is highly variable depending on the patient populations. A
large-scale national study of 4293 PCP patients in Japan has revealed diabetes mellitus to be
the second most common underlying condition (30%) after hematologic malignancy (31%)
for PCP in adults [291]. Patients with various chronic lung diseases, such as chronic obstruc-
tive pulmonary disease (COPD), interstitial lung disease (ILD), severe asthma (SA), and
cystic fibrosis (CF) have a high prevalence of Pneumocystis, with most of them presumably
representing colonization rather than active infection, as further discussed below.

4.8. Effects of Different Immunocompromised Conditions on Immune Functions

The host immune response plays a vital role in the development of PCP, which entails
intricate interactions among numerous components, as has been extensively reviewed
in recent publications by Charpentier et al. [292] and Otieno-Odhiambo et al. [293]. Im-
munocompetent individuals are capable of controlling and clearing Pneumocystis without
experiencing symptoms, whereas immunodeficient individuals may develop severe and
potentially life-threatening pneumonia. The risk for PCP depends on the interplay between
epidemiologic exposure to P. jirovecii and the nature and severity of specific immunocom-
promised conditions. Immunocompromised conditions vary in their effects on specific
components of the immune system and in the degree to which they impact its functioning.
Some conditions have a broad impact on the entire immune system, while others selectively
affect only particular components.

In early reported sporadic PCP cases associated with immunodeficient diseases, hu-
moral immunodeficiency is observed more frequently than cellular immunodeficiency,
leading to speculation that humoral immunodeficiency plays a primary role in driving the
occurrence of PCP [294]. However, the remarkably high incidence of PCP outbreaks during
the AIDS epidemic in 1980s, together with evidence from animal models, underscores the
paramount significance of cellular immunodeficiency (particularly CD4 T cell deficiency)
in the pathogenesis and development of PCP [292,293]. Patients with CD4 T cell counts
lower than 200 cells/µL have a high risk for PCP [295].

Among all known non-HIV/AIDS immunocompromised conditions, glucocorticoid
therapy, widely utilized in the treatment of almost all immunocompromised diseases,
stands out as the predominant risk factor for PCP. Glucocorticoids inhibit both cellular
and humoral immunity as well as innate immunity [296], so they appear to play a triple
role in predisposing patients to the development of PCP. Immunodepleting monoclonal
antibody agents, increasingly employed to treat cancers and AIIDs, have variable impacts
on specific components of the immune system depending on their specific target; they
may predominantly impair innate immunity (e.g., eculizumab and etanercept), cellular
immunity (alemtuzumab, abatacept, and belatacept) or humoral immunity (rituximab and
Epratuzumab), respectively [297,298]. Most of the chemotherapeutic agents used to treat
cancers and AIIDs primarily suppress the production of white blood cells, particularly
neutrophils, which are an essential component of innate immunity. Approximately half of
the cancer patients undergoing chemotherapy develop neutropenia [299]. Neutropenia can
lead to a weakened immune system and increased susceptibility to P. jirovecii infection [300].
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For cancer patients, in addition to the immunosuppressive and chemotherapeutic
agents discussed above, radiation therapy, especially when targeting the bone marrow
or the lymph nodes, can damage all components of the immune system and impair their
ability to function effectively [301]. Furthermore, many cancers, particularly blood cancers
(e.g., leukemia, lymphoma), can cause extensive disruption of haematopoiesis and directly
compromise the immune response [302,303]. Cancer cells may evade immune detection or
inhibit immune cell function [304], thus impairing the body’s ability to mount an effective
immune response against infections.

All organ transplant recipients require the use of immunosuppressive agents, which
have varying effects on different components of the immune system, as discussed above.
In solid organ transplantation, the primary goal of immune suppression is to suppress
the T cell response and thus prevent organ rejection [305]. In stem cell transplantation,
immune suppression usually targets both T cells and other components of the immune
system, including B cells and natural killer cells, to prevent rejection of the transplanted
stem cells and reduce the risk of graft-versus-host disease. Immune suppression in solid
organ transplantation is generally more intensive and long-term compared to stem cell
transplantation. As immunosuppression leaves the transplant recipients susceptible to
various infections, success in transplantation requires careful management of the balance
between the risks of graft rejection and the increased susceptibility to various infections,
including PCP [289].

Primary immunodeficiency can affect all components of the immune system. More
than half (60%) of all known primary immunodeficient diseases associated with PCP
involve impairment of both cellular and humoral immunity (Table S2). Less than 10% of
them predominantly affect humoral or innate immunity alone.

