Tailored 3D Agarose-Well Integrated with Human Skin Equivalents for Enhanced Skin Penetration Assessment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Human Skin Equivalents Reconstructed in 3D Agarose-Well
2.2. Enhanced Skin Penetration Assessment Using the Tailored 3D Agarose-Well
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Human Skin Equivalents Reconstructed in 3D Agarose-Wells
4.3. Structural Integrity of the Skin Equivalent Evaluated by TEER
4.4. Skin Penetration Monitoring Using a Living Human Skin Equivalents
4.5. Evaluation of Procollagen Synthesized in Skin Equivalent
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal delivery systems in cosmetics. BMC Dermatol. 2020, 4, 10. [Google Scholar] [CrossRef]
- Kelchen, M.N.; Brogden, N.K. In vitro skin retention and drug permeation through intact and microneedle pretreated skin after application of propranolol loaded microemulsions. Pharm. Res. 2018, 35, 228. [Google Scholar] [CrossRef] [PubMed]
- Gopinathan, J.M. New insights into skin structure: Scratching the surface. Adv. Drug Deliv. Rev. 2002, 54, S3–S17. [Google Scholar]
- Elias, P.M. The stratum corneum revisited. J. Dermatol. Sci. 2006, 43, 1–21. [Google Scholar] [CrossRef]
- Makhmalzade, B.S.; Chavoshy, F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J. Adv. Pharm. Technol Res. 2018, 9, 2–8. [Google Scholar]
- Park, Y.; Park, J.; Chu, G.S.; Kim, K.S.; Sung, J.H.; Kim, B. Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol. Bioprocess. Eng. 2015, 20, 543–549. [Google Scholar] [CrossRef]
- Ng, S.F.; Rouse, J.J.; Sanderson, F.D.; Meidan, V.; Eccleston, G.M. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS Pharmscitech. 2010, 11, 1432–1441. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, A.; Mahmood, S.; Thakur, A.; Mirza, M.A.; Bhatia, A. Franz diffusion cell and its implication in skin permeation studies. J. Dispers. Sci. Technol. 2024, 45, 943–956. [Google Scholar] [CrossRef]
- Lee, S.W.; Goo, B.L. High-Intensity Focused Ultrasound Enhances Drug Penetration into the Human Skin in the Franz Diffusion Cell. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1711–1721. [Google Scholar] [CrossRef]
- Hoffmann, J.C.; Hutmacher, D.W. A hydrogel-based 3D skin model to study the interaction of human epidermal keratinocytes and fibroblasts with extracellular matrix proteins. Exp. Dermatol. 2020, 29, 446–454. [Google Scholar]
- Kim, H.-J.; Min, D.J.; Lee, S.H.; Lim, J.W.; Jung, N.; Ryu, H.W.; Jeong, J.H. Tunable 3D Agarose-Well to enhance structural integrity of a reconstructed human skin equivalent. Mater. Lett. 2019, 253, 298–301. [Google Scholar] [CrossRef]
- Lim, J.W.; Kim, S.J.; Jeong, J.; Shin, S.G.; Woo, C.; Jung, W.; Jeong, J.H. Regulated Self-Folding in Multi-Layered Hydrogels Considered with an Interfacial Layer. Gels 2024, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Cho, S.W.; Oh, S.J.; Shin, S.G.; Ryu, H.W.; Jeong, J.H. Tuning the Hydrophobicity of a Hydrogel Using Self-Assembled Domains of Polymer Cross-Linkers. Materials 2019, 12, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zakrewsky, M.; Chen, M.; Menegatti, S.; Muraski, J.A.; Mitragotri, S. Peptides as skin penetration enhancers: Mechanisms of action. J. Control. Release 2015, 199, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Lee, M.J.; Yoon, M.H.; Park, J.A.; Yi, H.; Cho, H.J.; Shin, H.C. Determination of arbutin, niacinamide, and adenosine in functional cosmetic products by high-performance liquid chromatography. Anal. Lett. 2014, 47, 1650–1660. [Google Scholar] [CrossRef]
- Furukawa, F.; Kanehara, S.; Harano, F.; Shinohara, S.; Kamimura, J.; Kawabata, S.; Igarashi, S.; Kawamura, M.; Yamamoto, Y.; Miyachi, Y. Effects of adenosine 5′-monophosphate on epidermal turnover. Arch. Dermatol. Res. 2008, 300, 485–493. [Google Scholar] [CrossRef]
- Chen, S.; Einspanier, R.; Schoen, J. Transepithelial electrical resistance (TEER): A functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochem. Cell Biol. 2015, 144, 509–515. [Google Scholar] [CrossRef]
- Zoio, P.; Ventura, S.; Leite, M.; Oliva, A. Pigmented full-thickness human skin model based on a fibroblast-derived matrix for long-term studies. Tissue Eng. Part. C Methods 2021, 27, 433–443. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Aminabhavi, T.M. Formulation and in vitro evaluation of transdermal delivery of zidovudine—An anti-HIV drug. J. Appl. Polym. Sci. 2010, 119, 1268–1274. [Google Scholar] [CrossRef]
- Serra, L.; Domenech, J.; Peppas, N.A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006, 27, 5440–5451. [Google Scholar] [CrossRef] [PubMed]
Sample | Sequence | M.W. (g/mol) |
---|---|---|
Model peptide 1 | ACTGS-TQHQC-G | 1092 |
Model peptide 2 | HIITD-PNMAE-YL | 1417 |
Model peptide 3 | Pal-GHK | 579 |
Adenosine | - | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, C.; Byun, J.; Shin, S.G.; Yoo, H.; Cho, S.; Lee, D.; Park, T.; Jeong, J.H. Tailored 3D Agarose-Well Integrated with Human Skin Equivalents for Enhanced Skin Penetration Assessment. Gels 2024, 10, 691. https://doi.org/10.3390/gels10110691
Woo C, Byun J, Shin SG, Yoo H, Cho S, Lee D, Park T, Jeong JH. Tailored 3D Agarose-Well Integrated with Human Skin Equivalents for Enhanced Skin Penetration Assessment. Gels. 2024; 10(11):691. https://doi.org/10.3390/gels10110691
Chicago/Turabian StyleWoo, Chaewon, Jina Byun, Sung Gyu Shin, Heeseon Yoo, Sungwoo Cho, Donghun Lee, Taezoon Park, and Jae Hyun Jeong. 2024. "Tailored 3D Agarose-Well Integrated with Human Skin Equivalents for Enhanced Skin Penetration Assessment" Gels 10, no. 11: 691. https://doi.org/10.3390/gels10110691
APA StyleWoo, C., Byun, J., Shin, S. G., Yoo, H., Cho, S., Lee, D., Park, T., & Jeong, J. H. (2024). Tailored 3D Agarose-Well Integrated with Human Skin Equivalents for Enhanced Skin Penetration Assessment. Gels, 10(11), 691. https://doi.org/10.3390/gels10110691