Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of TE Emulsion
2.1.1. Characterization of Emulsion with Different XG and SL Concentrations
2.1.2. Characterization of Emulsion with Different TE Concentrations
2.2. Characterization and Optimization of TE-OG
2.2.1. Oil-Binding Capacity (%)
2.2.2. Rheological Property
2.3. Oxidative Stability
2.4. In Vitro Lipid Digestion
2.4.1. Release of Curcumin and Free Fatty Acids
2.4.2. Microstructural Analysis
2.5. The Applicability of TE-OG to Pound Cake
2.5.1. Texture Profile Analysis (TPA)
2.5.2. Micro-Computed Tomography (micro-CT)
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of TE-OGs
4.3. Encapsulation Efficiency (EE)
4.4. Oil-binding Capacity (OBC)
4.5. Oxidative Stability
4.6. In Vitro Digestion
4.6.1. Free Fatty Acids (FFAs) Release
4.6.2. Curcumin Release from TE-OG
4.6.3. Confocal Laser Scanning Microscopy (CLSM)
4.7. Applicability to Pound Cake
4.7.1. Preparation of Pound Cake
4.7.2. Texture Profile Analysis (TPA)
4.7.3. X-ray Micro-Computed Tomography (CT) Analysis
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, I.K.; Lee, S. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocoll. 2018, 77, 796–802. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Helman, C.; Chowdhury, A.M. Health beliefs and folk models of diabetes in British Bangladeshis: A qualitative study. Br. Med. J. 1998, 316, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Teegala, S.M.; Willett, W.C.; Mozaffarian, D. Consumption and health effects of trans fatty acids: A review. Cardiovasc. Med. 2009, 29, 1250–1257. [Google Scholar] [CrossRef]
- De Izar, M.C.O.; Lottenberg, A.M.; Giraldez, V.Z.R.; dos Santos Filho, R.D.; Machado, R.M.; Bertolami, A.; Assad, M.H.V.; Saraiva, J.F.K.; Faludi, A.A.; Moreira, A.S.B.; et al. Position statement on fat consumption and cardiovascular health—2021. Arq. Bras. Cardiol. 2021, 116, 160–212. [Google Scholar] [PubMed]
- Barnard, N.D.; Bunner, A.E.; Agarwal, U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging 2014, 35, S65–S73. [Google Scholar] [CrossRef]
- Kanauchi, M.; Kanauchi, K. The World Health Organization’s healthy diet indicator and its associated factors: A cross-sectional study in central Kinki, Japan. Prev. Med. Rep. 2018, 12, 198–202. [Google Scholar] [CrossRef]
- Singh, A.; Auzanneau, F.I.; Rogers, M.A. Advances in edible oleogel technologies—A decade in review. Food Res. Int. 2017, 97, 307–317. [Google Scholar] [CrossRef]
- Pérez-Monterroza, E.J.; Márquez-Cardozo, C.J.; Ciro-Velásquez, H.J. Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT 2014, 59, 673–679. [Google Scholar] [CrossRef]
- Yilmaz, E.; Keskin Uslu, E.; Öz, C. Oleogels of some plant waxes: Characterization and comparison with sunflower wax oleogel. J. Am. Oil Chem. Soc. 2021, 98, 643–655. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Giannakaki, F.; Katsanidis, E. Structural and physical characteristics of mixed-component oleogels: Natural wax and monoglyceride interactions in different edible oils. Gels 2023, 9, 627. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocoll. 2018, 77, 17–29. [Google Scholar] [CrossRef]