COVID-19 primarily targets the respiratory tract, leading to lung tissue damage
and triggering overexaggerated and dysregulated pro-inflammatory and inflammatory
responses. These effects extend beyond the innate defense system and have a broad
impact on the adaptive immune system [306]. Patients with severe COVID-19 have marked
reductions in the number of CD4 T cells, CD8 T cells, B cells, and natural killer cells, often
accompanied by exhausted T cells that exhibit diminished proliferative capacity and over-
production of pro-inflammatory cytokines [307]. Alongside the use of corticosteroids and
other immunomodulatory agents, the defective immunity in COVID-19 patients creates an
opportunity for the development of invasive fungal diseases, including PCP [308].

5. PCP Outbreaks

Despite the lack of a clearly identified virulence factor, PCP outbreaks occur period-
ically across the globe. Over the past two decades, there is an increasing trend of PCP
outbreaks in immunocompromised patients without HIV/AIDS, particularly in transplant
recipients, as recently reviewed by Delliere et al. [309]. The largest number of cases involved
in PCP outbreaks was reported in France (150 cases), followed by Australia (97 cases) and
the UK (58 cases) (Figure 4, Table S4 [58,77,107,310–343]).

Types of transplantation associated with PCP outbreaks include both solid organ (kid-
ney, heart, liver, lung, intestine, and pancreas) and hematopoietic stem cell (or bone marrow)
transplantation. Outbreaks in solid organ transplant recipients account for approximately
80% of all documented PCP outbreaks [23]. These outbreaks have been documented in
over a dozen countries, with the majority of cases occurring in Europe and predominantly
affecting renal transplant recipients.

There has been an intense effort to investigate the epidemiology, contributing factors,
and clinical management strategies of these outbreaks [23,109,309]. The transmission
mode of PCP outbreaks in transplant patients has been extensively investigated by nearly
30 molecular epidemiological studies, as summarized in Table 3.
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Table 3. Published genotyping studies of PCP outbreaks in transplant patients.

First Author
[Reference]

Year of
Report Country No. of

Patients
Transplanted

Organs

No. of
P. jirovecii

Strains/Clusters

Olsson [312] 2001 Sweden 10 Kidney 3
Hocker [313] 2005 Germany 7 Kidney 5
de Boer [314] 2007 Netherlands 8 Kidney >5

Schmoldt [315] 2008 Germany 16 Kidney 1
Yazaki [316] 2009 Japan 27 Kidney 1
Arichi [317] 2009 Japan 9 Kidney 5

Gianella [318] 2010 Switzerland 20 Kidney 1
Wynckel [319] 2011 France 17 Kidney 2

Thomas [321] 2011 UK 21 *
11 *

Kidney
Kidney

>5
>5

Pliquett [322] 2012 Germany 17 Kidney 3
Brunot [323] 2012 France 7 Kidney 1
Rostvet [326] 2013 Denmark 29 Kidney, liver 3

Debourgogne [327] 2014 France 13 Kidney 2
Gits-Muselli [329] 2015 France 6 Kidney 1
Desoubeaux [330] 2016 France 4 Liver 1

Mulpuru [331] 2016 Canada 10 Kidney 1
Urabe [332] 2016 Japan 8 Kidney 1
Inkster [333] 2017 UK 24 Kidney 2

Vindrios [107] 2017 France 7 Heart 1
Robin [334] 2017 France 12 Stem cell 5
Frealle [335] 2017 France 5 Kidney 2
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Table 3. Cont.

First Author
[Reference]

Year of
Report Country No. of

Patients
Transplanted

Organs

No. of
P. jirovecii

Strains/Clusters

Alanio [336]
2017 France 13 Kidney 1

Belgium 5 Kidney 1
UK 2 Kidney 1

Wintenberger [337] and Charpentier [338] 2017 France 12 Lung, kidney,
heart, liver 9

Nevez [339] 2018 France 22 Kidney 1
Ricci [340] 2018 Brazil 17 Kidney 5

Veronese [341] 2018 Italy 6 Heart 2
Szydlowicz [342] 2019 Poland 8 Kidney >5

Hosseini-Moghaddam [343] 2020 France 10 Heart, kidney,
liver 1

Azar [58] 2022 USA 19 Kidney 5

This is a simplified presentation to enhance visualization, with additional details (including duration of out-
breaks and genotyping methods) provided in Supplemental Table S4. * Involved in two separate outbreaks in
different hospitals.

