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Abstract: Polymer gels are one of the most common plugging agents used for controlling CO2

channeling and improving sweep efficiency and oil recovery in tight fractured reservoirs. However,
the in situ gelation behavior and enhanced oil recovery ability of polymer gel in fractured porous
media is still unclear. Thus, in this study, the bulk and in situ gelation behavior of crosslinked
phenolic resin gel in a long stainless microtube as the fractured porous media was investigated. The
enhanced oil recovery ability of phenolic resin gel used for CO2 channeling was investigated by
means of a fractured core model. Results show that, with the increase of polymer and crosslinker
concentrations, the bulk gelation time shortens and gel strength improves during the static gelation
process. With the increase of polymer concentration and temperature, the in situ static gelation time
and dynamic gelation time of the gel system in the microtube are shortened, and the breakthrough
pressure gradient increases after gelation. Compared with the in situ static gelation behavior, the
in situ dynamic gelation time is prolonged and the breakthrough pressure gradient decreases after
gelation. The in situ static gelation time in the microtube is 1.2 times that of bulk gelation time in an
ampoule bottle, and the in situ dynamic gelation time is nearly 3 times that of ampoule bottles. When
the injected slug volume was 1.0 FV (fracture volume), as the polymer concentration increased from
3000 mg·L−1 to 4000 mg·L−1, the incremental oil recovery increased from 3.53% to 4.73%.

Keywords: gelation behavior; polymer gel; CO2 channeling; enhanced oil recovery; tight fractured
reservoir

1. Introduction

As conventional oil resources are depleted, it is imperative to develop unconventional
oil resources [1,2]. For conventional reservoirs, when the reservoir is depleted after primary
production, water flooding is one of the most widely used techniques for enhanced oil
recovery by supplementing reservoir energy and displacing remaining oil [3]. However,
due to the permeability contrast between the matrix and existence of induced fracture
networks, it is inevitable that a large percentage of oil remains unrecovered in the matrix
after water flooding [4–7]. In terms of enhanced oil recovery in tight oil reservoirs, there
have been studies focused on CO2 injection for tight oil exploration [8–13], but due to
the existence of fractures, gas channels through the fracture and gas breakthrough occurs,
which can lead to low sweep efficiency and early breakthrough. To alleviate these problems,
different methods have been adopted to control gas channeling, including water-alternating-
gas (WAG) and a chemical plugging technique. The CO2 water-alternating-gas (CO2-WAG)
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technique has been proposed and successfully applied to control gas mobility and achieve
higher recovery efficiency [14–17]. However, for a very heterogeneous reservoir, the WAG
cannot achieve good results. Therefore, the chemical plugging technique has usually
been applied to control gas channeling in a fractured reservoir. In a previous study,
different plugging agents including CO2 thickening agent, foam and polymer gel have
been extensively investigated [18,19]. Many different kinds of CO2 thickening agent have
been tested, including fluoropolymers, siloxane polymers, tailor-made surfactants and
small molecule compounds that can be directly dissolved in supercritical CO2 as chemical
additives to increase the viscosity of supercritical CO2 under a reservoir condition. In
addition, in a previous study, a CO2-responsive gel and a CO2-responsive preformed
particle gel have also been reported. Dai et al. prepared a kind of CO2-reponsive gel
composed of small molecular amine compounds and a modified long-chain alkyl anionic
surfactant used for gas channeling plugging. Deng et al. developed types of CO2-responsive
preformed particle gels (CR-PPGs) with high strength to address CO2 gas channeling
problems during CO2 flooding in fractured reservoirs [20,21]. Although many kinds of
CO2 thickening agent have been developed [21,22], CO2 thickening agents with oilfield
popularization value are still subject to research.

Foam can effectively reduce the relative permeability of gas in porous media, thus
effectively controlling gas mobility during the process of CO2 injection [23]. Foam can
be formed by a mixing foaming agent with different gas types, including air, nitrogen
and CO2 under external force. Due to the advantages of high apparent viscosity and
selective plugging ability, foam has been widely applied in mature water flooding reservoirs.
However, for high temperature and high salinity reservoirs, foaming ability and foam
stability are not satisfactory, which can affect the abilities of sweep efficiency expanding
and oil recovery. To improve foam stability, polymer reinforced foam, gel foam and three-
phase foam were developed [24]. These foams has been successfully applied in mature
high permeability sandstone reservoirs; however, foam plugging agent has application
limitations for fractured reservoirs.

