Molecular Design and Nanoarchitectonics of Inorganic–Organic Hybrid Sol–Gel Systems for Antifouling Coatings
Abstract
:1. Introduction
2. Deployment of (Biocidal) Additives
3. Fouling Release/Resist
3.1. TEOS Xerogels with Fluorocarbon, Aminopropyl, and Hydrocarbon-Chain-Containing Siloxanes
3.2. Antifouling Coatings with Acrylates
3.3. Combination of Fouling Release Layers with In Situ-Generated Antifouling Species
3.4. Fouling-Resistant Coatings with PEG or Zwitterionic Groups
3.5. Superhydrophobic and Superamphiophobic Coatings
Structural Unit | Precursors | Ratio Precursors Molar (mole-%) * Mass (ω%) *1 Volume (V%) *2 | WCA θWs° | SFE γS (mN m−1) | SFT γC (mN m−1) | Special Contact Angles or Surface Energy | Reference |
---|---|---|---|---|---|---|---|
Reference | TEOS | --- | 44 ± 2 | 56 ± 2 | --- | CA (CH2I2): 46 ± 2° after immersion in ASW 24 h WCA: 31 ± 1° SFE: 63.9 ± 0.6 mN m−1 CA (CH2I2): 47 ± 1° | [70,72] |
Alkyl chains | C3-TMS/TEOS | 1:1 * | 99 ± 1 | 27.5 ± 1.1 | 21.3 ± 0.1 | --- | [16] |
50:50 * | 99 ± 1 | --- | --- | --- | [20] | ||
C8-TES/TEOS | 40:60 * | 102.8 ± 0.6 | 23.2 ± 0.2 | --- | CA (CH2I2): 69 ± 1° after immersion in ASW 24 h WCA: 99.4 ± 0.8° SFE: 26 ± 1 mN m−1 CA (CH2I2): 65 ± 1° | [70,72] | |
1:1 * | 104 ± 1 | 27.1 ± 0.3 | 21.3 ± 0.1 | --- | [16] | ||
50:50 * | 104 ± 1 | --- | --- | --- | [20] | ||
50:50 * | 100 ± 2 | 27.1 ± 0.3 | 21.3 ± 0.1 | Surface roughness: 0.24 + 0.02 nm | [57] | ||
1:1 * | 96 ± 6 | 25 ± 1 | --- | after immersion in ASW 24 h WCA: 80 ± 5° SFE: 35 ± 2 mN m−1 | [31] | ||
1:1 * | --- | --- | --- | --- | [22] | ||
1:1 * | --- | 21.5 | --- | --- | [33] | ||
1:1 * | --- | --- | --- | --- | [58] | ||
C8-TES/TEOS (Alkaline catalysed) | 1:2 *2 | 159.5–163.1 (1) | --- | --- | WSA: 4–5 (1) stability of the superhydrophobicity 0 °C–180 °C and pH 0–10 | [92] | |
C8-TES/TEOS/TTIP | 40:40:20 * | 99 ± 1 | 25.0 ± 0.1 | --- | CA (CH2I2): 66 ± 1° after immersion in ASW 24 h WCA: 94 ± 2° SFE: 27 ± 1 mN m−1 CA (CH2I2): 63 ± 1 | [70,72] | |
C18-TMS/C8-TES/TEOS | 1:49:50 * | 111.2 ± 0.2 | 24.8 ± 1.1 | 21.4 ± 0.1 | Surface roughness: 1.15 + 0.04 nm | [57] | |
1:49:50 * | --- | --- | --- | --- | [22,33] | ||
0,1:0,9:1 * | 105 ± 1 | 24.6 ± 0.9 | 21.9 ± 0.3 | --- | [16] | ||
2:48:50 * | 108.3 ± 0.9 | 22.8 ± 1.1 | --- | Surface roughness: 0.67 + 0.03 nm | [57] | ||
3:47:50 * | 102 ± 4 | 25.7 ± 2.1 | 22.4 ± 0.9 | Surface roughness: 0.22 + 0.02 nm | [57] | ||
4:46:50 * | 105 ± 2 | 22.8 ± 1.1 | --- | Surface roughness: 0.20 + 0.01 nm | [57] | ||
5:45:50 * | 105 ± 1 | --- | --- | --- | [20] | ||
5:45:50 * | 108.2 ± 0.9 | 24.6 ± 0.9 | 21.9 ± 0.3 | --- | [57] | ||
5:45:50 * | 107.9 ± 0.7 | 22.0 ± 0.4 | --- | after immersion in ASW 24 h WCA: 91 ± 3° SFE: 27 ± 1 mN m−1 | [31] | ||
1:49:50 | 104.6 ± 0.8 | --- | --- | θw,re (°) = 84.1 ± 0.7; Hysteresis (°) = 20.5 | [78] | ||
C18-TMS/C8-TES/TEOS + Bi2O6 | 1:49:50 | --- | --- | --- | --- | [71] | |
C8-TES/PEG-TMS/TEOS | 49:2:50 | 100.7 ± 0.9 | --- | --- | θw,re (°) = 76.9 ± 0.6; Hysteresis (°) = 23.8 | [78] | |
49:4:50 | 95.8 ± 1.0 | θw,re (°) = 71.2 ± 0.4; Hysteresis (°) = 24.6 | |||||
49:8:50 | 88.6 ± 1.8 | θw,re (°) = 63.3 ± 2.0; Hysteresis (°) = 25.3 | |||||
C18-TMS/C8-TES/PEG-TMS/TEOS | 1:49:2:50 | 102.5 ± 0.5 | --- | --- | θw,re (°) = 82.9 ± 0.4; Hysteresis (°) = 19.6 | [78] | |
1:49:4:50 | 101.8 ± 1.2 | θw,re (°) = 80.8 ± 0.7; Hysteresis (°) = 21.0 | |||||
1:49:6:50 | 99.7 ± 1.1 | θw,re (°) = 77.2 ± 2.4; Hysteresis (°) = 22.5 | |||||
1:49:8:50 | 89.4 ± 2.2 | θw,re (°) = 65.1 ± 1.3; Hysteresis (°) = 24.3 | |||||
1:49:10:50 | 85.8 ± 5.3 | θw,re (°) = 53.9 ± 6.5; Hysteresis (°) = 31.9 | |||||
Fluorinated alkyl substances | TFP/TEOS | 1:1 * | 85 ± 1 | 26.9 ± 0.3 | 18.8 ± 0.1 | --- | [16] |
50:50 * | 85 ± 1 | --- | --- | --- | [20] | ||
1:1 * | 83 ± 1 | 25.7 ± 0.7 | --- | after immersion in ASW 24 h WCA: 64.2 ± 0.2° SFE: 39.3 ± 0.3 mN m−1 | [31] | ||
1:4 * | 83 ± 1 | 25.9 ± 0.9 | --- | after immersion in ASW 24 h WCA: 44 ± 9° SFE: 55 ± 6 mN m−1 | |||
TDF/TEOS | 1:1 * | 105 ± 3 | 12.4 ± 0.8 | --- | after immersion in ASW 24 h WCA: 83 ± 2° SFE: 27 ± 2 mN m−1 | [31] | |
GPTMS/APTES with TFP | 2:1 * with 0.5 ω% TFP | 81.84 ± 0.85 (x) | --- | --- | --- | [64] | |
GPTMS/APTES with F16 | 2:1 * with 0.5 ω% F16 | 81.44 ± 0.85 (x) | --- | --- | --- | ||
GPTMS/APTES with TFP/F16 | 2:1 * with 0.5 ω% TFP/F16 (1:1) | 75.80 ± 0.95 (x) | --- | --- | --- | ||
TDF/TEOS with PEG | 50:50 * with 0.5 mol% | --- | --- | --- | --- | [22] | |
TEOS/FPES | 96:4 | 105–110 | --- | --- | CA (n-Hexadecane): 63–67° after 100 wear cycles WCA: 56.0 ± 5.55° CA (n-Hexadecane): 33.3 ± 5.06° after 90 wear cycles µ = 0.131 ± 0.007 | [96] | |
TEOS/FPES with F-127 | 96:4 with 8 mol% | 105–110 | --- | --- | CA (n-Hexadecane): 63–67° after 100 wear cycles WCA: 91.8 ± 3.66° CA (n-Hexadecane): 49.8 ± 2.51° after 90 wear cycles µ = 0.014 ± 0.003 | [96] | |
Aryl groups | PH/TEOS | 1:1 * | 90 ± 1 (2) 74 ± 1 (3) | 32.9 ± 0.5 40.0 ± 0.2 | 24.5 ± 1.6 35.2 ± 0.2 | --- --- | [16] |
50:50 * | 74 ± 1 | --- | --- | --- | [20] | ||