In most of these studies, PCP outbreaks are linked to a predominant strain, often even a
single strain, of P. jirovecii [23,344]. Strikingly, three outbreaks from distant renal transplant
centers in Switzerland and Germany were linked to a single P. jirovecii strain [345,346].
These observations strongly suggest that the transplant recipients were infected by recent
acquisition of P. jirovecii through person-to-person transmission. Nevertheless, some studies
have demonstrated the presence of coinfections with up to seven P. jirovecii strains per
patient or multiple distinct P. jirovecii strains in the same outbreaks [58,338,340].

Despite the relatively high prevalence of these outbreaks, the driving forces behind
them remain unknown. The question of whether the outbreaks resulted from the intro-
duction of specific P. jirovecii strains with enhanced virulence for transplant patients or
from specific conditions that increase patients’ susceptibility to infection, such as certain
immunosuppressive or rejection treatment regimens, still needs to be investigated. A better
understanding of the infection mechanism and the transmission mode is expected to inform
appropriate strategies for clinical management and control of PCP in transplant recipients,
as discussed below.

6. Pneumocystis Colonization

Pneumocystis colonization is defined as the presence of Pneumocystis organisms in the
respiratory tract (usually identified by PCR and less frequently by microscopy) without
causing symptoms of acute pneumonia [33,347]. There has been increasing effort in ad-
dressing the prevalence and significance of Pneumocystis colonization, with ~80% (227/282)
of PubMed reports related to this subject being published after 2010.

The reported prevalence of colonization varies greatly among current reports (0–100%),
dependent largely on patients’ immune status, underlying health conditions, and ages,
as well as the detection methods [33]. In general, immunocompromised patients have a
higher colonization prevalence, as high as 68% in HIV-infected patients [348] and 44% in
non-HIV patients received corticosteroids, compared to immunocompetent individuals (as
high as 24% in adults [349]). In HIV-infected patients, severe immunosuppression (CD4 cell
count ≤ 50/µL) and lack of prophylaxis increase the odds of colonization. An exceptionally
high prevalence of 100% in immunocompetent individuals was reported from a study of
seemingly healthy adults in Chile who died suddenly or violently using nested-PCR and a
large weight of autopsied lung tissues [350].

Patients with various chronic lung diseases represent another exception to the im-
munocompetent population, as studies have reported a high prevalence of Pneumocystis
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colonization in these patients, ranging from 34% to 100%, although the sample size in some
of these studies was very small [351–353].

Furthermore, children, particularly infants, represent a unique exception to the im-
munocompetent population, as their immune systems are not fully developed, which
makes them more susceptible to Pneumocystis colonization, with a prevalence ranging from
32% to 100% [164,354,355].

Despite the widespread colonization in both immunocompetent and immunodeficient
individuals, many questions remain unanswered regarding its mechanisms and clinical
significance. The size of the colonized healthy population is expected to be substantially
larger than that of the colonized immunodeficient population; this hypothesis is potentially
supported by the immune evasion mechanism associated with the large major surface
glycoprotein family, which is thought to be operative in immunocompetent hosts [356,357].
Nonetheless, it remains uncertain if colonization in some cases, especially in the early
stage, may represent subclinical or self-limited infection, as studies of Pneumocystis-infected
healthy animals have demonstrated mild pathological changes in the lungs [358,359]. Dis-
tinguishing between subclinical infection and colonization as well as latency discussed
below is difficult based on the current data, and it may also depend on how these terms
are defined, particularly in terms of the level of damage to the host and the host immune
response, as discussed for other pathogens [360]. It also remains undetermined if Pneu-
mocystis colonization could play a role in the progression of some chronic pulmonary
diseases, particularly COPD, as hypothesized in some studies [33]. It would be necessary
to determine whether colonization contributes to these diseases or is a result of certain
levels of damage to the lungs due to these diseases.

Another potentially important role of colonization is that colonized patients may serve
as reservoirs for transmission, as discussed above (in Section 2).

7. Reactivation of a Latent Infection Versus Acquisition of a New Infection

One of the key questions regarding the pathogenesis of PCP is whether it arises from
the reactivation of a latent infection, as initially hypothesized, or from de novo acquisition
of a new infection, as postulated more recently. While the reactivation hypothesis is a
long-standing one, it is very difficult to prove this hypothesis as it would ideally require
determining the genotypes of a strain acquired earlier in life (e.g., during primary infection
as an infant) and a subsequent strain causing clinical PCP many years later. In addition,
this hypothesis has been challenged by increasing evidence supporting the possibility of de
novo infection. First, multiple animal studies have shown that no Pneumocystis organism
or DNA can be detected in animals after recovery from experimental infection, implying
that the host immune response can completely clear Pneumocystis without the organism
transitioning to a latent state [358,361].