Polymer gels are one of the most common plugging agents used for controlling gas
channeling and improving sweep efficiency [25–27]. Polymer gels are formed by polymer
and crosslinkers including chromium gel and phenolic resin gel. Due to their short gelation
time and bad thermal stability, organically crosslinked gels such as phenol–formaldehyde
polymer gel and phenolic resin gel were used. Polymer gel treatment has been recognized as
a cost-effective method to control water production in mature reservoirs. Some remarkable
achievements have been made in the field application [28,29], but some problems still
exist during gel treatment in the field. The in situ gelation behavior in porous media is
especially related to the success rate of gel treatment [30–34]. Usually, before the field gel
treatment, bulk gelation behavior in ampoule bottles is evaluated by the bottle test method
under static conditions to determine the gelation time, which can provide a basis for the gel
placement. However, during the injection process and shut-in period of the gel treatment,
the in situ gelation behavior in porous media is different from bulk gelation behavior. The
in situ gelation behavior, including static gelation and dynamic gelation in porous media, is
often evaluated by conducting core flow experiments. The difference between bulk gelation
and in situ gelation behavior evaluation is as follows: (1) The gelation circumstances
are different. For bulk gelation behavior evaluation, the bulk gelation environment is
an ampoule bottle, while for in situ gelation behavior evaluation, the in situ gelation
environment is porous media. (2) There is a difference between static gelation and dynamic
gelation. Bulk gelation behavior in an ampoule bottle is evaluated under static conditions.
However, for in situ gelation behavior, during the gelant solution flow in porous media,
due to the dilution, shear, adsorption and retention effects from porous media, the in situ
dynamic gelation behavior in porous media is different.

In previous studies, the bulk and in situ gelation behavior of gelant solutions in
consolidated porous media has been extensively investigated [35–38]. It was demonstrated
that the bulk gelation behavior was different from in situ gelation behavior in aspects such
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as gelation time and gel strength. However, to the best of our knowledge, little research
has been done on in situ gelation behavior in fractured porous media, which is crucial
for the design of the injection amount and injection rate of polymer gel. It is difficult to
provide a basis for the design of the gelant formulation and injection parameters during
field tests. Therefore, it is necessary to evaluate some gelation behavior issues as follows:
(1) The differences in gelation time and gel strength between bulk and in situ gelation in
fractured porous media. (2) The influence of injection rate on in situ dynamic gelation
behavior in fractured porous media, which affects the channeling effect of gel in tight
fractured reservoirs.

Moreover, the plugging ability of polymer gel in fractured reservoirs can affect the
enhanced oil recovery ability. In a previous study, the parallel sandpack mode or short
core model was used to evaluate the enhanced oil recovery of polymer gel, which cannot
actually reflect the enhanced oil recovery ability for tight fractured reservoirs. Thus, it is
crucial to design a proper fractured core model to evaluate the enhanced oil recovery ability
of polymer gel used for controlling CO2 channeling.

Therefore, the objective of this study is as follows: (1) A long stainless slim tube
was used as the fractured porous media to investigate bulk gelation behavior and in situ
gelation behavior during flowing, which can contribute to understanding the differences
between bulk gelation and in situ gelation in fractured porous media. The bulk gelation
behavior testing was focused on the gelation behavior of polymer gel in an ampoule bottle
by the bottle method. The in situ gelation behavior included static gelation and dynamic
gelation behavior. (2) Based on the findings in relation to gelation behavior, a fractured core
was used to investigate the enhanced oil recovery ability of phenolic resin gel. This study
can ensure the plugging effect of polymer gel used for fractured low permeability tight
reservoirs and provide a theoretical basis for the design of the construction parameters of
the polymer gel.

2. Results and Discussion
2.1. Bulk Gelation Behavior
2.1.1. Effect of Polymer and Crosslinker Concentration

The influences of the polymer concentration, crosslinker concentration and poly-
mer/crosslinker concentration ratio on bulk gelation behavior of phenolic resin gel were
investigated by conducting a series of bottle test experiments at 70 ◦C. The influences
of the polymer concentration and polymer/crosslinker concentration ratio were studied
by varying the polymer concentration, whereas the crosslinker concentration remained
constant. Similarly, the influence of the crosslinker concentration was studied by varying
the crosslinker concentration, whereas the polymer concentration remained constant. The
experimental results of Effect of Polymer and Crosslinker Concentration are shown in
Figure 1.