1:1 * | 80.4 ±0.6 | 38.2 ± 0.3 | --- | after immersion in ASW 24 h WCA: 54 ± 2° SFE: 53 ± 1 mN m−1 | [31] | ||
1:4 * | 81 ± 1 | 36.8 ± 0.2 | --- | after immersion in ASW 24 h WCA: 59 ± 2° SFE: 50 ± 1 mN m−1 | |||
Amino/Ammonium groups | APTES/TEOS | 1:9 * | 57 ± 1 | 53.3 ± 0.2 | 34.2 ± 0.1 | --- | [16] |
10:90 * | 35 ± 1 | --- | --- | --- | [20] | ||
1:9 * | 56 ± 1 | 52 ± 1 | --- | after immersion in ASW 24 h WCA: 39 ± 2° SFE: 62.2 ± 0.4 mN m−1 | [31] | ||
APTES/GPTMS | 1:2 * | 81.84 ± 0.85 (x) | --- | --- | --- | [64] | |
MAP/TEOS | 1:9 * | 57 ± 1 | 47.9 ± 0.7 | 25.2 ± 0.7 | --- | [16] | |
10:90 * | 57 ± 1 | --- | --- | --- | [20] | ||
1:9 * | 49 ± 1 47 ± 2 (4) | 53.5 ± 0.8 54 ± 1 (4) | --- | after immersion in ASW 24 h WCA: 32.6 ± 0.8° WCA: 33 ± 3° (4) SFE: 63.6 ± 0.3 mN m−1 SFE: 66 ± 2 mN m−1 (4) | [31] | ||
DMAP/TEOS | 1:9 * | 35 ± 1 | 54.7 ± 2.7 | 32.2 ± 2.0 | --- | [16] | |
10:90 * | 42 ± 1 | --- | --- | --- | [20] | ||
1:9 * | 50 ± 3 48 ± 3 (4) | 53 ± 2 53 ± 2 (4) | --- | after immersion in ASW 24 h WCA: 31 ± 3° WCA: 24 ± 6° (4) SFE: 64 ± 2 mN m−1 SFE: 69 ± 3 mN m−1 (4) | [31] | ||
TMAP/TEOS | 1:9 * | 35 ± 1 | --- | --- | --- | [16] | |
10:90 * | 54 ± 1 | 45.5 ± 0.1 | 29.7 ± 0.1 | --- | [20] | ||
BITS | --- | 123 | --- | --- | UWOCA: 123° After immersion in ASW for 15 days WCA: 119.5° UWOCA: 119.5° | [87] | |
BITS/TEOS | 44.8:5.6–25.0:25.0 | 60–69 | --- | --- | UWOCA: 116°–123° After immersion in ASW for 15 days WCA: 60°–69 UWOCA: 120°–124° | ||
Acrylate | MAPTMS/TEOS/MMA | 1:2:8 * | 61 ± 2 | --- | --- | --- | [67] |
MAPTMS/TEOS/EMA | 1:2:8 * | 70 ± 1 | --- | --- | --- | [67] | |
MAPTMS/TEOS/BMA | 1:2:8 * | 78 ± 1 | --- | --- | --- | [67] | |
MAPTMS/TEOS/HMA | 1:2:8 * | 69 ± 1 | --- | --- | --- | [67] | |
MAPTMS/TEOS/OMA | 1:2:8 * | 69 ± 1 | --- | --- | --- | [67] | |
MAPTMS/TEOS/DMA | 1:2:8 * | 69 ± 1 | --- | --- | --- | [67] | |
Various functional groups | TFP/C3-TMS/TEOS | 1:1:2 * | 92 ± 1 | 24.9 ± 0.6 | 20.3 ± 0.1 | --- | [16] |
25:25:50 * | 92 ± 1 | --- | --- | --- | [20] | ||
TFP/C8-TES/TEOS | 1:1:2 * | 100 ± 1 | 24.4 ± 0.3 | 20.4 ± 0.3 | --- | [16] | |
25:25:50 * | 100 ± 1 | --- | --- | --- | [20] | ||
TFP/PH/TEOS | 1:1:2 * | 84 ± 1 | 26.7 ± 0.3 | 21.0 ± 0.2 | --- | [16] | |
25:25:50 * | 84 ± 1 | --- | --- | --- | [20] | ||
C8-TES/PH/TEOS | 1:1:2 * | 94 ± 1 | 30.5 ± 0.6 | 24.5 ± 0.5 | --- | [16] | |
25:25:50 * | 94 ± 1 | --- | --- | --- | [20] | ||
APTES/C8-TES/TEOS | 1:9:9 * | --- | --- | --- | --- | [60] | |
C18-TMS/TDF/TEOS | 1:49:50 * | 97.0 ± 1.1 | 17.3 ± 0.5 | --- | --- | [58] | |
C18-TMS/TDF/C8-TES/TEOS | 1:1:48:50 *–1:24:25:50 * | 98.9 ± 1.6–110.3 ± 0.7 | 6.1 ± 3.021.8 ± 2.8 | 11.5 ± 2.3–19.8 ± 0.5 | --- | [58] | |
PDMS | all containing TBAF 0.3 ω% MTAcS 21 ω% | 110 ± 3 | --- | 22.4 | HCA: 37 ± 1° WCA: 103 ± 1° (6) HCA: 30 ± 2° (6) | [97] | |
PDMS/PEOTMS | 1:2–1:10 | 103–113 | --- | 22.7–23.3 | HCA: 35–37° WCA: 107–108 (6) HCA: 37° (6) γS: 22.5–24.6 mN m−1 (6) | [97] | |
PDMS/PFOTES | 1:2–1:50 | 106–111 | --- | 11.9–22.0 | HCA: 40–76° WCA: 101–109° (6) HCA: 40–71° (6) γS: 14.5–21.8 mN m−1 (6) | [97] | |
PDMS/(PEOTMS/PFOTES) | 1:(1:9–4:6) | 101–106 | --- | 22.9–23.8 | HCA: 35–36° WCA: 108–109° (6) HCA: 35–36° (6) γS: 22.7–23.0 mN m−1 (6) | [97] | |
Superamphiphobic coatings | TEOS/MTEO (FMA/HMPF) | 1:1–4:1 *1 | 148–159 | --- | --- | UOWCA: 161° UWOCA: 161° HCAs: 137–152° WSA: 2–6° HSA: 8–12° | [93] |
Amphiphilic coatings | C8-TES/TEOS + Telomer contains: MTEO/DFMA/PEGMA or MTEO/PEGMA or MTEO/DFMA | 1:1 * 1:2:2 * (0–15 ω%) | --- ~105 | --- 17–27 (5) | --- --- | after immersion in ASW 4 days ~80°–90° (5) | [79] |
1:4 * | 95 | 27 | --- | 95° | |||
1:4 * | ~113 | 14 | --- | ~113° | |||
Natural Lacquer/hyperbranched siloxane (Hydrolyse von APTES) + Telomer contains: MTEO/DFMA/PEGMA | 9:1 *1 1:2:2 * (0–15 ω%) | 98–105 (5) | ~22–28 (5) | - | after immersion in water for 24 h WCA: ~98–63° (5) (decrease with Telomer) SFE: ~29–41 mN m−1 (5) (increase with Telomer) | [80] | |
Zwitterionic layers (particle) | zwitterionic epoxy–zirconium particle GPTMS/TPOZ//SBSi hyperbranched siloxane Hydrolyse von APTES | Epoxy–zirconium particle (mass ratio of TPOZ and GPTMS to SBSi) | advancing WCAs: 88.1°–−78.1° receding WCA: 45.5°–21.3° UWOCA: 46.0°–85.6° After UV radiation 84.4° (1:0) 79.6° (10:1) Liquid resistance test in Hexane, xylene, dimethyl-sulfoxide, ethanol (24 h) 81.3°–83.8° (1:0) 77.3°–78.4° (10:1) Liquid resistance test in 0.1 M HCl (24 h) 71.4° (1:0) 64.3° (10:1) Liquid resistance test in 0.1 M NaOH (24 h) 53.8° (1:0) 51.9° (10:1) | [84] | |||
1:0 *1 | 83.4 | --- | --- | ||||
5:1 *1 | 80.4 | --- | --- | ||||
10:1 *1 | 78.5 | --- | --- | ||||
15:1 *1 | 76.0 | --- | --- | ||||
MAPS | --- | 75 | --- | --- | UWOCA: 118° | [87] | |
MAPS/TEOS | 44.8:5.6–25.0:25.0 * | 61–75 | --- | --- | UWOCA: 108°–118° After immersion in ASW for 15 days WCA: 14.5°–19° UWOCA: 129°–134° | ||
BITS/MAPS/TEOS | 25.0:25.0:0–12.5:12.5:25.0 * | 63–70 | --- | --- | UWOCA: 109°–118° After immersion in ASW for 15 days WCA: 53°–62° UWOCA: 125°–130° | ||
