The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. CNC Characterization
2.2. Analysis of of Gelatin–CNC Composites
2.2.1. Molecular Interactions
2.2.2. Surface Mapping by Raman Spectroscopy
2.2.3. Determination of Crystallinity
2.2.4. Water Interactions
2.2.5. Thermal Characterization
2.2.6. Mechanical Characterization
2.2.7. Thermal Stability
2.2.8. Quantification of Shape Memory Properties
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Gelatin–CNC Composite Preparation
4.3. Characterization of Gelatin–CNC Composites
4.3.1. Molecular Interactions by Fourier Transform Infrared Spectroscopy (FT-IR)
4.3.2. Surface Mapping by RAMAN Spectroscopy
4.3.3. Crystallinity by X-Ray Diffraction (XRD)
4.3.4. Water Interactions by Dynamic Vapor Sorption (DVS)
4.3.5. Thermal Stability by Thermogravimetric Analysis (TGA)
4.3.6. Thermal Characterization by Differential Scanning Calorimetry (DSC)
4.3.7. Mechanical Characterization by Dynamic Mechanic Analysis (DMA)
4.3.8. Shape Memory Assays
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfaro, A.; Balbinot, E.; Weber, C.I.; Tonial, I.B.; Machado-lunkes, A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2015, 7, 33–44. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Pérez-Mateos, M.; Gómez-Estaca, J.; López-Caballero, E.; Giménez, B.; Montero, P. Fish Gelatin: A Renewable Material for Developing Active Biodegradable Films. Trends Food Sci. Technol. 2009, 20, 3–16. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Gelatin Alternatives for the Food Industry: Recent Developments, Challenges and Prospects. Trends Food Sci. Technol. 2008, 19, 644–656. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Joly-Duhamel, C.; Hellio, D.; Djabourov, M. All Gelatin Networks: 1. Biodiversity and Physical Chemistry. Langmuir 2002, 18, 7208–7217. [Google Scholar] [CrossRef]
- Bigi, A.; Panzavolta, S.; Rubini, K. Relationship between Triple-Helix Content and Mechanical Properties of Gelatin Films. Biomaterials 2004, 25, 5675–5680. [Google Scholar] [CrossRef]
- Díaz-Calderón, P.; Flores, E.; González-Muñoz, A.; Pepczynska, M.; Quero, F.; Enrione, J. Influence of Extraction Variables on the Structure and Physical Properties of Salmon Gelatin. Food Hydrocoll. 2017, 71, 118–128. [Google Scholar] [CrossRef]
- Guo, L.; Colby, R.H.; Lusignan, C.P.; Whitesides, T.H. Kinetics of Triple Helix Formation in Semidilute Gelatin Solutions. Macromolecules 2003, 36, 9999–10008. [Google Scholar] [CrossRef]
- Bella, J. Collagen Structure: New Tricks from a Very Old Dog. Biochem. J. 2016, 473, 1001–1025. [Google Scholar] [CrossRef]
- Gornall, J.L.; Terentjev, E.M. Concentration-Temperature Superposition of Helix Folding Rates in Gelatin. Phys. Rev. Lett. 2007, 99, 028304. [Google Scholar] [CrossRef] [PubMed]
- Bella, J.; Brodsky, B.; Berman, H.M. Hydration Structure of a Collagen Peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, M. Rheological Properties of Fish Gelatins. Food Eng. Phys. Prop. 2002, 67, 2172–2176. [Google Scholar] [CrossRef]
- Acevedo, C.A.; Díaz-calderón, P.; López, D.; Enrione, J. Assessment of Gelatin—Chitosan Interactions in Films by a Chemometrics Approach. CyTA J. Food 2015, 13, 227–234. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Extraction and Physico-Chemical Characterisation of Nile Perch (Lates niloticus) Skin and Bone Gelatin. Food Hydrocoll. 2004, 18, 581–592. [Google Scholar] [CrossRef]