It can be obviously noted that, with the prolongation of time, the viscosity of the
gelant solution changed slightly, and then increased rapidly until it became stable. The bulk
gelation process can be divided into three stages: induction stage, gelation stage and stable
stage. When the viscosity of the gelant solution begins to rise significantly, the gelation
time is defined as the time corresponding to the inflection point between the induction
stage and the gelation stage. According to the above figures, the gelation time and gel
strength of polymer gel to be formed under different polymer and crosslinker concentration
components are obtained, as shown in Table 1.

The gelation time and strength are adjustable at 70 ◦C; when the concentration of
polymer and crosslinker is in the range of 3000 mg·L−1 to 4000 mg·L−1, the gelation
time ranges from 17.5 h to 40 h, and the gelation strength ranges from 11,006 mPa·s to
38,457 mPa·s. With the increase of polymer and crosslinker concentrations, the gelation
time of the gelant solution is shortened and the gelation strength increases. When the con-
centrations of polymer and crosslinker increase, the number of active points participating
in the crosslinking reaction increases, which improves the contact reaction probability of
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reaction groups, speeds up the crosslinking reaction rate, shortens the gelation time and
increases the gelation strength.

Gels 2024, 10, x FOR PEER REVIEW 4 of 19 
 

 

0 10 20 30 40 50 60 70 80 90
0

5,000

10,000

15,000

20,000

25,000

30,000

V
isc

os
ity

 (m
Pa

·s
)

Time (h)

 3000mg·L−1 HPAM+ 3000mg·L−1 Crosslinker
 3500mg·L−1 HPAM+ 3000mg·L−1 Crosslinker
 4000mg·L−1 HPAM+ 3000mg·L−1 Crosslinker

 
0 10 20 30 40 50 60 70 80 90

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

V
isc

os
ity

(m
Pa

·s
)

Time(h)

 3500mg·L−1 HPAM+ 3000mg·L−1 Crosslinker
 3500mg·L−1 HPAM+ 3500mg·L−1 Crosslinker
 3500mg·L−1 HPAM+ 4000mg·L−1 Crosslinker

 
(a) Effect of polymer concentration (b) Effect of crosslinker concentration 

Figure 1. The effect of polymer and crosslinker concentration on the bulk gelation process at 70 °C. 
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Figure 1. The effect of polymer and crosslinker concentration on the bulk gelation process at 70 ◦C.

Table 1. The effect of polymer and crosslinker concentration on bulk gelation behavior (70 ◦C).

No. Polymer Concentration
/mg·L−1

Crosslinker Concentration
/mg·L−1

Polymer/Crosslinker
Concentration Ratio

Gelation Time
/h

Final Gel
Strength/mPa·s

1 3000 3000 1.0 40 11,006

2 3500 3000 1.17 30 22,538

3 4000 3000 1.33 25 25,483

4 3500 3500 1.0 20 26,583

5 3500 4000 0.875 17.5 38,457

2.1.2. Effect of Temperature

A long stainless steel microtube (Φ 1.0 mm × 100 mm) physical simulation model was
established and continuous injection of gelant solution was used to investigate the in situ
dynamic gelation behavior during flow in the long microtube. When the gelant solution
system flows out of the microtube, this will lead to the failure of the dynamic gelation
experiment. Due to the limitation of long gelation time at 70 ◦C and the length of microtube
model, in order to better analyze and compare the gelation behavior under bulk and in situ
gelation conditions, the gelation property of a gelant solution composed of 4000 mg·L−1

polymer and 4000 mg·L−1 crosslinker was studied at 90 ◦C. Figure 2 shows the viscosity
of the gelant solution varying with time under different temperatures, at 70 ◦C and 90 ◦C.
Figure 3 shows the appearance of the gelant solution varying with time under different
temperatures of 70 ◦C and 90 ◦C.
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The experimental results are shown in Table 2. When the concentration of polymer
and crosslinker is constant (4000 mg·L−1 polymer + 4000 mg·L−1 crosslinker), gelation
time decreases from 10 h at 70 ◦C to 2 h at 90 ◦C. The gelation strength increases from
41,245 mPa·s at 70 ◦C to 58,553 mPa·s at 90 ◦C. With the increase of temperature, the
molecular movement of the polymer and crosslinker accelerates, and the crosslinking
reaction probability of the reaction groups increases, which increases the crosslinking
reaction rate, shortens the gelation time and increases the gel strength.

Table 2. The effect of temperature on bulk gelation time and gel strength.