PEGylated | TTIP/PEG | 1:9–1:3 | 15–35 | --- | --- | WCA 100% TTIP: 55° WCA 100% PEG: 11° | [98] |
Polysaccharid | Chitosan/GPTMS/TMOS | 1:4 * (GPTMS/TMOS) | --- | 30.39 | --- | advancing WCA: 73° receding WCA: 20° advancing HCA: 18° receding HCA: 8° SFE (Hexadecane): 26.14 mN m−1 | [8] |
Chitosan/TMOS | --- | 35.20 | --- | advancing WCA: 67° receding WCA: 29° advancing HCA: 21° receding HCA: 6° SFE (Hexadecane): 25.67 mN m−1 | [8] | ||
Chitosan/VTMS | --- | 28.84 | --- | advancing WCA: 75° receding WCA: 18° advancing HCA: 12° receding HCA: 9° SFE (Hexadecane): 13.28 mN m−1 | [8] |
4. Active Surface Catalysis for Antifouling Properties on Sol–Gel-Modified Surfaces
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Chemicals | |
APTES | 3-Aminopropyltriethoxysilane |
APTMS | (3-Aminopropyl)trimethoxysilane |
BITS | 2-(2-Hydroxy-3-(3-(trimethoxysilyl)propoxy)propyl)benzo[d]isothiazol-3(2H)-on |
BMA | Butyl methacrylate |
BSA | bovine serum albumin |
BTMS | Butyltrimethoxysilane |
C3-TMS | n-Propyltrimethoxysilane |
C8-TES | n-Octyltriethoxysilane |
C18-TMS | n-Octadecyltrimethoxysilane |
COE | Carboxyethylsilanetriol |
DBTDL | Dibutyltin dilaurate |
DFMA | Dodecafluoroheptyl methacrylate |
DMA | Dodecyl methacrylate |
DMAP | 3-Dimethylaminopropyltrimethoxysilane |
EMA | Ethyl methacrylate |
F16 | Glycidyl-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononylether |
FMA | 1H,1H,2H,2H-Heptadecafluorodecyl methacrylate |
FPES | Fluoropolyether silane (Fluorolink S10, Solvay Solexis) |
GO | Graphene oxide |
GPTMS | (3-Glycidyloxypropyl)trimethoxysilane |
GPTES | (3-Glycidyloxypropyl)triethoxysilane |
HFBM | 2,2,3,4,4,4-hexafluorobutyl methacrylate |
HMA | Hexyl methacrylate |
HMPF | 2-Hydroxy-2-Methylpropiophenone |
HPMC | SiO2-hydroxypropylmethyl |
ISTES | 3-(1-(3-(Triethoxysilyl)propyl)-4,5-dihydro-1H-imidazol-3-ium-3-yl)propane-1-sulfonate |
KH580 | 3-mercaptopropyl triethoxysilane |
LBLHPS | Layer-by-layer assembling of hybrid polymer coatings |
MAP | (3-Methylaminopropyl)trimethoxysilane |
MAPS | (N-Methoxyacylethyl)-3-aminopropyltriethoxysilane |
MAPTMS | 3-(Trimethoxysilyl)propyl methacrylate |
MMA | Methyl methacrylate |
MOLY | Molywhite® 101-ED |
MPDMO | Methylphenyldimethoxysilane |
MTAcS | Methyltrieacetoxysilane |
MTES | Methyltriethoxysilane |
MTEO | 3-Mercaptopropyltriethoxysilane |
MTMO | 3-Mercaptopropyltrimethoxysilane |
MTMS | Methyltrimethoxysilan |
OMA | Octyl methacrylate |
ORMOSIL | organically modified silicate |
PDMS | Poly(dimethylsiloxane) |
PDMSE | Poly(dimethylsiloxane) elastomer |
PEG | Polyethylene glycol |
PEGMA | Poly(ethyleneglycol)methylether- methacrylate |
PEG-TMS | Poly(ethylene glycol) siloxane |
PEOTMS | 3-(Methoxy(polyethylenoxy))-propyltrimethoxysilane |
PFOTES | 1H,1H,2H,2H-Perfluorooctyltriethoxysilane |
PH | Phenyltriethoxysilane |
ROS | Reactive oxygen species |
SBMA | [(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide |
SBSi | Sulfobetaine silane |
TBOT | Tetrabutyl orthotitanate |
TBAF | Tetrabutylammonium fluoride |
TDF | (Tridecyfluoro-1,1,2,2-tetrahydrooctyl)-triethoxysilane |
TEOS | Tetraethoxysilane |
TFP | (3,3,3-Trifluoropropyl)trimethoxysilane |
TMOS | Tetramethoxysilane |
TMAP | 3-(Trimethoxysilyl)propyl- trimethylammonium-iodide |
TPOZ | Tetrapropyl zirconate |
TTIP | Titanium tetraisopropoxide |
VTMS | Vinyltrimethoxysilane |
ZAPP | Heucophos Zapp® |
Methods and Micellaneous | |
ASW | Artificial seawater |
CA | Contact angle |
HCA | Hexadecane contact angle |
HSA | Hexadecane sliding angle |
SFE/γS | Surface energy |
SFT/γT | Surface tensions |
UOWCA | Underoil water contact angle |
UWOCA | Underwater oil contact angle |
WCA | Water contact angle |
WSA | Water sliding angle |
CB | Conduction-band |
EIS | Electrochemical impedance spectroscopy |
IC | Inorganic carbon |
ICP-AES | Inductively coupled plasma atomic emission spectroscopy |
NMR | Nuclear magnetic resonance |
SEM | Scanning electron microscopy |
SPR | Surface plasmon resonance measurements |
TGA | Thermogravimetric analysis |
TOC | Total organic carbon |
VB | Valence-band |
XPS | X-ray photoelectron spectroscopy |
µ | Relative friction coefficient |
References
- Liu, M.; Li, S.; Wang, H.; Jiang, R.; Zhou, X. Research progress of environmentally friendly marine antifouling coatings. Polym. Chem. 2021, 12, 3702–3720. [Google Scholar] [CrossRef]
- Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 2006, 201, 3642–3652. [Google Scholar] [CrossRef]
- Jaiswal, S.; McHale, P.; Duffy, B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces. Colloids Surf. B 2012, 94, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Angelova, T.; Rangelova, N.; Dineva, H.; Georgieva, N.; Müller, R. Synthesis, characterization and antibacterial assessment of SiO2-hydroxypropylmethyl cellulose hybrid materials with embedded silver nanoparticles. Biotechnol. Biotechnol. Equip. 2014, 28, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Le Nor, L.; Brown, R.; Kitteringham, E.; Russell, S.; Sullivan, T.; Regan, F. Antifouling performances of macro- to micro- to nano-copper materials for the inhibition of biofouling in its early stages. J. Mater. Chem. B 2013, 1, 6194–6200. [Google Scholar] [CrossRef]
