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Abstract: We developed a tailored 3D Agarose-well system integrated with reconstructed human skin
equivalents to enhance skin penetration assessments. This system addresses common limitations in
traditional trans-well reconstructions, such as dermal layer contraction and limited lateral diffusion,
by entangling collagen fibrils within the Agarose-well. We evaluated the penetration behavior of
three peptides, with and without skin-penetrating peptide (SPP) sequences, alongside adenosine,
a known anti-wrinkle agent. Despite a SPP having a molecular weight approximately four times
greater than that of adenosine, its kinetic constant was similar, with values of about 39 and 34,
respectively. Moreover, this living skin equivalent system not only allowed for the evaluation of
adenosine penetration, but also demonstrated its biological effects, with adenosine significantly
enhancing procollagen synthesis by approximately 23% compared to the control. Overall, this novel
strategy holds the potential for tailoring 3D Agarose-wells and advancing high-performance gel
development, making it a promising approach for applications in tissue engineering, medical science,
regenerative medicine, and cosmetics.

Keywords: 3D agarose-well; skin penetration; human skin equivalents; high-performance gels

1. Introduction

The skin, as the body’s largest organ, acts as a primary barrier against environmental
aggressors while regulating substance absorption. Its complex structure comprises the
epidermis, dermis, and subcutaneous layers, each contributing to the skin’s overall barrier
function. Notably, understanding how various compounds penetrate this barrier is essential
for applications in dermatology, toxicology, and cosmetic science [1–4]. In recent years,
the development of in vitro skin models has become indispensable for studying skin
penetration and assessing the biological effects of topically applied compounds. Traditional
methods, such as excised animal or human skin, have been used extensively; however,
their application is limited by the inherent variability and non-living nature of these tissues,
which impairs the evaluation of long-term biological effects. Consequently, reconstructed
human skin equivalents, which closely mimic in vivo skin physiology, have emerged as
valuable tools, offering more reliable and reproducible models for penetration studies [5,6].

However, conventional systems for culturing reconstructed human skin equivalents,
such as trans-well plates and Franz diffusion cells, present significant limitations. Trans-well
systems often lead to contraction of the dermal layer and restrict lateral diffusion, resulting
in poor structural integrity and inaccurate assessment of penetration behavior. Similarly,
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the Franz diffusion cell, while widely used, typically employs non-living excised skin,
making it unsuitable for evaluating dynamic biological responses post-penetration [7–9].
These limitations have driven researchers to explore alternative methods for improving the
accuracy and relevance of skin penetration studies.

Hydrogels, particularly those based on agarose, have gained attention for their tun-
ability, structural support, and compatibility with biological systems. Agarose, a naturally
derived polysaccharide, is known for its biocompatibility, low toxicity, and ability to form
stable gel matrices that support tissue-like structures. Recent innovations have focused
on modifying agarose with alkyl groups to tailor its physical properties, thereby creating
hydrogels that better mimic the mechanical properties of the skin [10]. Such modifica-
tions have led to the development of advanced systems like the 3D Agarose-well, which
addresses many of the limitations posed by traditional culture methods [11].

In this study, we introduce a tailored 3D Agarose-well system designed to integrate
seamlessly with reconstructed human skin equivalents. The term, tailored 3D Agarose-well,
refers to the ability to adjust the physical properties of the dermal layer by modifying the
ratio of alkyl-grafted agarose, allowing for more precise control over structural and diffu-
sion characteristics. This system improves upon previous methods by preventing dermal
layer contraction, providing a more stable environment for skin penetration studies, and
facilitating the accurate measurement of substance diffusion across living skin equivalents.
By modifying the hydrogel properties, this system supports the entanglement of collagen
fibrils within the gel matrix, preserving the architecture of the skin equivalent and enabling
continuous monitoring of substance penetration (Figure 1).
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formation of an interpenetrating network, facilitating the infiltration of substances into the skin 
equivalent without additional pathways. (d) The monitoring system continuously tracks the pene-
tration behavior of substances under sink conditions. (e) Final monitoring system scheme utilized 
for penetration, kinetic constant, and procollagen production analysis.  