Temperature
/◦C

Polymer Concentration
/mg·L−1

Crosslinker Concentration
/mg·L−1

Gelation Time
/h

Final Gel
Strength/mPa·s

70 4000 4000 10.0 41,245

90 4000 4000 1.25 58,553
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2.2. In Situ Static Gelation Behavior
2.2.1. Effect of Temperature on In-Situ Static Gelation

The in situ static gelation behavior of phenolic resin gel was studied by conducting
slim tube flow experiments. A stainless microtube (Φ 1.0 mm × 20 m) was used to simulate
a single fracture in porous media. According to the experimental procedures of the in situ
static gelation behavior test, the breakthrough pressure and pressure gradient versus time
at 70 ◦C and 90 ◦C were as shown in Figure 4. Moreover, the water breakthrough pressure
gradient after in situ static gelation in the microtube was measured, as shown in Table 3.
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Figure 4. Breakthrough pressure and pressure gradient versus time at 70 ◦C and 90 ◦C.

Table 3. The effect of temperature on in situ static gelation time and gel strength of the microtube.

Temperature
/◦C

Polymer Concentration
/mg·L−1

Crosslinker Concentration
/mg·L−1

In Situ Static
Gelation Time/h

Breakthrough
Pressure Gradient/MPa·m−1

70 4000 4000 12.0 0.138

90 4000 4000 1.5 0.365

As shown in Figure 4, under temperatures of 70 ◦C and 90 ◦C, with the lengthening of
the standing time of the gelant solution system in the microtube, the breakthrough pressure
gradient of the gel system increased, slowly at first, and then increased rapidly until it
was basically stable. The in situ static gelation process of the gel system in the microtube
is divided into induction, gelation and stability stages. The time corresponding to the
inflection point between the induction stage and the gelation stage, when the breakthrough
pressure gradient begins to rise significantly, is defined as the gelation time. Table 3 shows
the in situ static gelation time and gel strength at 70 ◦C and 90 ◦C. For the gel system
composed of 4000 mg·L−1 polymer and 4000 mg·L−1 crosslinker, at 70 ◦C, the in situ
static gelation time in the microtube is 12 h, and the breakthrough pressure gradient is
0.138 MPa·m−1. At 90 ◦C, the in situ static gelation time of the gel system in the microtube
is 1.5 h, and the breakthrough pressure gradient is 0.365 MPa·m−1. As the temperature
increases, the in situ static gelation time shortens, and the subsequent water flooding
breakthrough pressure gradient increases, reflecting the increase in the gel strength. The
reason for this is that with the increase of temperature, the movement of polymer and
crosslinking agent molecules accelerates, the probability of a collision contact crosslinking
reaction between reactive groups increases, the crosslinking reaction speed accelerates, the
gelation time shortens, and the gel strength increases.
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2.2.2. Effect of Concentration on In-Situ Static Gelation

The influence of the polymer concentration was studied by varying the polymer
concentration, whereas the crosslinker concentration remained constant. Figure 5 shows
the water breakthrough pressure gradient versus time at 90 ◦C. Moreover, the water
breakthrough pressure gradient after in situ static gelation in microtube was also measured,
as shown in Table 4.
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Figure 5. Breakthrough pressure and pressure gradient of different polymer concentrations versus
time at 90 ◦C.

Table 4. The effect of polymer concentration on in situ gelation time and gel strength of the microtube
(90 ◦C).

Temperature
/◦C

Polymer Concentration
/mg·L−1

Crosslinker Concentration
/mg·L−1

In Situ Static
Gelation Time/h

Breakthrough
Pressure Gradient/MPa·m−1

90

3000 4000 3.5 0.21

3500 4000 2.5 0.265

4000 4000 1.5 0.365

When the crosslinker concentration is 4000 mg·L−1, as the polymer concentration
increases from 3000 mg·L−1 to 4000 mg·L−1, the in situ static gelation time in the micro-
tube decreases from 3.5 h to 1.5 h, and the breakthrough pressure gradient increases from
0.21 MPa·m−1 to 0.365 MPa·m−1. With the increase of polymer concentration, the in situ
static gelation time in the microtube shortens, and the subsequent water flooding break-
through pressure gradient increases. The reason for this is that the number of amide groups
participating in the crosslinking reaction increases, thereby increasing the probability of
a contact reaction between reaction groups, accelerating the crosslinking reaction rate,
shortening the gelation time, and increasing the gelation strength.

2.3. In-Situ Dynamic Gelation Behavior

A long stainless steel microtube (φ 1.0 mm × 100 m) physical simulation model was
established and continuous injection of gelant solution was used to investigate the in situ
dynamic gelation behavior during flow in the long microtube. When the gelant solution
system flows out of the microtube, it will lead to the failure of dynamic gelation experiment.
Due to the limitation of long gelation time at 70 ◦C and the length of the microtube model,
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in order to better analyze and compare the gelation behavior under bulk and in situ gelation
conditions, the effects of temperature and polymer concentration on the gelation properties
of gelant solution were studied.