- Romoscanu, A.I.; Mezzenga, R. Emulsion-templated fully reversible protein-in-oil gels. Langmuir 2006, 22, 7812–7818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chuesiang, P.; Kim, J.T.; Shin, G.H. The role of nanostructured lipid carriers and type of biopolymers on the lipid digestion and release rate of curcumin from curcumin-loaded oleogels. Food Chem. 2022, 392, 133306. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Xu, X.; Qian, Z.; Cheng, H.; Shen, X.; Chen, S.; Ye, X. Xanthan gum-assisted fabrication of stable emulsion-based oleogel structured with gelatin and proanthocyanidins. Food Hydrocoll. 2021, 115, 106596. [Google Scholar] [CrossRef]
- Jaberi, R.; Pedram Nia, A.; Naji-Tabasi, S.; Elhamirad, A.H.; Shafafi Zenoozian, M. Rheological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum. J. Texture Stud. 2020, 51, 925–936. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Cludts, N.; Lewille, B.; De Vos, W.H.; Lesaffer, A.; Dewettinck, K. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir 2015, 31, 2065–2073. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Berski, W.; Krystyjan, M.; Jamróz, E.; Florczuk, A.; Tkaczewska, J.; Zając, M.; Domagała, J.; Lett, A.M.; Ptasznik, S. Effects of fibre addition and processing on the stability, rheology and in vitro gastric digestion of whey protein-xanthan gum stabilised emulsions with high oil phase. LWT 2023, 178, 114465. [Google Scholar] [CrossRef]
- Taladrid, D.; Marín, D.; Alemán, A.; Álvarez-Acero, I.; Montero, P.; Gómez-Guillén, M.C. Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Res. Int. 2017, 100, 541–550. [Google Scholar] [CrossRef]
- Chuesiang, P.; Zhang, J.; Choi, E.; Yoon, I.-S.; Kim, J.T.; Shin, G.H. Observation of curcumin-loaded hydroxypropyl methylcellulose (HPMC) oleogels under in vitro lipid digestion and in situ intestinal absorption in rats. Int. J. Biol. Macromol. 2022, 208, 520–529. [Google Scholar] [CrossRef]
- Tan, S.Y.; Peh, E.; Lau, E.; Marangoni, A.G.; Henry, C.J. Physical form of dietary fat alters postprandial substrate utilization and glycemic response in healthy chinese men. J. Nutr. 2017, 147, 1138–1144. [Google Scholar] [CrossRef]
- Ashkar, A.; Laufer, S.; Rosen-Kligvasser, J.; Lesmes, U.; Davidovich-Pinhas, M. Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels. Food Hydrocoll. 2019, 97, 105218. [Google Scholar] [CrossRef]
- Calligaris, S.; Alongi, M.; Lucci, P.; Anese, M. Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels. Food Chem. 2020, 314, 126146. [Google Scholar] [CrossRef] [PubMed]
- Osullivan, C.M.; Davidovich-Pinhas, M.; Wright, A.J.; Barbut, S.; Marangoni, A.G. Ethylcellulose oleogels for lipophilic bioactive delivery-effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food Funct. 2017, 8, 1438–1451. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Garcia, C.V.; Park, S.J.; Shin, G.H.; Kim, J.T. Retardation of curcumin degradation under various storage conditions via turmeric extract-loaded nanoemulsion system. LWT 2019, 100, 175–182. [Google Scholar] [CrossRef]
- Santos, M.A.S.; Magalhães, A.E.R.; Okuro, P.K.; Steel, C.J.; Cunha, R.L. High internal phase emulsion-template oleogels stabilized by sodium caseinate:quercetin complexes and potential application in pound cakes. J. Food Eng. 2024, 366, 111860. [Google Scholar] [CrossRef]