Second, several studies of patients with recurrent PCP have found genetically distinct
strains between different episodes in the same patients [362,363], supporting the fact that
reactivation though other cases in these studies showed identical strains between different
episodes, and thereby supporting recent infection for the latter episodes.

Third, there are ample reports of detection of sulfa resistance-associated gene mu-
tations in the dihydropteroate synthase gene of P. jirovecii from patients without prior
exposure to sulfa drugs [364–366], suggesting de novo infection transmitted from patients
with prior sulfa exposure, although the possibility of unidentified sulfa exposure cannot be
ruled out.

Forth, there were over 20 outbreaks of PCP in transplant recipients (including three
outbreaks from distant renal transplant centers in Switzerland and Germany) that were
linked to a single or a few strains based on molecular typing, as listed in Table 3. This is
very strong evidence for de novo infection via person-to-person transmission rather than
reactivation of a latent infection. Of note, several studies have identified coinfections with
up to seven P. jirovecii strains in the same transplant patients [58,338,340]. This may suggest
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a continuous acquisition of new strains from different infected individuals over time rather
than reactivation of multiple latent strains.

In-depth understanding of the infection mechanisms is expected to inform appropriate
strategies for clinical management and prevention of PCP. Theoretically, if reactivation of
latent infection is the primary mechanism, it would not be necessary to implement respi-
ratory isolation of PCP patients other than prophylaxis to protect susceptible individuals.
If de novo infection is the primary mechanism, it would be important to prevent infected
patients from spreading P. jirovecii to others, particularly to immunocompromised individ-
uals [23], though all outbreaks would be stopped by widespread prophylaxis. Validation
of these postulations is highly challenging due to the difficulty of tracking whether or not
patients had a previous infection and, if so, when it occurred.

8. Prevention of PCP

At present, there is no vaccine for PCP, and respiratory isolation (by avoiding place-
ment in the same room with PCP patients) is only recommended for susceptible patients
in healthcare settings per the current USA CDC guidelines [367]. Chemical prophylaxis
is highly effective in preventing PCP in high-risk immunocompromised patients without
HIV/AIDS, which is similar to HIV/AIDS patients. Guidelines and the consensuses of
experts for the prophylaxis of PCP in various immunocompromised conditions in different
countries are listed in Table 4.

Table 4. Guidelines and expert consensuses for the prophylaxis of PCP and other opportunistic
infections in immunocompromised patients without HIV/AIDS.

Countries Release Years Immunocompromised Conditions References

Asia 2021 Systemic lupus erythematosus [368]
Australia 2014 Haematological malignancies and stem cell transplantation [369]
Europe 2016 Haematological malignancies and stem cell transplantation [52]
Europe 2022 Autoimmune inflammatory rheumatic diseases [370]
Europe 2018 Relapsed or refractory lymphocytic leukemia patients [371]

Germany 2021 Haematopoietic stem cell transplantation, solid tumors, and
autoimmune disorders [372]

Japan 2019 Use of methotrexate in rheumatoid arthritis [373]
Spain 2022 Autoimmune rheumatic diseases [374]
UK 2017 Solid tumors in children [375]

UK 2020 Anti-neutrophil cytoplasm antibody-associated vasculitis
patients receiving Rituximab for maintenance [376]

USA 2019 Solid organ transplantation [111]
USA 2018 Cancers [377]

The first-line agent for prophylaxis is the traditional trimethoprim-sulfamethoxazole
combination (cotrimoxazole). Alternative choices include dapsone, pyrimethamine-leucovorin,
atovaquone, and pentamidine. Details on dosages and duration about these drugs are
available from the Guidelines listed in Table 4.

9. Concluding Remarks

As a life-threatening opportunistic infection, PCP not only incurs significant healthcare
costs [7] but also has profound impacts on the health and overall well-being of individuals
with weakened immunity worldwide. PCP in non-HIV patients is often more severe and
challenging to diagnose than PCP in HIV/AIDS patients. It is important for clinicians and
health care workers to be aware of and identify various immunodeficient conditions and
risk factors for PCP at an earlier stage in order to initiate timely and efficient prophylaxis or
treatment. In addition, given the increasing reports of drug resistance in other fungal and
bacterial infections, there is a clear need to increase efforts to investigate the epidemiology
and significance of genetic mutations associated with drug resistance in PCP, as advocated
recently by the WHO [15].
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