2.3.1. Effect of Temperature on Dynamic Gelation Behavior

Due to the limitation of long gelation time at 70 ◦C and the length of the microtube
model, to compare the gelation behavior under bulk and in situ gelation conditions, the
effect of temperature on the in situ dynamic gelation property of the gelant solution was
studied. Figure 6 shows the change of injection pressure versus time at 70 ◦C and 90 ◦C.
After 1.0 PV gelant solution was injected, subsequent water flooding was carried out
to determine the breakthrough pressure. The breakthrough pressure is defined as the
maximum injection pressure, that is, the strength of gel in microtube after dynamic gelation
is determined. Table 5 summarizes the in situ dynamic gelation time and gel strength of
gelant solution under different temperatures.
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Figure 6. Change of injection pressure with time at 70 ◦C and 90 ◦C (injection rate v = 0.05 mL·min−1).

Table 5. Comparison of gelation time of gel systems at different temperatures (70 ◦C and 90 ◦C).

Temperature/◦C Polymer
Concentration/mg·L−1

Crosslinker
Concentration/mg·L−1

In Situ Dynamic
Gelation Time/h

In Situ Dynamic Gel
Strength/MPa·m−1

70 4000 4000 32.5 0.0325

90 4000 4000 4.5 0.04

According to the gelation time determination method, as the temperature increases
from 70 ◦C to 90 ◦C, the in situ dynamic gelation time decreases from 32.5 h to 4.5 h and the
gel strength increases from 0.0325 MPa·m−1 to 0.04 MPa·m−1. As the temperature increases,
the in situ dynamic gelation time shortens, and the in situ dynamic gel strength increases.

2.3.2. Effect of Concentration on Dynamic Gelation Behavior

The influence of polymer concentration on in situ dynamic gelation behavior of
phenolic resin gel was investigated by conducting a series of flow experiments at 90 ◦C.
The polymer concentration was 3000 mg·L−1 The crosslinker concentration was in the
range of 3000 mg·L−1 to 4000 mg·L−1. The gelant solution was injected into the microtube
continuously at an injection rate of 0.25 mL·min−1. Figure 7 shows the injection pressure
versus time during flow of gelant solution in the microtube.
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After 1.0 PV gelant solution was injected, subsequent water flooding was carried
out to determine the breakthrough pressure. The breakthrough pressure is defined as the
maximum injection pressure, that is, the strength of gel in the microtube after dynamic
gelation is determined. Table 6 summarizes the in situ dynamic gelation time and gel
strength of gelant solution under different injection rates.

Table 6. The in situ dynamic gelation time and strength of gelant solution under different injection
rate (90 ◦C).

Temperature
/◦C

Injection Rate
/mL·min−1

Polymer
Concentration

/mg·L−1

Crosslinker
Concentration/

mg·L−1

In Situ Dynamic
Gelation Time/h

In Situ Dynamic Gel
Strength

/MPa·m−1

90 0.25

3000 4000 5.8 0.0132

3500 4000 4.7 0.0158

4000 4000 3.9 0.026

At 90 ◦C, when the crosslinker concentration is 4000 mg·L−1 and the polymer concen-
tration ranges from 3000 mg·L−1 to 4000 mg·L−1, the in situ dynamic gelation time ranges
from 3.9 h to 5.8 h and the gelation strength ranges from 0.0132 MPa·m−1 to 0.026 MPa·m−1.
With the increase of polymer concentration, the gelation time decreases and gel strength
increases. The number of active reaction groups participating in the crosslinking reaction
increases, which improves the crosslinking reaction probability of the reaction groups,
increases the crosslinking reaction rate, shortens the gelation time and increases the gela-
tion strength.

2.3.3. Effect of Injection Rate

Due to the limitation of long gelation time at 70 ◦C and the length of the microtube
model, the influence of injection rate on in situ dynamic gelation behavior of phenolic
resin gel was investigated by conducting a series of in situ dynamic flow experiments
at 90 ◦C. The concentrations of polymer and crosslinker were 4000 mg·L−1. The gelant
solution was injected into the microtube continuously at different injection rates, including
0.05 mL·min−1, 0.25 mL·min−1 and 0.5 mL·min−1. Figure 8 shows the injection pressure
versus time during flow of gelant solution in the microtube.
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The experimental results are shown in Table 7. When the injection rate increased
from 0.05 mL·min−1 to 0.5 mL·min−1, the in situ dynamic gelation time during flow in
the microtube decreased from 4.5 h to 3.5 h and the gel breakthrough pressure gradient
decreased from 0.04 MPa·m−1 to 0.02 MPa·m−1.