- Espert, M.; Salvador, A.; Sanz, T. Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocoll. 2020, 109, 106085. [Google Scholar] [CrossRef]
- Zheng, S.; Lu, M.; Xiao, J.; Zhang, X.; Li, J.; Zhang, H.; Zhang, C.; Cao, Y.; Lan, Y. A novel strategy for preparation of rice bran protein oleogels based on high internal phase emulsion template. J. Sci. Food Agric. 2023, 103, 5717–5726. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, H.I.; Song, K.W.; Lee, J. Sensory and rheological characteristics of thickened liquids differing concentrations of a xanthan gum-based thickener. J. Texture Stud. 2017, 48, 571–585. [Google Scholar] [CrossRef]
- Fara, D.A.; Dadou, S.M.; Rashid, I.; Al-Obeidi, R.; Antonijevic, M.D.; Chowdhry, B.Z.; Badwan, A. A direct compression matrix made from xanthan gum and low molecular weight chitosan designed to improve compressibility in controlled release tablets. Pharmaceutics 2019, 11, 603. [Google Scholar] [CrossRef]
- Comba, S.; Sethi, R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res. 2009, 43, 3717–3726. [Google Scholar] [CrossRef]
- Cai, Y.; Deng, X.; Liu, T.; Zhao, M.; Zhao, Q.; Chen, S. Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties. Food Hydrocoll. 2018, 79, 391–398. [Google Scholar] [CrossRef]
- Cai, X.; Du, X.; Zhu, G.; Cao, C. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll. 2020, 105, 105776. [Google Scholar] [CrossRef]
- Park, S.J.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem. 2018, 251, 51–57. [Google Scholar] [CrossRef]
- Scholten, E. Edible oleogels: How suitable are proteins as a structurant? Curr. Opin. Food Sci. 2019, 27, 36–42. [Google Scholar] [CrossRef]
- Holey, S.A.; Sekhar, K.P.C.; Mishra, S.S.; Kanjilal, S.; Nayak, R.R. Sunflower wax-based oleogel emulsions: Physicochemical characterizations and food application. ACS Food Sci. Technol. 2021, 1, 152–164. [Google Scholar] [CrossRef]
- Alloncle, M.; Doublier, J.L. Viscoelastic properties of maize starch/hydrocolloid pastes and gels. Top. Catal. 1991, 5, 455–467. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, B. Rheological properties of rice starch-xanthan gum mixtures. J. Food Eng. 2006, 75, 120–128. [Google Scholar] [CrossRef]
- Aguilar-Zárate, M.; Macias-Rodriguez, B.A.; Toro-Vazquez, J.F.; Marangoni, A.G. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr. Polym. 2019, 205, 98–105. [Google Scholar] [CrossRef]
- Shin, G.H.; Kim, J.T. Observation of chitosan coated lipid nanoparticles with different lipid compositions uner simulated in vitro digestion system. Food Hydrocoll. 2018, 84, 146–153. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, Y.; Wang, Y.; Liu, Y. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chem. 2019, 292, 134–142. [Google Scholar] [CrossRef]