- Krupa, A.N.D.; Vimala, R. Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater. Sci. Eng. C 2016, 61, 728–735. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, S.; Li, Q.; Wang, J.; Pu, J.; Wang, G.; Zhao, W.; Feng, F.; Qin, J.; Ren, L. Integrated Dual-Functional ORMOSIL Coatings with AgNPs@rGO Nanocomposite for Corrosion Resistance and Antifouling Applications. ACS Sustain. Chem. Eng. 2020, 8, 6786–6797. [Google Scholar] [CrossRef]
- Dhawade, P.; Jagtap, R. Comparative study of physical and thermal properties of chitosan-silica hybrid coatings prepared by sol-gel method. Chem. Sin. 2012, 3, 589–601. [Google Scholar]
- Wanka, R.; Koc, J.; Clarke, J.; Hunsucker, K.Z.; Swain, G.W.; Aldred, N.; Finlay, J.A.; Clare, A.S.; Rosenhahn, A. Sol-Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS Appl. Mater. Interfaces 2020, 12, 53286–53296. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Y.; Gnutt, P.; Wanka, R.; Krause, L.M.K.; Finlay, J.A.; Clare, A.S.; Rosenhahn, A. Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS Appl. Bio. Mater. 2021, 4, 2385–2397. [Google Scholar] [CrossRef]
- Regina, V.R.; Søhoel, H.; Lokanathan, A.R.; Bischoff, C.; Kingshott, P.; Revsbech, N.P.; Meyer, R.L. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS Appl. Mater. Interfaces 2012, 4, 5915–5921. [Google Scholar] [CrossRef] [PubMed]
- Eduok, U.; Suleiman, R.; Gittens, J.; Khaled, M.; Smith, T.J.; Akid, R.; El Ali, B.; Khalil, A. Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis. RSC Adv. 2015, 5, 93818–93830. [Google Scholar] [CrossRef]
- Suleiman, R.; Gittens, J.; Khaled, M.; Smith, T.J.; Akid, R.; El Ali, B.; Khalil, A. Assessing the Anticorrosion and Antifouling Performances of a Sol–Gel Coating Mixed with Corrosion Inhibitors and Immobilised Bacterial Endospores. Arab. J. Sci. Eng. 2017, 42, 4327–4338. [Google Scholar] [CrossRef]
- Rathinam, P.; Murari, B.M.; Viswanathan, P. Biofilm inhibition and antifouling evaluation of sol-gel coated silicone implants with prolonged release of eugenol against Pseudomonas aeruginosa. Biofouling 2021, 37, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Finlay, J.A.; Kowalke, G.L.; Meyer, A.E.; Bright, F.V.; Callow, M.E.; Callow, J.A.; Wendt, D.E.; Detty, M.R. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 2005, 21, 59–71. [Google Scholar] [CrossRef]
- Bennett, S.M.; Finlay, J.A.; Gunari, N.; Wells, D.D.; Meyer, A.E.; Walker, G.C.; Callow, M.E.; Callow, J.A.; Bright, F.V.; Detty, M.R. The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling. Biofouling 2010, 26, 235–246. [Google Scholar] [CrossRef]
- Cho, E.J.; Tao, Z.; Tang, Y.; Tehan, E.C.; Bright, F.V.; Hicks, W.L.; Gardella, J.A.; Hard, R. Tools to Rapidly Produce and Screen Biodegradable Polymer and Sol-Gel-Derived Xerogel Formulations. Appl. Spectrosc. AS 2002, 56, 1385–1389. [Google Scholar] [CrossRef]
- McMaster, D.M.; Bennett, S.M.; Tang, Y.; Finlay, J.A.; Kowalke, G.L.; Nedved, B.; Bright, F.V.; Callow, M.E.; Callow, J.A.; Wendt, D.E.; et al. Antifouling character of ‘active’ hybrid xerogel coatings with sequestered catalysts for the activation of hydrogen peroxide. Biofouling 2009, 25, 21–33. [Google Scholar] [CrossRef]
- Selvaggio, P.; Tusa, S.; Detty, M.R.; Bright, F.V.; Ciriminna, R.; Pagliaro, M. Ecofriendly Protection from Biofouling of the Monitoring System at Pantelleria’s Cala Gadir Underwater Archaeological Site, Sicily. Int. J. Naut. Archaeol. 2009, 38, 417–421. [Google Scholar] [CrossRef]
- Finlay, J.A.; Bennett, S.M.; Brewer, L.H.; Sokolova, A.; Clay, G.; Gunari, N.; Meyer, A.E.; Walker, G.C.; Wendt, D.E.; Callow, M.E.; et al. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability. Biofouling 2010, 26, 657–666. [Google Scholar] [CrossRef]
- Pei, X.; Ye, Q. Development of Marine Antifouling Coatings. In Antifouling Surfaces and Materials: From Land to Marine Environment; Zhou, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 135–149. ISBN 978-3-662-45204-2. [Google Scholar]
- Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 2014, 47, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Zisman, W.A. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. In Contact Angle, Wettability and Adhesion; Fowkes, F.M., Ed.; American Chemical Society: Washington, DC, USA, 1964; pp. 1–51. ISBN 9780841200449. [Google Scholar]
- Baier, R.E.; Meyer, A.E. Surface analysis of fouling-resistant marine coatings. Biofouling 1992, 6, 165–180. [Google Scholar] [CrossRef]