Table 7. The in situ dynamic gelation time and strength of gelant solution under different injection
rates (90 ◦C).

Temperature
/◦C

Polymer
Concentration

/mg·L−1

Crosslinker
Concentration

/mg·L−1

Injection Rate
/mL·min−1

In Situ
Dynamic Gelation

Time/h

Breakthrough
Pressure Gradient

/MPa·m−1

90 4000 4000

0.05 4.5 0.04

0.25 3.9 0.026

0.5 3.5 0.02

With the increase of injection rate, the flow gelation time decreases, and the break-
through pressure gradient of microtube flow gelation decreases. With the increase of
injection rate, the gelation system of the gel system is increased by shearing action, the
collision probability between the polymer and crosslinker molecules is increased, and the
gelation time of the gel is shortened. However, due to the shear effect, the gelation process
at the edge shearing edge reduces the strength of gelling, so that the pressure gradient of
the flow gel breaks down. When the injection rate is 1.0 mL · min−1, the gel has flowed out
of the microtube, and the flow gel forming time cannot be determined. Compared with
the static gelation in the microtube, due to the existence of shear, the flow gelation time is
prolonged and the breakthrough pressure gradient is reduced after gelation.

2.4. The Relationship Between Bulk and In Situ Gelation Behavior

According to the bulk gelation behavior and in situ gelation behavior, the relationship
between bulk gelation behavior and in situ gelation behavior was compared, as shown in
Table 8.
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Table 8. Relationship between bulk and in situ gelation time of the gel system at different temperatures.

Temperature/◦C Injection Rate
/mL·min−1

Polymer
Concentration/mg·L−1

Crosslinker
Concentration/mg·L−1

Gelation Time/h

Bulk
Gelation

In Situ
Static

Gelation

In Situ
Dynamic
Gelation

70 0.05 4000 4000 10 12 32.5

90 0.05 4000 4000 1.25 1.5 4.5

Compared with the in situ static gelation behavior, the in situ dynamic gelation
time is prolonged and the breakthrough pressure gradient decreases after gelation. The
relationship between the bulk gelation time and in situ gelation time was correlated. The
in situ static gelation time in the microtube is 1.2 times that of bulk gelation time in the
ampoule bottle, and the in situ dynamic gelation time is nearly 3 times that of ampoule
bottles. Therefore, based on the relationship between bulk and in situ gelation behavior, the
in situ gelation time in the microtube can be calculated by determining the bulk gelation
time according to the ampoule viscosity method, and the reasonable shut in time on site
can be estimated according to the static bulk gelation time.

2.5. Enhanced Oil Recovery Ability

The change in concentration of the gel system was primarily achieved by altering
the gel strength, which in turn affect the plugging efficiency. According to the flooding
procedure, the effect of polymer and crosslinker concentrations on the enhanced oil recovery
ability of polymer gel used for fractured reservoirs was investigated. In this experiment,
with the oil recovery rate increase as the primary indicator, based on the typical gel
formula, the injected gel system was fixed at 1.0 FV, and the concentrations of the polymer
and crosslinker were adjusted to achieve different levels of gel plugging effects. The
experimental results are shown in Figure 9. In this figure, HPAM is an abbreviation for
partially hydrolyzed polyacrylamide.
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Figure 9. Gas flooding performance curve of an injected gel system with different polymer and
crosslinker concentrations.
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The experimental results are shown in Figure 10. From the comprehensive analysis of
the flooding performance curves, it can be seen that, during the initial period of continuous
CO2 injection, the oil recovery continued to increase. When the amount of CO2 injected
exceeded 0.2 PV, the oil recovery tended to stabilize, and the gas–oil ratio showed a
significant improvement. During the injection of the gel system, the gas–oil ratio dropped
rapidly, and the oil recovery did not change much. During the subsequent CO2 injection
period, the oil recovery showed an inflection point of sudden increase, and the gas–oil ratio
also increased slightly. When the injected slug volume was 1.0 FV and the concentration
ratio of the polymer to the crosslinker was 1:1, as the polymer concentration increased from
3000 mg·L−1 to 4000 mg·L−1, the incremental oil recovery increased from 3.53% to 4.73%.
When the total concentration of polymer and crosslinker was 7000 mg·L−1, compared
to the other concentrations, the incremental oil recovery of a polymer gel composed of
3500 mg·L−1 polymer and 3500 mg·L−1 crosslinker was the highest. By analyzing the
breakthrough pressure gradient of the gel system with different concentrations, it can
be seen that, by changing the ratio of polymer and crosslinker within the appropriate
concentration range, the breakthrough pressure changes slightly, ranging from 0.51 to
0.63 MPa/m. Under the same concentration ratio conditions, without a significant increase
in breakthrough pressure, the effect of increasing recovery rate is better, indicating that
the viscoelasticity of the polymer and crosslinker gel is better under an equal ratio, and
the overall plugging effect is better. With the same concentration ratio of polymer and
crosslinking agent, when the polymer concentration increases, the gel network structure is
more compact, and the strength is higher.
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Figure 10. Incremental histogram of oil recovery of different injected gel system concentrations.