- Li, L.; Wan, W.; Cheng, W.; Liu, G.; Han, L. Oxidatively stable curcumin-loaded oleogels structured by β-sitosterol and lecithin: Physical characteristics and release behaviour in vitro. Int. J. Food Sci. Technol. 2019, 54, 2502–2510. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Zaldman, B.; Kisilev, A.; Sasson, Y.; Garti, N. Double bond oxidation of unsaturated fatty acids. J. Am. Oil Chem. Soc. 1988, 65, 611–615. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, W.; Liu, R.; Chang, C.; Li, J.; Xiong, W.; Yang, Y.; Gu, L. Emulsion-templated liquid oil structuring with egg white protein microgel- xanthan gum. Foods 2023, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Gaudino, N.; Clark, S.; Acevedo, N.C. Novel lecithin-based oleogels and oleogel emulsions delay lipid oxidation and extend probiotic bacteria survival. LWT 2021, 136, 110353. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Aditya, N.P.; Shim, M.; Lee, I.; Lee, Y.; Im, M.H.; Ko, S. Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem. 2013, 61, 1878–1883. [Google Scholar] [CrossRef]
- Ahmed, K.; Li, Y.; McClements, D.J.; Xiao, H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 2012, 132, 799–807. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.J.; Garcia, C.V.; Lee, S.B.; Shin, G.H.; Kim, J.T. Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J. Food Eng. 2019, 259, 12–20. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, F.; Ling, J.; Ouyang, X.; Wang, Y.-G. Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties. Colloids Surf. B Biointerfaces 2021, 204, 111827. [Google Scholar] [CrossRef]
- Kateh Shamshiri, M.; Momtazi-Borojeni, A.A.; Khodabandeh Shahraky, M.; Rahimi, F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. J. Cell Biochem. 2019, 120, 9023–9033. [Google Scholar] [CrossRef] [PubMed]
- Wilde, P.J.; Chu, B.S. Interfacial & colloidal aspects of lipid digestion. Adv. Colloid Interface Sci. 2011, 165, 14–22. [Google Scholar] [PubMed]
- Psimouli, V.; Oreopoulou, V. The effect of fat replacers on batter and cake properties. J. Food Sci. 2013, 78, C1495–C1502. [Google Scholar] [CrossRef] [PubMed]
- Malvano, F.; Laudisio, M.; Albanese, D.; d’Amore, M.; Marra, F. Olive oil-based oleogel as fat replacer in a sponge cake: A comparative study and optimization. Foods 2022, 11, 2643. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Li, P.; Lo, Y.M.; Fu, H.; Cao, Y. Development of novel shortenings structured by ethylcellulose oleogels. J. Food Sci. 2019, 84, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Dewettinck, K. Edible oil structuring: An overview and recent updates. Food Funct. 2016, 7, 20–29. [Google Scholar] [CrossRef]
- Blake, A.I.; Marangoni, A.G. The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 2015, 10, 456–465. [Google Scholar] [CrossRef]
- Hong, S.J.; Shin, G.H.; Kim, J.T. Vitamin E-fortified emulsion-templated oleogels structured with xanthan gum and soybean lecithin and their application in pound cakes. Food Biosci. 2024, 57, 103505. [Google Scholar] [CrossRef]
(a) | |||||
---|---|---|---|---|---|
Time (h) | XG-0.16/SL-1.2 | XG-0.32/SL-1.2 | XG-0.48/SL-1.2 | XG-0.64/SL-1.2 | XG-0.80/SL-1.2 |
1 | 16.027 ± 1.555 d,A,* | 99.999 ± 0.000 a,B | 100.000 ± 0.002 a,B | 99.994 ± 0.015 a,B | 100.000 ± 0.002 b,B |
3 | 14.271 ± 1.509 c,A | 99.999 ± 0.000 a,B | 99.999 ± 0.001 a,B | 99.991 ± 0.013 a,B | 100.000 ± 0.001 b,B |
6 | 10.040 ± 0.488 b,A | 99.997 ± 0.005 a,B | 99.999 ± 0.001 a,B | 99.992 ± 0.012 a,B | 100.000 ± 0.000 b,B |
12 | 9.580 ± 0.168 b,A | 99.998 ± 0.001 a,B | 99.999 ± 0.001 a,B | 99.991 ± 0.012 a,B | 99.999 ± 0.001 ab,B |