To validate the system, we investigated the penetration behavior of several com-
pounds, including peptides with and without skin-penetrating peptide (SPP) sequences, 
and adenosine, a known anti-wrinkle agent. These experiments demonstrated that the 

Figure 1. Scheme of the penetration monitoring system utilizing a living skin equivalent reconstructed
in the 3D Agarose-well. (a) The skin equivalent in the trans-well detached from the insert due
to cellular contraction. (b) Substances directly enter the contracted area without penetrating the
skin model. (c) The skin equivalent integrated with the 3D Agarose-well retains its shape due
to the formation of an interpenetrating network, facilitating the infiltration of substances into the
skin equivalent without additional pathways. (d) The monitoring system continuously tracks the
penetration behavior of substances under sink conditions. (e) Final monitoring system scheme
utilized for penetration, kinetic constant, and procollagen production analysis.

To validate the system, we investigated the penetration behavior of several com-
pounds, including peptides with and without skin-penetrating peptide (SPP) sequences,
and adenosine, a known anti-wrinkle agent. These experiments demonstrated that the
tailored 3D Agarose-well system provides consistent and reliable penetration data, while
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also allowing for the evaluation of biological effects such as procollagen synthesis, an
important marker for anti-aging efficacy.

The tailored 3D Agarose-well system represents a promising advancement in skin
penetration research, providing a platform for more accurate, reliable, and biologically
relevant assessments [12,13]. Beyond skin penetration studies, this system holds potential
for broader applications in tissue engineering, medical science, regenerative medicine, and
cosmetics, particularly in the development of high-performance gels tailored to specific
research needs.

2. Results and Discussion
2.1. Human Skin Equivalents Reconstructed in 3D Agarose-Well

Figure 2 illustrates the preparation process of the skin equivalent within the Agarose-
well. Initially, a collagen solution was introduced into the Agarose-well, allowing for
uniform diffusion throughout the matrix (Figure 2a). Following this, a dermal layer
containing human dermal fibroblasts was established, creating an interpenetrating polymer
network. Keratinocytes were then seeded onto the dermal layer, and the corneous layer
was differentiated from the epidermis through an air–liquid interface culture method,
culminating in the successful reconstruction of the skin equivalent. The optimal timing
for initiating air–liquid interface culture was determined by measuring transepithelial
electrical resistance (TEER). Traditional methods for constructing skin equivalents typically
utilize trans-well systems. While effective for forming dermal and epidermal layers, these
systems often lead to contraction of the skin equivalent due to cell proliferation. In contrast,
the 3D Agarose-well, as depicted in Figure 1, maintained its structural integrity even during
complete cell proliferation. This stability can be attributed to the entanglement of collagen
fibrils within the Agarose-well, resulting in a robust skin equivalent.

The skin equivalent was developed to include a dermis, epidermis, and a differen-
tiated corneum. To achieve corneum differentiation, keratinocytes must be exposed to
air once they fully cover the dermis layer. In this study, we ensured the density of the
keratinocytes by examining the transepithelial electrical resistance (TEER) values at each
stage of development. The resistance of the skin equivalent was calculated by subtracting
the resistance of an empty trans-well from the total resistance measured in the trans-well
containing the skin equivalent:

TEER = RTissue(Ω)× Area
(

cm2
)

(1)

where RTissue is the resistance of the skin equivalent, and area is the dimension of the skin
equivalent. For the TEER measurements, we used five skin equivalents for each value, with
a trans-well area of 4.25 cm2.