3. Conclusions

In this study, the influence of different factors on bulk and in situ gelation process
of gelant solution in a microtube were compared. The enhanced oil recovery ability of
polymer gel for tight fractured reservoirs was also investigated. The following conclusions
were reached:

(1) With the increase of polymer and crosslinker concentration, the bulk gelation time
of the gel system was shortened and the gel strength increased. With the increase
of temperature from 70 ◦C to 90 ◦C, the gelation time of the gel system was greatly
shortened, and the gel strength increased.

(2) With the increase of polymer concentration and temperature, the in situ static gelation
time and dynamic gelation time of the gel system in the microtube were shortened,
and the breakthrough pressure gradient increased after gelation. Compared with
the in situ static gelation behavior, the in situ dynamic gelation time was prolonged
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and the breakthrough pressure gradient decreased after gelation. The relationship
between the bulk gelation time and in situ gelation time was correlated. The in situ
static gelation time in the microtube was 1.2 times that of the bulk gelation time in
the ampoule bottle, and the in situ dynamic gelation time was nearly 3 times that of
ampoule bottles.

(3) When the injected slug volume was 1.0 FV and the concentration ratio of the polymer
to the crosslinker was 1:1, as the polymer concentration increased from 3000 mg·L−1

to 4000 mg·L−1, the incremental oil recovery increased from 3.53% to 4.73%.

4. Experimental Study
4.1. Materials

The polymer used to form the gel was KYPAM-6, provided by Heng Ju Company
(Beijing, China). The molecular structure of KYPAM-6 is a high molecular weight polymer,
mainly composed of acrylamide, sodium 2-acrylamido-2-methylpropanesulfonate, 1-vinyl-
2-pyrrolidone, and non-ionic hydrophobic monomers. This polymer was prepared through
a polymerization reaction and has the properties of temperature resistance, salt resistance
and hydrolysis resistance. The molecular weight and hydrolysis degree of the polymer
are 2600 × 104 and 20%, respectively. The polymer solution was prepared by synthetic
formation brine with salinity of total dissolved solids (TDS). The detailed ionic composition
of the synthetic formation brine is listed in Table 9.

Table 9. The ionic composition of the synthetic brine.

Ionic Type HCO3− Ca2+ Mg2+ Cl− Na+ K+ TDS/mg·L−1

Ionic concentration 156.1 2347.0 204.5 19,077.3 9320.3 51.4 31,254.6

The organic crosslinker used in this study was phenolic resin that was prepared with
phenol and formaldehyde under the catalysis of sodium hydroxide. The reaction equation
of the crosslinker preparation is shown in Equation (1). The crosslinking group -CH2OH
of the phenolic resin crosslinker can react with the amide group -CONH2 of the polymer
to form a phenolic resin gel with a three-dimensional network structure. The crosslinking
equation is shown in Equation (2) [39,40].
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Organically crosslinked gels tend to be more stable. Long stainless microtubes of
different lengths were used to investigate the in situ gelation behavior. A fractured core
physical model (4.5 cm × 4.5 cm × 30 cm) was used to investigate the enhanced oil
recovery ability of polymer gel used for CO2 channeling, as shown in Figure 11. In order to
fully simulate the morphology of fractures, this experiment used columnar cores to create
fractures by carving fractures on the split wall surface.
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4.2. Methods
4.2.1. Gelant Solution Preparation

The gelant solution composed of polymer and phenolic resin crosslinker was prepared
as follows: (1) Firstly, the polymer solution was prepared by adding polymer powder into
the synthetic formation brine under mechanical stirring for about 8 h. (2) Secondly, the
gelant solution was obtained by mixing the phenolic resin crosslinker with the polymer
solution under mechanical stirring for about 0.5 h. The concentration of polymer and
crosslinker ranged from 3000 mg·L−1 to 4000 mg·L−1

.