- Díaz-Calderón, P.; Caballero, L.; Melo, F.; Enrione, J. Molecular Configuration of Gelatin-Water Suspensions at Low Concentration. Food Hydrocoll. 2014, 39, 171–179. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Gómez-guillén, M.C. A State-of-the-Art Review on the Elaboration of Fish Gelatin as Bioactive Packaging: Special Emphasis on Nanotechnology-Based Approaches. Trends Food Sci. Technol. 2018, 79, 125–135. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Holmes, J.; Kerry, J.F.; Kerry, J.P. Assessment of Film-Forming Potential and Properties of Protein and Polysaccharide-Based Biopolymer Films. Int. J. Food Sci. Technol. 2007, 42, 1128–1138. [Google Scholar] [CrossRef]
- Antoniewski, M.N.; Barringer, C.L.; Knipe, C.L.; Zerby, H.N. Effect of a Gelatin Coating on the Shelf Life of Fresh Meat. Food Eng. Phys. Prop. 2007, 72, E382–E387. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef]
- Li, J.; Miao, J.; Wu, J.; Chen, S.; Zhang, Q. Food Hydrocolloids Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocoll. 2014, 37, 166–173. [Google Scholar] [CrossRef]
- Ma, W.; Tang, C.; Yin, S.; Yang, X.; Wang, Q.; Liu, F.; Wei, Z. Characterization of Gelatin-Based Edible Films Incorporated with Olive Oil. Food Res. Int. 2012, 49, 572–579. [Google Scholar] [CrossRef]
- Ramos, M.; Valdes ABeltran, A.; Garrigos, M.C. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef]
- Char, C.; Padilla, C.; Campos, V.; Pepczynska, M.; Calderón, P.D. Characterization and Testing of a Novel Sprayable Crosslinked Edible Coating Based on Salmon Gelatin. Coatings 2019, 9, 595. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Physical, Mechanical and Antimicrobial Properties of Gelatin Based Active Nanocomposite Films Containing AgNPs and Nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- Zheng, J.P.; Li, P.; Ma, Y.L.; Yao, K. De Gelatin/Montmorillonite Hybrid Nanocomposite. I. Preparation and Properties. J. Appl. Polym. Sci. 2002, 86, 1189–1194. [Google Scholar] [CrossRef]
- Chiellini, E.; Cinelli, P.; Fernandes, E.G.; Kenawy, E.-R.S.; Lazzeri, A. Gelatin-Based Blends and Composites. Morphological and Thermal Mechanical Characterization. Biomacromolecules 2001, 2, 806–811. [Google Scholar] [CrossRef]
- Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H. Physicochemical and Antifungal Properties of Bio-Nanocomposite Film Based on Gelatin-Chitin Nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Ghavi, F.F. Preparation and Functional Properties of Fish Gelatin—Chitosan Blend Edible Films. Food Chem. 2013, 136, 1490–1495. [Google Scholar] [CrossRef]
- Quero, F.; Padilla, C.; Campos, V.; Luengo, J.; Caballero, L.; Melo, F.; Li, Q.; Eichhorn, S.J.; Enrione, J. Stress Transfer and Matrix-Cohesive Fracture Mechanism in Micro Fi Brillated Cellulose-Gelatin Nanocomposite Fi Lms. Carbohydr. Polym. 2018, 195, 89–98. [Google Scholar] [CrossRef]
- Quero, F.; Coveney, A.; Lewandowska, A.E.; Richardson, R.M.; Lee, K.; Eichhorn, S.J.; Alam, M.A.; Enrione, J. Stress Transfer Quantification in Gelatin-Matrix Natural Composites with Tunable Optical Properties. Biomacromolecules 2015, 16, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Hamad, W.Y. Cellulose Reinforced Polymer Composites and Nanocomposites: A Critical Review. Cellulose 2013, 20, 2221–2262. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef]
- Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009, 10, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Polymer Science Cellulose: Fascinating Biopolymer and Sustainable Raw Material Angewandte. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Tian, W.; Gao, X.; Zhang, J.; Yu, J.; Zhang, J. Cellulose Nanosphere: Preparation and Applications of the Novel Nanocellulose. Carbohydr. Polym. 2022, 277, 118863. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and Characterization of PVA/Nanocellulose/Ag Nanocomposite Films for Antimicrobial Food Packaging. Carbohydr. Polym. 2018, 184, 453–464. [Google Scholar] [CrossRef]
- Lee, K.Y.; Blaker, J.J.; Bismarck, A. Surface Functionalisation of Bacterial Cellulose as the Route to Produce Green Polylactide Nanocomposites with Improved Properties. Compos. Sci. Technol. 2009, 69, 2724–2733. [Google Scholar] [CrossRef]
- George, J. Siddaramaiah High Performance Edible Nanocomposite Films Containing Bacterial Cellulose Nanocrystals. Carbohydr. Polym. 2012, 87, 2031–2037. [Google Scholar] [CrossRef]
- Yang, S.; Li, H.; Sun, H. Effect of Microfibrillated Cellulose (MFC) on the Properties of Gelatin Based Composite Films. J. Bioresour. Bioprod. 2018, 3, 107–111. [Google Scholar] [CrossRef]
- Mondragon, G.; Peña-Rodriguez, C.; González, A.; Eceiza, A.; Arbelaiz, A. Bionanocomposites Based on Gelatin Matrix and Nanocellulose. Eur. Polym. J. 2015, 62, 1–9. [Google Scholar] [CrossRef]
- Onyeaka, P.O.; Dai, H.; Feng, X.; Wang, H.; Fu, Y.; Yu, Y.; Zhu, H.; Chen, H.; Ma, L.; Zhang, Y. Effect of Different Types of Nanocellulose on the Structure and Properties of Gelatin Films. Food Hydrocoll. 2023, 144, 108972. [Google Scholar] [CrossRef]
- Cazón, P.; Velázquez, G.; Vázquez, M. Regenerated Cellulose Films Combined with Glycerol and Polyvinyl Alcohol: Effect of Moisture Content on the Physical Properties. Food Hydrocoll. 2020, 103, 105657. [Google Scholar] [CrossRef]
- Aguirre-Álvarez, G.; Foster, T.; Hill, S.E. Modelling of Isotherms and Their Hysteresis Analysis in Gelatin from Different Sources. CyTA J. Food 2013, 11, 68–74. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizers in Edible Films and Coatings. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press: Cambridge, MA, USA, 2005; pp. 403–433. ISBN 9780123116321. [Google Scholar]
- Liu, R.; Qiao, C.; Liu, Q.; Yao, J.; Xu, J. Water State, Thermal Transition Behavior and Structure of Hydrated Gelatin Films. Soft Matter 2024, 20, 1603–1610. [Google Scholar] [CrossRef]
- Paredes-Toledo, J.; Herrera, J.; Díaz-Calderón, P.; Robert, P.; Giménez, B. In Vitro Gastrointestinal Release of Chlorogenic Acid and Curcumin Co-Encapsulated in Double Emulsions with the Outer Interface Stabilized by Cellulose Nanocrystals. Colloids Interfaces 2024, 8, 24. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Haafiz, M.K.M.; Thakur, V.K. Recent Progress in Cellulose Nanocrystals: Sources and Production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef]