24 | 9.040 ± 0.484 ab,A | 99.998 ± 0.001 a,B | 99.999 ± 0.001 a,B | 99.991 ± 0.012 a,B | 99.999 ± 0.001 ab,B |
72 | 7.877 ± 0.551 a,A | 99.996 ± 0.000 a,B | 99.998 ± 0.000 a,B | 99.990 ± 0.013 a,B | 99.999 ± 0.001 ab,B |
120 | 7.823 ± 0.586 a,A | 99.998 ± 0.001 a,B | 99.999 ± 0.002 a,B | 99.990 ± 0.013 a,B | 99.998 ± 0.001 a,B |
(b) | |||||
Time (h) | XG-0.32/SL-0.4 | XG-0.32/SL-1.2 | XG-0.32/SL-2.0 | XG-0.32/SL-2.8 | XG-0.32/SL-3.6 |
1 | 99.999 ± 0.005 e,A | 99.999 ± 0.000 a,A | 100.001 ± 0.001 b,A | 99.999 ± 0.003 b,A | 99.999 ± 0.001 a,A |
3 | 98.876 ± 0.733 d,A | 99.999 ± 0.000 a,B | 99.990 ± 0.017 ab,B | 100.000 ± 0.002 b,B | 99.999 ± 0.002 a,B |
6 | 98.190 ± 0.533 d,A | 99.997 ± 0.005 a,B | 99.952 ± 0.025 a,B | 99.999 ± 0.001 ab,B | 99.998 ± 0.003 a,B |
12 | 97.173 ± 0.415 c,A | 99.998 ± 0.001 a,B | 99.954 ± 0.023 a,B | 99.999 ± 0.001 ab,B | 99.998 ± 0.003 a,B |
24 | 96.594 ± 0.595 c,A | 99.998 ± 0.001 a,B | 99.953 ± 0.023 a,B | 99.998 ± 0.001 ab,B | 99.998 ± 0.003 a,B |
72 | 94.037 ± 0.264 b,A | 99.996 ± 0.000 a,B | 99.952 ± 0.024 a,B | 99.995 ± 0.001 a,B | 99.998 ± 0.000 a,B |
120 | 92.831 ± 0.444 a,A | 99.998 ± 0.001 a,B | 99.955 ± 0.023 a,B | 99.996 ± 0.000 ab,B | 100.000 ± 0.000 a,B |
(a) | |||||
---|---|---|---|---|---|
Time (days) | Peroxide value (mmol/kg) | ||||
Butter | SO | TE-SO | OG | TE-OG | |
0 | 0.296 ± 0.293 a,A,* | 4.016 ± 0.285 a,C | 1.312 ± 0.291 a,B | 3.846 ± 0.789 ab,C | 1.646 ± 0.507 ab,B |
2 | 0.455 ± 0.292 a,A | 3.995 ± 0.265 a,D | 1.800 ± 0.260 b,B | 3.269 ± 0.371 a,C | 1.423 ± 0.253 a,B |
4 | 0.294 ± 0.293 a,A | 20.936 ± 1.275 b,E | 2.990 ± 0.291 c,C | 5.363 ± 0.292 b,D | 1.637 ± 0.101 ab,B |
6 | 0.954 ± 0.265 b,A | 40.391 ± 1.826 c,D | 4.260 ± 0.102 d,B | 7.617 ± 0.244 c,C | 2.063 ± 0.085 bc,A |
8 | 0.813 ± 0.289 b,A | 69.007 ± 0.619 d,E | 5.688 ± 0.100 d,C | 17.282 ± 0.528 d,D | 2.041 ± 0.234 bc,B |
10 | 2.292 ± 0.229 d,A | 82.319 ± 5.163 f,D | 11.341 ± 0.081 e,B | 28.461 ± 1.341 e,C | 2.088 ± 0.082 c,A |
12 | 0.953 ± 0.065 c,A | 66.815 ± 1.263 e,E | 17.494 ± 0.675 f,C | 39.082 ± 0.963 f,D | 2.953 ± 0.439 d,B |
(b) | |||||
Time (days) | ρ-Anisidine value | ||||
Butter | SO | TE-SO | OG | TE-OG | |
0 | 0.731 ± 0.124 a,A | 10.605 ± 0.388 a,BC | 10.272 ± 1.815 a,BC | 11.070 ± 0.353 b,C | 9.003 ± 0.326 ab,B |
2 | 0.881 ± 0.499 a,A | 11.656 ± 0.639 a,CD | 12.673 ± 0.522 b,D | 11.146 ± 0.507 b,C | 8.460 ± 1.270 a,B |
4 | 0.803 ± 0.192 a,A | 14.383 ± 0.539 b,D | 12.678 ± 1.372 b,C | 9.918 ± 0.467 a,B | 9.107 ± 1.395 ab,B |
6 | 1.895 ± 0.725 b,A | 22.551 ± 0.644 c,D | 15.113 ± 0.364 c,C | 10.160 ± 0.556 a,B | 9.569 ± 0.463 ab,B |
8 | 1.393 ± 0.220 ab,A | 27.720 ± 1.294 d,D | 12.109 ± 1.186 b,C | 10.052 ± 0.248 a,B | 9.694 ± 0.067 ab,B |
10 | 2.013 ± 0.092 b,A | 37.743 ± 0.577 e,E | 15.225 ± 0.663 c,D | 12.486 ± 0.087 c,C | 11.089 ± 0.749 b,B |
12 | 3.298 ± 0.669 c,A | 49.888 ± 0.913 f,D | 16.703 ± 0.175 c,C | 14.502 ± 0.146 d,B | 13.081 ± 2.074 c,B |
(c) | |||||
Time (days) | TOTOX value | ||||
Butter | SO | TE-SO | OG | TE-OG | |
0 | 1.323 ± 0.478 a,A | 18.636 ± 0.253 a,C | 12.895 ± 2.089 a,B | 18.762 ± 1.250 ab,C | 12.295 ± 0.692 ab,B |
2 | 1.791 ± 0.791 a,A | 19.646 ± 0.790 a,D | 16.272 ± 0.830 b,C | 17.684 ± 0.683 a,C | 11.306 ± 1.557 a,B |