4.2.2. Bulk Gelation Behavior Test

The bulk gelation behavior of phenolic gel was studied by the bottle test method, that
is, the changes in viscosity of gelant solution during the gelation process were monitored
as a function of time. The viscosity of the gelant solution was determined by a Brookfield
DV-II viscometer. The Brookfield DV II viscometer can measure viscosity in the range of
1.0~6,000,000 mPa·s, with a rotational speed of 0.01–200 rpm divided into 54 grades. The
viscosity of the gelant solution versus time was measured by using different rotors at a
rotational speed of 6 rpm. The gelation time is defined as the time corresponding to the
inflection point between the induction period and the gelation period when the viscosity of
gelant solution increases obviously. The gel strength is characterized by the final viscosity.
The bulk gelation behavior tests were conducted at 70 ◦C and 90 ◦C.

4.3. In Situ Gelation Behavior Test in Microtube

The in situ static and dynamic gelation behavior of phenolic resin gel was studied by
conducting long stainless microtube flow experiments.

4.3.1. Experimental Method of In-Situ Static Gelation Behavior

In this study, a stainless microtube (Φ 1.0 mm × 20 m) was used to simulate the
fractured porous media. The experimental apparatus of the microtube flow is shown in
Figure 12. And the procedures of the in situ static gelation behavior test are as follows:
(1) 1.0 pore volume (PV) gelant solution was injected into the microtube at a rate of
0.25 mL/min. (2) Then the microtube was put into an oven at different temperatures
(70 ◦C and 90 ◦C) for different standing times to gelation. Then the microtube was taken
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out at regular intervals and water flooding was conducted to measure the change of
pressure versus time. (3) According to the relationship between the pressure and standing
time, the breakthrough pressure and breakthrough pressure gradient under different
standing times can be obtained. The breakthrough pressure gradient is calculated according
to the breakthrough pressure and microtube length. (4) According to the relationship
between breakthrough pressure and breakthrough pressure gradient over time, when the
breakthrough pressure and breakthrough pressure gradient of the system begin to rise
significantly, the time corresponding to the inflection point between the induction stage
and the gelation stage is the microtube in situ static gelation time. Due to the limitation
of long gelation time at 70 ◦C and the length of the microtube model, in order to better
analyze and compare the gelation behavior under bulk and in situ gelation conditions, the
gelation property of gelant solution composed of 4000 mg·L−1 polymer and 4000 mg·L−1

crosslinker was studied at 90 ◦C.
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4.3.2. Experimental Method of in-Situ Dynamic Gelation Behavior

In order to simulate the dynamic gelation process of gelant solution in fractured porous
media, a physical model of the dynamic gelation process was established as follows: The
inner diameter and length of the stainless steel microtube were 1.0 mm and 100 m. Then
1.0 PV gelant solution was continuously injected into the microtube, and the change of
injection pressure versus time was recorded during the injection process of gelant solution.
The time corresponding to the inflection point of rapid increase in injection pressure was
defined as the dynamic gelation time in the microtube. In order to determine the dynamic
gelation strength of the gel system in the microtube, after 1.0 PV gelant solution was injected,
water flooding was subsequently carried out to determine the breakthrough pressure. The
breakthrough pressure was defined as the maximum injection pressure, that is, the strength
of the gel in the microtube after dynamic gelation was determined.

4.4. Enhanced Oil Recovery Ability Evaluation

The designed fractured core model (as shown in Figure 11) was used to evaluate the
enhanced oil recovery ability of polymer gel. The experimental apparatus of core flooding
is shown in Figure 13. The core flooding experimental procedures were as follows: (1) The
core was dried and weighed. Then the core was vacuumed to saturate the simulated
oil. (2) Initial CO2 flooding period: Under the back pressure of 10 MPa, CO2 gas was
injected at a constant rate of 1 mL·min−1 and the oil production and the gas–oil ratio were
recorded. (3) The gelant solution was injected and the gelation period measured. When the
production gas–oil ratio reached 500 m3/m3, 1.0 FV(fracture volume) a polymer gel system
with different concentrations was injected into the fractured core and shut in for 24 h until
gelation. (4) Subsequent CO2 flooding period: Under the back pressure of 10 MPa, the CO2
gas was injected at a constant rate of 1 mL·min−1 and the oil production and the gas–oil



Gels 2024, 10, 741 16 of 18

ratio were recorded again. When the production gas–oil ratio reached 1000 m3/m3, the
experiment was stopped and the incremental oil recovery was calculated.
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