Figure 2c displays the TEER values at each step, from the dermis layer to the fully
covered dermis layer with differentiated keratinocytes forming the corneum layer. The
TEER value for the dermis layer was recorded at 18 Ω·cm2. Following the seeding of ker-
atinocytes, the TEER value increased to about 55 Ω·cm2 as the keratinocytes fully covered
the dermis. At this stage, the epidermis began air–liquid interface culture to promote ker-
atinocyte differentiation. The TEER value gradually increased as differentiation progressed,
reaching around 100 Ω·cm2 after 13 days. The H&E-stained images embedded within the
TEER graph (Figure 2c) depict the skin equivalent’s structural changes over time. Four days
after initiating the air–liquid interface culture, the dermis layer measured approximately
0.35 cm in thickness, while the epidermis layer was about 30–40 µm thick. After 13 days, the
epidermis thickness increased to approximately 100 µm. Although the epidermis layer was
roughly 35 times thinner than the dermis layer, its TEER value increased about five-fold
compared to the dermis due to the differentiation of keratinocytes into a multilayered
structure. Furthermore, the TEER value significantly increased after 13 days of cultivation,
reflecting the development of tight junctions within the corneum layer. Compared to other
skin models, such as those utilizing fibrin or collagen alone, the 3D Agarose-well allows
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for more controlled differentiation of keratinocytes, as evidenced by the TEER values and
histological analyses. The stable TEER values and robust structural differentiation in our
system underscore its advantage in maintaining long-term culture viability.
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Figure 2. (a) The entire process of reconstructing the skin equivalent in the 3D Agarose-well. Initially,
the collagen solution infiltrated the 3D Agarose-well (a-1), followed by the addition of the dermal cell
suspension to prepare the dermal layer (a-2). Keratinocytes were cultured on the dermal layer (a-3)
and exposed to air to form a monolayer for differentiation (a-4). The full-thickness skin equivalent
was then reconstructed within the 3D Agarose-well (a-5). (b) The reconstruction processes were
monitored using TEER measurements at each step, including the formation of the keratinocyte
monolayer. (c) The TEER values at each step are presented in the graph, starting from the completion
of the dermal layer designated as day 0. (Scale bar: 100 µm).

2.2. Enhanced Skin Penetration Assessment Using the Tailored 3D Agarose-Well

The tailored 3D Agarose-well system was utilized to evaluate peptide penetration and
the factors influencing it. In this study, adenosine and three peptides were applied to the
surface of the skin equivalent, and their penetration behavior was examined by measuring
peptide concentrations in the receptor medium beneath the skin equivalent and agarose
layer (Table 1). Figure 3a illustrates the final penetration levels (M ∞/Minitial)×100) for
each peptide, while Figure 3b presents their fractional penetration ( Mt/M∞) over time.
Peptides 1 and 2, which contain skin-penetrating peptide (SPP) sequences, exhibited a
faster and more efficient penetration than peptide 3, which lacks these sequences and has
roughly half the molecular weight of peptides 1 and 2. Peptides 1 and 2 fully penetrated the
skin within 24 h, while peptide 3 continued to release beyond that time frame, highlighting
the enhanced penetration capabilities of peptides 1 and 2. This observation echoes the
results from the previous study [14], which examined the SPACE peptide—similar in
sequence to our peptide 1—and its ability to facilitate the delivery of macromolecules,
such as Cyclosporine A (CsA), through excised human skin using a Franz diffusion cell.
Notably, the mechanism of action involved the interaction between the SPPs and skin
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proteins, leading to changes in secondary protein structures that favorably influenced the
skin’s permeability. The transcellular pathway enhanced by the SPPs promoted efficient
partitioning into keratin-rich corneocytes, facilitating drug delivery. Our results further
substantiate these findings, demonstrating that peptides 1 and 2 achieved full penetration
of the skin within 24 h, while peptide 3 continued to release beyond this timeframe,
underscoring the enhanced penetration capabilities of the SPP-containing peptides. The
implications of these findings are significant, as they suggest that the mechanism of SPPs,
particularly those resembling the SPACE peptide, plays a critical role in mediating effective
drug delivery through the skin.

Table 1. Characterization of the SPPs and adenosine.

Sample Sequence M.W. (g/mol)

Model peptide 1 ACTGS-TQHQC-G 1092
Model peptide 2 HIITD-PNMAE-YL 1417
Model peptide 3 Pal-GHK 579

Adenosine - 267
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Figure 3. (a) The ultimate penetration ( (M ∞/Minitial)× 100) of peptides was determined by com-
paring the initial concentration of peptides in the suspension to the concentration remaining after
penetration. (b) The fractional peptide penetration over time (Mt/M∞) was calculated by dividing
the concentration of peptides remaining after each time point by the final penetration value. Mean
values and standard deviations were calculated from five replicates (n = 5).