- Baier, R.E.; Shafrin, E.G.; Zisman, W.A. Adhesion: Mechanisms that assist or impede it. Science 1968, 162, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Dexter, S.C. Influence of substratum critical surface tension on bacterial adhesion—In Situ studies. J. Colloid Interface Sci. 1979, 70, 346–354. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, X.; Wang, S.; Zhang, X.; Navabpour, P.; Teer, D. Bacterial attachment and removal properties of silicon- and nitrogen-doped diamond-like carbon coatings. Biofouling 2009, 25, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Berglin, M.; Gatenholm, P. The nature of bioadhesive bonding between barnacles and fouling-release silicone coatings. J. Adhes. Sci. Technol. 1999, 13, 713–727. [Google Scholar] [CrossRef]
- Brady, R.F.; Singer, I.L. Mechanical factors favoring release from fouling release coatings. Biofouling 2000, 15, 73–81. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Evariste, E.; Gatley, C.M.; Detty, M.R.; Callow, M.E.; Callow, J.A. The performance of aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel coatings against the marine alga Ectocarpus crouaniorum: Relative roles of surface energy and charge. Biofouling 2013, 29, 171–184. [Google Scholar] [CrossRef]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly Antifouling Marine Coatings. ACS Sustain. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Detty, M.R.; Ciriminna, R.; Bright, F.V.; Pagliaro, M. Xerogel Coatings Produced by the Sol-Gel Process as Anti-Fouling, Fouling-Release Surfaces: From Lab Bench to Commercial Reality. ChemNanoMat 2015, 1, 148–154. [Google Scholar] [CrossRef]
- Wynne, K.J.; Swain, G.W.; Fox, R.B.; Bullock, S.; Uilk, J. Two silicone nontoxic fouling release coatings: Hydrosilation cured PDMS and CaCO 3 filled, ethoxysiloxane cured RTV11. Biofouling 2000, 16, 277–288. [Google Scholar] [CrossRef]
- Anderson, C.; Atlar, M.; Callow, M.; Candries, M.; Milne, A.; Townsin, R. The development of foul-release coatings for seagoing vessels. Proc. Inst. Mar. Eng. Sci. Technology. Part B J. Mar. Des. Oper. 2003, 2003, 11–23. [Google Scholar]
- Wenzel, R.N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; Roach, P. Superhydrophobicity for antifouling microfluidic surfaces. Methods Mol. Biol. 2013, 949, 269–281. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.H.; Choi, S.H.; Kim, W.Y.; Kwon, S.; Cho, Y.T. Effect of surface pattern morphology on inducing superhydrophobicity. Appl. Surf. Sci. 2020, 513, 145847. [Google Scholar] [CrossRef]
- Krishnan, S.; Weinman, C.J.; Ober, C.K. Advances in polymers for anti-biofouling surfaces. J. Mater. Chem. 2008, 18, 3405. [Google Scholar] [CrossRef]
- Finlay, J.A.; Callow, M.E.; Ista, L.K.; Lopez, G.P.; Callow, J.A. The influence of surface wettability on the adhesion strength of settled spores of the green alga enteromorpha and the diatom amphora. Integr. Comp. Biol. 2002, 42, 1116–1122. [Google Scholar] [CrossRef]
- Schilp, S.; Kueller, A.; Rosenhahn, A.; Grunze, M.; Pettitt, M.E.; Callow, M.E.; Callow, J.A. Settlement and adhesion of algal cells to hexa(ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases 2007, 2, 143–150. [Google Scholar] [CrossRef]
- Rittschof, D.; Costlow, J.D. Bryozoan and barnacle settlement in relation to initial surface wettability: A comparison of laboratory and field studies. Sci. Mar. (Barc.) 1989, 52, 411–416. [Google Scholar]
- Gerhart, D.J.; Rittschof, D.; Hooper, I.R.; Eisenman, K.; Meyer, A.E.; Baier, R.E.; Young, C. Rapid and inexpensive quantification of the combined polar components of surface wettability: Application to biofouling. Biofouling 1992, 5, 251–259. [Google Scholar] [CrossRef]
- Holm, E.R.; Cannon, G.; Roberts, D.; Schmidt, A.R.; Sutherland, J.P.; Rittschof, D. The influence of initial surface chemistry on development of the fouling community at Beaufort, North Carolina. J. Exp. Mar. Biol. Ecol. 1997, 215, 189–203. [Google Scholar] [CrossRef]
- Dahlström, M.; Jonsson, H.; Jonsson, P.R.; Elwing, H. Surface wettability as a determinant in the settlement of the barnacle Balanus Improvisus (DARWIN). J. Exp. Mar. Biol. Ecol. 2004, 305, 223–232. [Google Scholar] [CrossRef]
- Weinman, C.J.; Krishnan, S.; Park, D.; Paik, M.Y.; Wong, K.; Fischer, D.A.; Handlin, D.L.; Kowalke, G.L.; Wendt, D.E.; Sohn, K.E. Antifouling block copolymer surfaces that resist settlement of barnacle larvae. PMSE Prepr. 2007, 96, 597–598. [Google Scholar]
- Callow, M.E.; Callow, J.A.; Ista, L.K.; Coleman, S.E.; Nolasco, A.C.; López, G.P. Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores. Appl. Environ. Microbiol. 2000, 66, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- Ista, L.K.; Callow, M.E.; Finlay, J.A.; Coleman, S.E.; Nolasco, A.C.; Simons, R.H.; Callow, J.A.; Lopez, G.P. Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl. Environ. Microbiol. 2004, 70, 4151–4157. [Google Scholar] [CrossRef]
- Statz, A.; Finlay, J.; Dalsin, J.; Callow, M.; Callow, J.A.; Messersmith, P.B. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling 2006, 22, 391–399. [Google Scholar] [CrossRef]
- Finlay, J.A.; Krishnan, S.; Callow, M.E.; Callow, J.A.; Dong, R.; Asgill, N.; Wong, K.; Kramer, E.J.; Ober, C.K. Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Langmuir 2008, 24, 503–510. [Google Scholar] [CrossRef]