4 | 1.392 ± 0.568 a,A | 56.255 ± 2.898 b,D | 18.657 ± 1.414 c,C | 20.643 ± 0.420 b,C | 12.381 ± 1.232 ab,B |
6 | 3.802 ± 0.220 b,A | 103.334 ± 3.764 c,D | 23.634 ± 0.567 d,C | 25.394 ± 0.733 c,C | 13.694 ± 0.519 bc,B |
8 | 3.018 ± 0.759 b,A | 165.735 ± 2.017 d,E | 23.486 ± 1.144 d,C | 44.616 ± 1.040 d,D | 13.776 ± 0.533 bc,B |
10 | 6.598 ± 0.417 d,A | 202.380 ± 10.635 f,D | 37.908 ± 0.789 e,B | 69.409 ± 2.745 e,C | 15.266 ± 0.913 c,A |
12 | 5.204 ± 0.596 c,A | 183.519 ± 3.228 e,E | 51.691 ± 1.468 f,C | 92.666 ± 2.068 f,D | 18.986 ± 2.298 d,B |
Day | Sample | Hardness (N) | Adhesiveness (mJ) | Springiness | Chewiness (N) | Cohesiveness |
---|---|---|---|---|---|---|
0 | PC-0 | 10.08 ± 1.39 c,A,* | 0.42 ± 0.09 a,A | 0.71 ± 0.08 b,AB | 2.13 ± 0.57 b,A | 0.27 ± 0.04 a,B |
PC-20 | 9.79 ± 0.78 bc,A | 0.33 ± 0.06 a,A | 0.70 ± 0.05 b,A | 1.78 ± 0.30 ab,A | 0.26 ± 0.03 a,C | |
PC-40 | 9.37 ± 0.38 bc,A | 0.45 ± 0.08 a,A | 0.76 ± 0.02 b,B | 1.95 ± 0.08 b,A | 0.27 ± 0.01 a,B | |
PC-60 | 9.60 ± 0.32 bc,A | 0.36 ± 0.14 a,A | 0.74 ± 0.05 b,C | 1.78 ± 0.42 ab,B | 0.25 ± 0.04 a,B | |
PC-80 | 8.79 ± 0.26 ab,A | 0.51 ± 0.07 a,A | 0.60 ± 0.13 a,A | 1.41 ± 0.36 a,A | 0.25 ± 0.08 a,B | |
PC-100 | 7.88 ± 0.68 a,A | 0.41 ± 0.18 a,A | 0.77 ± 0.02 b,A | 1.78 ± 0.17 ab,A | 0.29 ± 0.01 a,C | |
3 | PC-0 | 15.75 ± 0.67 bc,B | 0.38 ± 0.11 a,A | 0.74 ± 0.02 b,B | 2.50 ± 0.39 b,A | 0.18 ± 0.06 b,A |
PC-20 | 15.75 ± 0.70 bc,B | 0.42 ± 0.10 ab,A | 0.65 ± 0.05 ab,A | 1.91 ± 0.26 abc,A | 0.21 ± 0.01 b,B | |
PC-40 | 15.90 ± 0.77 c,B | 0.43 ± 0.11 ab,A | 0.64 ± 0.04 ab,A | 1.49 ± 0.49 ab,A | 0.14 ± 0.04 a,A | |
PC-60 | 16.02 ± 0.50 c,B | 0.51 ± 0.12 ab,A | 0.61 ± 0.05 a,A | 1.35 ± 0.28 a,A | 0.14 ± 0.02 a,A | |
PC-80 | 15.07 ± 0.43 ab,B | 0.61 ± 0.20 b,A | 0.67 ± 0.07 cab,A | 2.04 ± 0.41 abc,B | 0.20 ± 0.03 b,B | |
PC-100 | 14.96 ± 0.53 a,B | 0.39 ± 0.17 a,A | 0.72 ± 0.12 ab,A | 2.21 ± 0.48 bc,AB | 0.20 ± 0.02 b,B | |
7 | PC-0 | 19.75 ± 0.78 bc,C | 0.49 ± 0.18 ab,A | 0.64 ± 0.05 a,A | 2.13 ± 0.55 ab,A | 0.17 ± 0.03 b,A |
PC-20 | 19.87 ± 0.64 c,C | 0.63 ± 0.22 b,B | 0.62 ± 0.08 a,A | 1.82 ± 0.36 a,A | 0.16 ± 0.03 b,A | |
PC-40 | 19.77 ± 0.65 bc,C | 0.37 ± 0.07 a,A | 0.64 ± 0.07 a,A | 1.72 ± 0.39 a,A | 0.14 ± 0.02 ab,A | |
PC-60 | 20.14 ± 0.70 c,C | 0.42 ± 0.08 ab,A | 0.66 ± 0.03 ab,B | 1.68 ± 0.21 a,AB | 0.13 ± 0.01 a,A | |
PC-80 | 18.98 ± 0.50 ab,C | 0.40 ± 0.10 a,A | 0.67 ± 0.04 ab,A | 1.67 ± 0.27 a,AB | 0.13 ± 0.01 ab,A | |
PC-100 | 18.88 ± 0.58 a,C | 0.42 ± 0.10 ab,A | 0.73 ± 0.01 b,A | 2.40 ± 0.32 b,B | 0.17 ± 0.04 b,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.J.; Shin, G.H.; Kim, J.T. Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template. Gels 2024, 10, 84. https://doi.org/10.3390/gels10010084
Hong SJ, Shin GH, Kim JT. Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template. Gels. 2024; 10(1):84. https://doi.org/10.3390/gels10010084
Chicago/Turabian StyleHong, Su Jung, Gye Hwa Shin, and Jun Tae Kim. 2024. "Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template" Gels 10, no. 1: 84. https://doi.org/10.3390/gels10010084
APA StyleHong, S. J., Shin, G. H., & Kim, J. T. (2024). Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template. Gels, 10(1), 84. https://doi.org/10.3390/gels10010084