To further quantify the penetration dynamics, the kinetic rate constant (k) and dif-
fusional exponent (n) were calculated using Equation (2) illustrated in the Materials and
Methods section. Model peptide 1 had the highest kinetic rate constant at 33.4, followed
by peptide 2 at 9.6, and peptide 3 at 0.11 (Figure 4a). The diffusional exponent for model
peptide 1 was the lowest at 0.49, followed by peptide 2 at 0.96, and peptide 3 at 2.07
(Figure 4b). A lower diffusional exponent signifies diffusion-dominated transport, while
a higher exponent suggests a relaxation-controlled mechanism. Comparing these values,
model peptide 1, which had the most effective penetration profile, was compared with
adenosine, a smaller molecule with a molecular weight approximately four times lower
(Figure 5). Despite model peptide 1’s larger size, its penetration characteristics, including
fractional penetration and kinetic rate constant, were comparable to adenosine. This demon-
strates the capability of the 3D Agarose-well system to accurately assess and compare the
penetration properties of peptides.
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Figure 4. Penetration factors of model peptides. (a) Kinetic rate constant and (b) diffusion exponent.
A higher kinetic rate constant was observed when the initial fraction of penetration increased rapidly,
whereas a lower diffusion exponent indicated dominant diffusion behavior. Statistical significance
levels were established as follows: ** p ≤ 0.01, and *** p ≤ 0.001. Mean values and standard deviations
were calculated from five replicates (n = 5).
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The living diffusion system, composed of a full-thickness skin equivalent with both
dermal and epidermal layers, offers a robust platform for the simultaneous evaluation
of skin penetration and biological effects, particularly those associated with dermal re-
modeling and anti-aging mechanisms. In this study, adenosine—a compound widely
recognized for its role in anti-aging formulations due to its capacity to stimulate colla-
gen production—was employed to assess its bioactivity, focusing specifically on type I
procollagen synthesis. Previous studies have highlighted the significance of adenosine
in enhancing skin elasticity and hydration and reducing visible signs of aging, such as
fine lines and wrinkles [15,16]. These properties make it an ideal candidate for examining
the effectiveness of the 3D Agarose-well system as both a penetration assessment tool
and a bioactivity monitoring platform. To quantify procollagen Type I synthesis, we used
the Procollagen Type I C-peptide (PIP) EIA kit, a reliable method for measuring collagen
precursors. Adenosine’s bioactivity was evident, as it triggered fibroblast activity in the
dermal layer, resulting in enhanced procollagen production. This was measured in the
receptor medium, indicating that adenosine successfully penetrated the skin barrier and
stimulated fibroblast-mediated procollagen synthesis. Figure 6a illustrates the penetration
timeline of adenosine and its subsequent biological effect on procollagen production. No-
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tably, even after complete adenosine penetration within the first 15 h, procollagen synthesis
continued, suggesting that the compound remains active in the skin for an extended period.
Procollagen synthesis increased by approximately 23% in comparison to the control group,
which was cultured in a standard medium without adenosine supplementation (Figure 6b).
These results underscore the dual function of the living diffusion system: not only can it
measure the efficiency of skin penetration, but it also allows for real-time monitoring of
bio-effects, such as extracellular matrix remodeling through collagen production.
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Figure 6. The bright images show that adenosine activates procollagen synthesis. (a) Synthesized
type I procollagen and remaining adenosine were detected on the medium at each time. (b) The
synthesis of type I procollagen was higher in the treated adenosine group compared to the untreated
group. This penetration system demonstrates the successful penetration of adenosine compared
to the amount of type I procollagen in the immersed group, which was approximated. Statistical
significance levels were established as follows: * p ≤ 0.05. Mean values and standard deviations were
calculated from five replicates (n = 5).