- Sèbe, G.; Ham-Pichavant, F.; Ibarboure, E.; Koffi AL, C.; Tingaut, P. Supramolecular Structure Characterization of Cellulose II Nanowhiskers Produced by Acid Hydrolysis of Cellulose I Substrates. Biomacromolecules 2012, 13, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Chen, S.; Zhang, X.; Takabe, K.; Xu, F. Unraveling Variations of Crystalline Cellulose Induced by Ionic Liquid and Their Effects on Enzymatic Hydrolysis. Sci. Rep. 2017, 7, 10230. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Gong, J.; Kuang, Y.; Mo, L.; Song, T. Cellulose Nanocrystals (CNCs) with Different Crystalline Allomorph for Oil in Water Pickering Emulsions. Carbohydr. Polym. 2017, 183, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.M.; Perveen, A.; Jahan, R.A.; Matin, M.A.; Wong, S.Y.; Li, X.; Arafat, M.T. Preparation of Different Polymorphs of Cellulose from Different Acid Hydrolysis Medium. Int. J. Biol. Macromol. 2019, 130, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yu, H.; Abdalkarim, S.Y.H.; Li, Y.; Chen, X.; Yang, X.; Zhou, Y.; Zhang, L. A Comprehensive Investigation on Cellulose Nanocrystals with Different Crystal Structures from Cotton via an Efficient Route. Carbohydr. Polym. 2022, 276, 118766. [Google Scholar] [CrossRef]
- Vidal, B.D.C.; Mello, M.L.S. Collagen Type I Amide I Band Infrared Spectroscopy. Micron 2011, 42, 283–289. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Fourier Transform Infrared (FTIR) Spectroscopic Study of Acid Soluble Collagen and Gelatin from Skins and Bones of Young and Adult Nile Perch (Lates niloticus). Food Chem. 2004, 86, 325–332. [Google Scholar] [CrossRef]
- Qiao, C.; Zhang, J.; Ma, X.; Liu, W.; Liu, Q. Effect of Salt on the Coil-Helix Transition of Gelatin at Early Stages: Optical Rotation, Rheology and DSC Studies. Int. J. Biol. Macromol. 2018, 107, 1074–1079. [Google Scholar] [CrossRef]
- Wang, L.; Duan, G.; Chen, S.; Liu, X. Particle Size and Dispersity Control by Means of Gelatin for High- Yield Mesoporous Silica Nanospheres. Ind. Eng. Chem. Res. 2015, 54, 12580–12586. [Google Scholar] [CrossRef]
- Nikoo, M.; Benjakul, S.; Bashari, M.; Alekhorshiedc, M.; Cissoumaa, A.I.; Yang, N.; Xu, X. Physicochemical Properties of Skin Gelatin from Farmed Amur Sturgeon (Acipenser schrenckii) as Influenced by Acid Pretreatment. Food Biosci. 2014, 5, 19–26. [Google Scholar] [CrossRef]
- Ahmad, M.; Benjakul, S. Characteristics of Gelatin from the Skin of Unicorn Leatherjacket (Aluterus monoceros) as Influenced by Acid Pretreatment and Extraction Time. Food Hydrocoll. 2011, 25, 381–388. [Google Scholar] [CrossRef]
- Vasconcelos, N.F.; Feitosa, J.P.A.; da Gama, F.M.P.; Morais, J.P.S.; Andrade, F.K.; de Souza, M.D.S.M.; de Freitas Rosa, M. Bacterial Cellulose Nanocrystals Produced under Different Hydrolysis Conditions: Properties and Morphological Features. Carbohydr. Polym. 2017, 155, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Hivechi, A.; Hajir Bahrami, S.; Siegel, R.A. Investigation of Morphological, Mechanical and Biological Properties of Cellulose Nanocrystal Reinforced Electrospun Gelatin Nanofibers. Int. J. Biol. Macromol. 2019, 124, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, L.; Yu, Y.; Zhou, H.; Guo, T.; Dai, H.; Zhang, Y. Physico-Mechanical and Antioxidant Properties of Gelatin Film from Rabbit Skin Incorporated with Rosemary Acid. Food Packag. Shelf Life 2019, 19, 121–130. [Google Scholar] [CrossRef]