- Thompson, S.E.M.; Callow, M.E.; Callow, J.A. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva. Biofouling 2010, 26, 167–178. [Google Scholar] [CrossRef]
- Finlay, J.A.; Callow, M.E.; Schultz, M.P.; Swain, G.W.; Callow, J.A. Adhesion Strength of Settled Spores of the Green Alga Enteromorpha. Biofouling 2002, 18, 251–256. [Google Scholar] [CrossRef]
- Gudipati, C.S.; Finlay, J.A.; Callow, J.A.; Callow, M.E.; Wooley, K.L. The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 2005, 21, 3044–3053. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.A.; Sohn, K.E.; Perry, R.; Ober, C.K.; Kramer, E.J.; Callow, M.E.; Callow, J.A.; et al. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir 2006, 22, 5075–5086. [Google Scholar] [CrossRef] [PubMed]
- Pagliaro, M.; Ciriminna, R.; Wong Chi Man, M.; Campestrini, S. Better chemistry through ceramics: The physical bases of the outstanding chemistry of ORMOSIL. J. Phys. Chem. B 2006, 110, 1976–1988. [Google Scholar] [CrossRef] [PubMed]
- Gunari, N.; Brewer, L.H.; Bennett, S.M.; Sokolova, A.; Kraut, N.D.; Finlay, J.A.; Meyer, A.E.; Walker, G.C.; Wendt, D.E.; Callow, M.E.; et al. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 2011, 27, 137–149. [Google Scholar] [CrossRef]
- Sokolova, A.; Cilz, N.; Daniels, J.; Stafslien, S.J.; Brewer, L.H.; Wendt, D.E.; Bright, F.V.; Detty, M.R. A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro- and macrofouling organisms. Biofouling 2012, 28, 511–523. [Google Scholar] [CrossRef]
- Sokolova, A.; Bailey, J.J.; Waltz, G.T.; Brewer, L.H.; Finlay, J.A.; Fornalik, J.; Wendt, D.E.; Callow, M.E.; Callow, J.A.; Bright, F.V.; et al. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. Biofouling 2012, 28, 143–157. [Google Scholar] [CrossRef]
- Destino, J.F.; Gatley, C.M.; Craft, A.K.; Detty, M.R.; Bright, F.V. Probing Nanoscale Chemical Segregation and Surface Properties of Antifouling Hybrid Xerogel Films. Langmuir 2015, 31, 3510–3517. [Google Scholar] [CrossRef]
- Petrone, L.; Easingwood, R.; Barker, M.F.; McQuillan, A.J. In situ ATR-IR spectroscopic and electron microscopic analyses of settlement secretions of Undaria pinnatifida kelp spores. J. R. Soc. Interface 2011, 8, 410–422. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Boston, MA, USA, 1990; ISBN 0080571034. [Google Scholar]
- Pandey, S.; Baker, G.A.; Kane, M.A.; Bonzagni, N.J.; Bright, F.V. On the Microenvironments Surrounding Dansyl Sequestered within Class I and II Xerogels. Chem. Mater. 2000, 12, 3547–3551. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Galletta, M.; Ielo, I.; Brucale, M.; de Leo, F.; Cardiano, P.; Cappello, S.; Visco, A.; Trovato, V.; et al. Design and Development of Fluorinated and Biocide-Free Sol-Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022, 8, 538. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.; Aversa, C.; Pizzi, E.; Puopolo, M.; Vesco, S. Design, manufacturing and testing of anti-fouling/foul-release (AF/FR) amphiphilic coatings. Prog. Org. Coat. 2018, 123, 267–281. [Google Scholar] [CrossRef]
- Hamulić, D.; Rodič, P.; Milošev, I. The influence of length of alkyl chain on the chemical structure and corrosion resistance of silica-polyacrylic hybrid coatings on structural steel. Prog. Org. Coat. 2021, 150, 105982. [Google Scholar] [CrossRef]
- Hamulić, D.; Putna-Nimane, I.; Liepina-Leimane, I.; Dimante-Deimantovica, I.; Rodič, P.; Milošev, I. Field testing and ecotoxicity of acrylate-based sol–gel coatings in fresh and seawater. J. Coat. Technol. Res. 2023, 20, 687–701. [Google Scholar] [CrossRef]
- Milošev, I.; Hamulić, D.; Rodič, P.; Carrière, C.; Zanna, S.; Budasheva, H.; Korte, D.; Franko, M.; Mercier, D.; Seyeux, A.; et al. Siloxane polyacrylic sol-gel coatings with alkly and perfluoroalkyl chains: Synthesis, composition, thermal properties and log-term corrosion protection. Appl. Surf. Sci. 2022, 574, 151578. [Google Scholar] [CrossRef]
- Hearin, J.; Hunsucker, K.Z.; Swain, G.; Stephens, A.; Gardner, H.; Lieberman, K.; Harper, M. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating. Biofouling 2015, 31, 625–638. [Google Scholar] [CrossRef]
- Damon, C.A.; Gatley, C.M.; Beres, J.J.; Finlay, J.A.; Franco, S.C.; Clare, A.S.; Detty, M.R. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: In situ generation of hypohalous acids. Biofouling 2016, 32, 883–896. [Google Scholar] [CrossRef]
- Ciriminna, R.; Scurria, A.; Pagliaro, M. Sustainability Evaluation of AquaSun Antifouling Coating Production. Coatings 2022, 12, 1034. [Google Scholar] [CrossRef]
- Detty, M.; Corey, D.; Gatley, C. Mixed Transition Metal Oxides Silica Xerogels as Antifouling/Fouling Release Surfaces. U.S. Patent 11,161,987, 2 November 2021. [Google Scholar]
- Williams, S.L.; Schroeder, S.L. Eradication of the invasive seaweed Caulerpa taxifolia by chlorine bleach. Mar. Ecol. Prog. Ser. 2004, 272, 69–76. [Google Scholar] [CrossRef]
- Drábková, M.; Matthijs, H.C.P.; Admiraal, W.; Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 2007, 45, 363–369. [Google Scholar] [CrossRef]