In addition to penetration efficacy, this system facilitates a deeper understanding of
how the penetrated molecules interact with the skin at a cellular level. Adenosine’s ability
to promote procollagen synthesis beyond the point of penetration suggests that it may
remain in active form, continuously engaging with dermal fibroblasts to stimulate collagen
production over time. This prolonged activity is particularly beneficial for evaluating
compounds intended for long-lasting cosmetic or therapeutic effects. The sustained increase
in TEER values during this period also corroborates the role of adenosine in enhancing
skin barrier function, likely through improved cellular cohesion and the formation of tight
junctions in the epidermal layers.

Moreover, Figure 6b presents a direct comparison of procollagen synthesis between
the penetration system and a traditional immersion method, where skin equivalents were
immersed in an adenosine solution at the same concentration for 24 h. Interestingly, the re-
sults revealed no significant difference in procollagen production between the two methods.
This finding suggests that the 3D Agarose-well system is not only comparable to traditional
trans well and immersion-based systems, but also provides a more physiologically relevant
environment for testing. The skin equivalent in the Agarose-well maintains structural
integrity and viability over time, thereby preserving the functionality of living cells and
tissues. This underscores the value of using the Agarose-well system for studies requiring
long-term assessment of both penetration and cellular responses.

In conclusion, the 3D Agarose-well system offers significant advantages over conven-
tional skin models. It allows for a more realistic simulation of in vivo conditions, enabling
accurate penetration studies coupled with an evaluation of downstream biological effects.
The ability to monitor both skin barrier function and cellular activity in a living system
provides a comprehensive approach to studying compounds such as adenosine, whose
effects extend beyond mere penetration. Future studies could further explore the use of
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this system with other bioactive compounds, potentially opening new avenues for research
into therapeutic agents, cosmetic formulations, and drug delivery systems targeting the
skin. By bridging the gap between skin penetration and functional biological outcomes, the
Agarose-well system represents a significant advancement in the field of dermal research.

3. Conclusions

In this study, we developed a tailored 3D Agarose-well system to improve the struc-
tural stability of full-thickness human skin equivalents and enhance the accuracy of skin
penetration assessments. The system prevented skin equivalent contraction and enabled
effective diffusion measurements. Peptides with skin-penetrating sequences showed sig-
nificantly higher penetration rates compared to smaller peptides lacking these sequences.
Additionally, adenosine, a common anti-aging ingredient, not only penetrated effectively
but also stimulated procollagen synthesis in dermal fibroblasts, demonstrating the system’s
ability to evaluate both penetration behavior and bio-effects. The Agarose-well system thus
provides a robust, living model for studying the interaction between topical substances
and human skin, offering a valuable tool for both cosmetic and pharmaceutical research.

4. Materials and Methods
4.1. Materials

Collagen solution (Type I, 6 mg/mL) was obtained from Advanced BioMatrix
(San Diego, CA, USA). Agarose, sodium hydroxide, sodium bicarbonate, 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), and adenosine were sourced from Sigma-Aldrich
(St. Louis, MO, USA). Bioactive peptides were provided by PurioGen, Inc. (Seoul,
Republic of Korea). Peptides 1 and 2 contain skin-penetrating peptide (SPP) sequences,
while peptide 3 does not. Human Dermal Fibroblast (neonatal, HDFn) and Human
Epidermal Keratinocyte (neonatal, HEKn) cells were purchased from ATCC (Manassas,
VA, USA). M106 medium, Epilife®, Human Keratinocyte Growth Supplement (HKGS),
and Low Serum Growth Supplement (LSGS) were obtained from Gibco (Grand Island,
NY, USA).