- Feng, X.; Dai, H.; Fu, Y.; Yu, Y.; Zhu, H.; Wang, H.; Chen, H.; Ma, L.; Zhang, Y. Regulation Mechanism of Nanocellulose with Different Morphologies on the Properties of Low-Oil Gelatin Emulsions: Interfacial Adsorption or Network Formation? Food Hydrocoll. 2022, 133, 107960. [Google Scholar] [CrossRef]
- Markwort, L.; Kip, B. Micro-Raman Imaging of Heterogeneous Polymer Systems: General Applications and Limitations. J. Appl. Polym. Sci. 1996, 61, 231–254. [Google Scholar] [CrossRef]
- Badii, F.; Macnaughtan, W.; Mitchell, J.R.; Farhat, I.A. The Effect of Drying Temperature on Physical Properties of Thin Gelatin Films. Dry. Technol. 2014, 32, 30–38. [Google Scholar] [CrossRef]
- Yakimets, I.; Wellner, N.; Smith, A.C.; Wilson, R.H.; Farhat, I.; Mitchell, J. Mechanical Properties with Respect to Water Content of Gelatin Films in Glassy State. Polymer 2005, 46, 12577–12585. [Google Scholar] [CrossRef]
- Leite, L.S.F.; Moreira, F.K.V.; Mattoso, L.H.C.; Bras, J. Electrostatic Interactions Regulate the Physical Properties of Gelatin-Cellulose Nanocrystals Nanocomposite Films Intended for Biodegradable Packaging. Food Hydrocoll. 2021, 113, 106424. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Vafakish, B.; Patel, R.; Falua, K.J.; Dunlop, M.J.; Acharya, B. Cellulose Nanocrystals in the Development of Biodegradable Materials: A Review on CNC Resources, Modification, and Their Hybridization. Int. J. Biol. Macromol. 2024, 258, 128834. [Google Scholar] [CrossRef]
- Pępczyńska, M.; Díaz-Calderón, P.; Quero, F.; Matiacevich, S.; Char, C.; Enrione, J. Interaction and Fragility Study in Salmon Gelatin-Oligosaccharide Composite Films at Low Moisture Conditions. Food Hydrocoll. 2019, 97, 105207. [Google Scholar] [CrossRef]
- Guggenheim, E.A. Applications of Statistical Mechanics; Clarendon Press: Oxford, UK, 1966. [Google Scholar]
- Echegaray, M.; Mondragon, G.; Martin, L.; González, A.; Peña-Rodriguez, C.; Arbelaiz, A. Physicochemical and Mechanical Properties of Gelatin Reinforced with Nanocellulose and Montmorillonite. J. Renew. Mater. 2016, 4, 206–214. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, J. Animal Hairs as Water-Stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies. Sci. Rep. 2016, 6, 26393. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.; Quero, F.; Pępczyńska, M.; Díaz-Calderon, P.; Acevedo, J.P.; Byres, N.; Blaker, J.J.; MacNaughtan, W.; Williams, H.E.L.; Enrione, J. Understanding the Molecular Conformation and Viscoelasticity of Low Sol-Gel Transition Temperature Gelatin Methacryloyl Suspensions. Int. J. Mol. Sci. 2023, 24, 7489. [Google Scholar] [CrossRef] [PubMed]
- Zaupa, A.; Byres, N.; Dal Zovo, C.; Acevedo, C.A.; Angelopoulos, I.; Terraza, C.; Nestle, N.; Abarzúa-Illanes, P.N.; Quero, F.; Díaz-Calderón, P.; et al. Cold-Adaptation of a Methacrylamide Gelatin towards the Expansion of the Biomaterial Toolbox for Specialized Functionalities in Tissue Engineering. Mater. Sci. Eng. C 2019, 102, 373–390. [Google Scholar] [CrossRef]
- Rana, A.K.; Frollini, E.; Thakur, V.K. Cellulose Nanocrystals: Pretreatments, Preparation Strategies, and Surface Functionalization. Int. J. Biol. Macromol. 2021, 182, 1554–1581. [Google Scholar] [CrossRef]
- Trache, D.; Thakur, V.K.; Boukherroub, R. Cellulose Nanocrystals/Graphene Hybrids—A Promising New Class of Materials for Advanced Applications. Nanomaterials 2020, 10, 1523. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Aguirre-Alvarez, G.; Foster, T.; Hill, S.E. Impact of the Origin of Gelatins on Their Intrinsic Properties. CyTA J. Food 2012, 10, 306–312. [Google Scholar] [CrossRef]
- Hazaveh, P.; Mohammadi Nafchi, A.; Abbaspour, H. The Effects of Sugars on Moisture Sorption Isotherm and Functional Properties of Cold Water Fish Gelatin Films. Int. J. Biol. Macromol. 2015, 79, 370–376. [Google Scholar] [CrossRef]
- Díaz, P.; Arratia, C.; Vásquez, C.; Osorio, F.; Enrione, J. Effect of Glycerol on Water Sorption of Bovine Gelatin Films in the Glassy State. Procedia Food Sci. 2011, 1, 267–274. [Google Scholar] [CrossRef]
- Enrione, J.I.; Hill, S.E.; Mitchell, J.R. Sorption Behavior of Mixtures of Glycerol and Starch. J. Agric. Food Chem. 2007, 55, 2956–2963. [Google Scholar] [CrossRef] [PubMed]
- Sessini, V.; Arrieta, M.P.; Fernández-Torres, A.; Peponi, L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018, 179, 93–99. [Google Scholar] [CrossRef] [PubMed]
Assignation | Wavenumber Position (cm−1) | |||
---|---|---|---|---|
BG | BG 2%CNC | BG 6%CNC | BG 10%CNC | |
Amide A | 3289 | 3291 | 3292 | 3291 |
Amide I | 1627 | 1629 | 1628 | 1628 |
Sample | Normalized Peak Area at 2θ = 7° (a.u/°) | Gelatin Crystallinity (%) | Composite Crystallinity (%) |
---|---|---|---|
BG | 1.86 | 21.73 | 21.73 |
BG 2%CNC | 1.55 | 18.11 | 21.41 |
BG 6%CNC | 1.59 | 18.57 | 25.24 |
BG 10%CNC | 1.03 | 12.03 | 22.58 |
Sample | mo (%) | CGAB | K | MRE (%) |
---|---|---|---|---|
BG | 10.50 | 6.99 | 0.81 | 2.71 |
BG 2%CNC | 10.18 | 9.38 | 0.82 | 1.06 |
BG 6%CNC | 9.61 | 10.23 | 0.83 | 1.20 |
BG 10%CNC | 9.52 | 9.71 | 0.82 | 0.98 |
CNC | 4.38 | 9.95 | 0.91 | 2.36 |
Sample | Tg (°C) | Tm (°C) | ΔHm (Jg−1) |
---|---|---|---|
BG | 45.15 ± 0.96 | 89.36 ± 0.24 | 27.98 ± 0.33 |
BG 2%CNC | 48.64 ± 0.41 | 94.19 ± 2.01 | 29.20 ± 1.26 |
BG 6%CNC | 48.64 ± 0.31 | 94.39 ± 0.86 | 29.25 ± 0.23 |
BG 10%CNC | 48.46 ± 1.57 | 94.64 ± 1.03 | 28.88 ± 0.83 |
Sample | Moisture Content (%) | Onset Temperature (°C) | Peak Temperature (°C) |
---|---|---|---|
BG | 12.6 ± 0.7 | 285.7 ± 9.0 a | 326.4 ± 12.4 a |
BG 2%CNC | 13.1 ± 0.2 | 290.0 ± 5.5 a | 339.4 ± 5.2 a,b |
BG 6%CNC | 11.9 ± 0.2 | 299.5 ± 0.5 a | 352.0 ± 0.3 b |
BG 10%CNC | 12.2 ± 0.7 | 302.7 ± 0.9 a | 352.6 ± 1.4 b |
CNC | 7.3 ± 0.5 | 286.3 ± 0.2 a | 291.7 ± 0.4 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla, C.; Pępczyńska, M.; Vizueta, C.; Quero, F.; Díaz-Calderón, P.; Macnaughtan, W.; Foster, T.; Enrione, J. The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels 2024, 10, 766. https://doi.org/10.3390/gels10120766
Padilla C, Pępczyńska M, Vizueta C, Quero F, Díaz-Calderón P, Macnaughtan W, Foster T, Enrione J. The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels. 2024; 10(12):766. https://doi.org/10.3390/gels10120766
Chicago/Turabian StylePadilla, Cristina, Marzena Pępczyńska, Cristian Vizueta, Franck Quero, Paulo Díaz-Calderón, William Macnaughtan, Tim Foster, and Javier Enrione. 2024. "The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films" Gels 10, no. 12: 766. https://doi.org/10.3390/gels10120766
APA StylePadilla, C., Pępczyńska, M., Vizueta, C., Quero, F., Díaz-Calderón, P., Macnaughtan, W., Foster, T., & Enrione, J. (2024). The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels, 10(12), 766. https://doi.org/10.3390/gels10120766