4.2. Human Skin Equivalents Reconstructed in 3D Agarose-Wells

Agarose-wells were prepared using a 1.0% (w/v) agarose aqueous solution. Agarose
was dissolved in deionized (DI) water at 121 ◦C for 20 min. The solution was poured
into molds produced by a stereolithography apparatus (SLA), sterilized by immersing in
70% ethanol for 15 min and subsequently exposed to UV light for 30 min. The agarose
mixture was allowed to cool at room temperature, polymerizing to form the wells. Once
set, the Agarose-wells were removed from the molds and stored in PBS until use [11].
Then, human skin equivalents were reconstructed in the 3D Agarose-wells. First, the wells
were dried until approximately 80% of the moisture content was removed. A prechilled
500 µL collagen solution was added to the dried wells and incubated at 4 ◦C overnight
for absorption. The dermis layer was reconstructed by mixing 400 µL of collagen solution
with 100 µL of buffer (composed of sodium bicarbonate, HEPES, and sodium hydroxide)
and 10,000 HDFn cells/mL. This mixture was added to the wells and incubated for 1 h
at 37 ◦C and 5% CO2. The dermis was cultured in M106 medium supplemented with
LSGS, replaced every 2 days. The epidermis layer was developed by seeding HEKn cells
(1.0 × 105 cells/cm2) onto the dermis and incubating for 1 h. After forming a monolayer,
the culture was transitioned to an air–liquid interface for differentiation. Fresh medium
was replaced outside the wells every 2 days.

4.3. Structural Integrity of the Skin Equivalent Evaluated by TEER

The integrity of the epidermal layer was evaluated using transepithelial electrical
resistance (TEER), measured with an Epithelial Volt/Ohm Meter (EVOM3, World Precision
Instruments, Sarasota, FL, USA) [17,18]. Before TEER measurements, electrodes were
sterilized with 70% ethanol and UV light. PBS was added to the Agarose-wells, and
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the electrodes were positioned over the skin equivalents. TEER values were recorded
over 13 days during air–liquid interface culture. H&E staining was used to observe skin
morphology in relation to TEER results.

4.4. Skin Penetration Monitoring Using a Living Human Skin Equivalents

The 3D Agarose-wells were integrated into a diffusion system for in vitro skin pene-
tration studies, allowing for both side and bottom diffusion. Polydimethylsiloxane (PDMS)
O-rings were employed to guide penetration from the surface and prevent diffusion into
the Agarose-wells. Peptide suspensions (100 mg/mL) were applied to the skin equivalents,
and receptor medium was collected at 0, 3, 6, 12, and 24 h intervals. Samples were analyzed
using High-performance Liquid Chromatography (HPLC). The penetration kinetics were
determined using the Ritger–Peppas equation:

Mt

M∞
= ktn (2)

where Mt/M∞ is a fraction of peptide penetration; Mt is the number of peptides penetrated
through the skin equivalent at the time; t is the time when collecting medium; M∞ is the
number of peptides penetrated through the skin equivalent until the end; k is the kinetic rate
constant; and n is the diffusional exponent related to the penetration mechanism [19–21].
The ultimate penetration was defined from the following equation:

Ulitimately penetration =
M∞

Mi
× 100(%) (3)

where Mi is the number of peptides released on the skin equivalent when the penetration
test begins.

4.5. Evaluation of Procollagen Synthesized in Skin Equivalent

In vitro enzyme immunoassay was performed using the Procollagen Type I C-peptide
(PIP) EIA Kit (MK101, TAKARA, Kusatsu, Japan). The culture medium from the skin
equivalents was mixed with a monoclonal antibody solution and incubated in an anti-PIP
monoclonal antibody-coated plate at 37 ◦C for 3 h. After washing with PBS, a substrate
solution (TMBZ solution, 3,3′,5,5′-tetramethylbenzidine) was added to develop color at
room temperature for 15 min. Subsequently, a stop solution was added to stabilize the
reaction, and the optical density was measured using a microplate reader (Thermo Scientific,
Waltham, MA, USA) at 450 nm. A standard curve for the quantification of type I procollagen
was generated according to the protocol. Absorbance measurements of standard solutions
ranging from 0 to 640 ng/mL were used to construct the standard curve. Based on this
curve, the concentration of type I procollagen in the samples was quantified.

4.6. Statistical Analysis

Experimental data are presented as mean ± standard deviation (S.D.). Statistical
comparisons were made using Tukey’s Test. Significance levels were set at * p ≤ 0.05,
** p ≤ 0.01, and *** p ≤ 0.001.
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