- Yuan, J.; Shiller, A.M. The variation of hydrogen peroxide in rainwater over the South and Central Atlantic Ocean. Atmos. Environ. 2000, 34, 3973–3980. [Google Scholar] [CrossRef]
- Yuan, J.; Shiller, A.M. The distribution of hydrogen peroxide in the southern and central Atlantic ocean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 2947–2970. [Google Scholar] [CrossRef]
- Clark, C.D.; de Bruyn, W.J.; Jakubowski, S.D.; Grant, S.B. Hydrogen peroxide production in marine bathing waters: Implications for fecal indicator bacteria mortality. Mar. Pollut. Bull. 2008, 56, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Sun, X.; Shen, X.; Hang, J.; Jin, L.; Shi, L. Effects of PEG-TMS on the stability and antifouling performances of hydrocarbon-modified amphiphilic xerogel coatings. Prog. Org. Coat. 2018, 121, 142–150. [Google Scholar] [CrossRef]
- Chen, R.; Xie, Q.; Zeng, H.; Ma, C.; Zhang, G. Non-elastic glassy coating with fouling release and resistance abilities. J. Mater. Chem. A 2020, 8, 380–387. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Zhang, G.; Ma, C. Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties. Chem. Eng. J. 2021, 421, 129755. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Xie, Q.; Chen, Z.; Ma, C.; Zhang, G. Transparent Polymer-Ceramic Hybrid Antifouling Coating with Superior Mechanical Properties. Adv. Funct. Mater. 2021, 31, 2011145. [Google Scholar] [CrossRef]
- Bischoff, R. Polysiloxanes in macromolecular architecture. Prog. Polym. Sci. 1999, 24, 185–219. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, L.; Guan, Q.; Liang, G.; Gu, A. Developing self-healable and antibacterial polyacrylate coatings with high mechanical strength through crosslinking by multi-amine hyperbranched polysiloxane via dynamic vinylogous urethane. J. Mater. Chem. A 2017, 5, 16889–16897. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Leng, C.; Han, X.; Shao, Q.; Zhu, Y.; Li, Y.; Jiang, S.; Chen, Z. In Situ Probing of the Surface Hydration of Zwitterionic Polymer Brushes: Structural and Environmental Effects. J. Phys. Chem. C 2014, 118, 15840–15845. [Google Scholar] [CrossRef]
- Yeh, S.-B.; Chen, C.-S.; Chen, W.-Y.; Huang, C.-J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30, 11386–11393. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Liang, X.; Yang, J.; Zhou, S. Sol-gel-derived hard coatings from tetraethoxysilane and organoalkoxysilanes bearing zwitterionic and isothiazolinone groups and their antifouling behaviors. J. Mater. Chem. B 2022, 10, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Esteves, A.C.C.; Yang, J.; Zhou, S. Zwitterion-bearing silica sol for enhancing antifouling performance and mechanical strength of transparent PDMS coatings. Prog. Org. Coat. 2024, 191, 108415. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, Y.; Zhao, H.; Wang, P. Engineering a hard sol-gel adaptive coating with nonleaching antifoulant against marine biofouling in static conditions. Prog. Org. Coat. 2024, 191, 108402. [Google Scholar] [CrossRef]
- Öner, D.; McCarthy, T.J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777–7782. [Google Scholar] [CrossRef]
- Dyett, B.; Lamb, R. Correlating Material Properties with the Wear Behavior of Sol-Gel Derived Superhydrophobic Films. Adv. Mater. Interfaces 2016, 3, 1500680. [Google Scholar] [CrossRef]
- Feng, X.; Shi, Y.; Yin, X.; Wang, X. Transparent superhydrophobic film with anti-fouling and anti-scaling ability by facile method of dip-coating SiO2 sol. Mater. Res. Express 2022, 9, 16404. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wen, X.; Xu, S.; Wang, F.; Pi, P. Two-Step Approach for Fabrication of Durable Superamphiphobic Fabrics for Self-Cleaning, Antifouling, and On-Demand Oil/Water Separation. Ind. Eng. Chem. Res. 2019, 58, 5490–5500. [Google Scholar] [CrossRef]
- Liu, T.L.; Kim, C.-J.C.J. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100. [Google Scholar] [CrossRef]
- Rodriguez, J.E.; Anderson, A.M.; Carroll, M.K. Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels. J. Sol-Gel Sci. Technol. 2014, 71, 490–500. [Google Scholar] [CrossRef]
- Kessman, A.J.; Kukureka, S.N.; Cairns, D.R. Tribology of non-wetting fluorinated mesoporous silica films. Wear 2011, 271, 2144–2149. [Google Scholar] [CrossRef]
- Martinelli, E.; Pretti, C.; Oliva, M.; Glisenti, A.; Galli, G. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. Polymer 2018, 145, 426–433. [Google Scholar] [CrossRef]
- Perez, M.H.; Noval, A.M.; Navas, C.R.; Silvan, M.M.; Torres-Costa, V.; Ceccone, G.; Ruiz, J.P.G.; Rossi, F. Surface modification, characterization and biofunctionality of pegylated titanate films obtained by the sol-gel method. Surf. Interface Anal. 2008, 40, 205–209. [Google Scholar] [CrossRef]
- Scandura, G.; Ciriminna, R.; Xu, Y.-J.; Pagliaro, M.; Palmisano, G. Nanoflower-Like Bi2WO6 Encapsulated in ORMOSIL as a Novel Photocatalytic Antifouling and Foul-Release Coating. Chem.—Eur. J. 2016, 22, 7063–7067. [Google Scholar] [CrossRef]
- Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y.-J. Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276–5287. [Google Scholar] [CrossRef]
- Elaouni, A.; El Ouardi, M.; BaQais, A.; Arab, M.; Saadi, M.; Ait Ahsaine, H. Bismuth tungstate Bi2WO6: A review on structural, photophysical and photocatalytic properties. RSC Adv. 2023, 13, 17476–17494. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Scandura, G.; Ciriminna, R.; Ozer, L.Y.; Meneguzzo, F.; Palmisano, G.; Pagliaro, M. Antifouling and Photocatalytic Antibacterial Activity of the AquaSun Coating in Seawater and Related Media. ACS Omega 2017, 2, 7568–7575. [Google Scholar] [CrossRef]
- Scurria, A.; Scolaro, C.; Sfameni, S.; Di Carlo, G.; Pagliaro, M.; Visco, A.; Ciriminna, R. Towards AquaSun practical utilization: Strong adhesion and lack of ecotoxicity of solar-driven antifouling sol-gel coating. Prog. Org. Coat. 2022, 165, 106771. [Google Scholar] [CrossRef]
- Panaite, V.; Boiciuc, S.; Musat, V. ZnO Nanoparticles–Epoxy Resin Hybrid Nanocomposite with Anticorrosive and Antifouling Properties as Coatings for Naval Steel. Rev. Chim. 2015, 66, 213–218. [Google Scholar]
- Ruffolo, S.A.; Macchia, A.; La Russa, M.F.; Mazza, L.; Urzi, C.; de Leo, F.; Barberio, M.; Crisci, G.M. Marine antifouling for underwater archaeological sites: TiO2 and Ag-doped TiO2. Int. J. Photoenergy 2013, 2013, 251647. [Google Scholar] [CrossRef]
- Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M.H.D.A.; Jiangyong, H. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384. [Google Scholar] [CrossRef]
- Gemelli, G.M.; Luna, M.; Zarzuela, R.; Gil Montero, M.A.; Carbú, M.; Moreno-Garrido, I.; Mosquera, M.J. 4-Year in-situ assessment of a photocatalytic TiO2/SiO2 antifouling treatment for historic mortar in a coastal city. Build. Environ. 2022, 225, 109627. [Google Scholar] [CrossRef]
- Gatley, C.M.; Muller, L.M.; Lang, M.A.; Alberto, E.E.; Detty, M.R. Xerogel-sequestered silanated organochalcogenide catalysts for bromination with hydrogen peroxide and sodium bromide. Molecules 2015, 20, 9616–9639. [Google Scholar] [CrossRef]
- Detty, M.R.; Drake, M.D.; Tang, Y.; Bright, F.V. Hybrid Antifouling Coating Compositions and Methods for Preventing the Fouling of Surfaces Subjected to a Marine Environment. U.S. Patent 7,244,295, 17 July 2007. [Google Scholar]
- Francavilla, C.; Drake, M.D.; Bright, F.V.; Detty, M.R. Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Improved catalytic activity through statistical effects and cooperativity in successive generations. J. Am. Chem. Soc. 2001, 123, 57–67. [Google Scholar] [CrossRef]
Additive | Effect | Matrix | Reference | |
---|---|---|---|---|
Nanoparticles | Cu, Zn, Ag | antibacterial activities | MTES | [3] |
ZnO | antimicrofouling | TEOS | [6] | |
Ag + GO Ag | antibacterial activities antibacterial activities | TEOS/MTMO/PDMS SiO2/HPMC/Ag | [4,7] | |
Metaloxides | Cu2O | combat biofouling | MTMS/BTMS | [5] |
Polysaccharides | Chitosan | antimicrobial activity | TEOS/GPTMS | [8] |
antifouling and fouling release | TEOS | [9] | ||
Alginate | antifouling and fouling release | |||
Hyaluronic acid | antifouling and fouling release | |||
Heparin Chitosan Alginic acid Hyaluronic acid Chondroitin sulfate | antimicrobial activity antifouling and fouling release antifouling and fouling release antifouling and fouling release antifouling and fouling release | MTES/ISTES | [9,10] | |
Enzymes | Subtilisin | antifouling | Glycerol/GPTES/PTEO/MPDMO/MTEO/N-Methylaminopropyltrimethoxysilan | [11] |
B. licheniformis + ZAPP + MOLY | anticorrosion and antifouling | TEOS/GPTMS/PDMS-amino | [12] | |
Paenibacillus polymyxa + Molywhite® 101-ED and Heucophos Zapp® | anticorrosion and antifouling | TEOS/MTES | [13] | |
Others | Eugenol | Biofilm inhibition and antifouling | TEOS | [14] |
Catalytic Active Component | Catalyzed Reaction | Antifouling Mechanism | Ref. |
---|---|---|---|
Bi2WO6 nanoparticles | Photolysis of water | Oxidation of biofilms by hydrogen-peroxide and ROS | [99,103,104] |
ZnO nanorods | Photolysis of water | Oxidation of biofilms by hydrogen-peroxide and ROS | [105] |
TiO2 nanoparticles | Photolysis of water and oxygen | Oxidation of biofilms by ROS | [106,108] |
dendrimeric organochalcogeno-derivatives | Oxidation of halide ions to hypohalous acids | Biocidal properties of hypohalous acids | [22,109,110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bös, M.; Gabler, L.; Leopold, W.M.; Steudel, M.; Weigel, M.; Kraushaar, K. Molecular Design and Nanoarchitectonics of Inorganic–Organic Hybrid Sol–Gel Systems for Antifouling Coatings. Gels 2024, 10, 768. https://doi.org/10.3390/gels10120768
Bös M, Gabler L, Leopold WM, Steudel M, Weigel M, Kraushaar K. Molecular Design and Nanoarchitectonics of Inorganic–Organic Hybrid Sol–Gel Systems for Antifouling Coatings. Gels. 2024; 10(12):768. https://doi.org/10.3390/gels10120768
Chicago/Turabian StyleBös, Markus, Ludwig Gabler, Willi Max Leopold, Max Steudel, Mareike Weigel, and Konstantin Kraushaar. 2024. "Molecular Design and Nanoarchitectonics of Inorganic–Organic Hybrid Sol–Gel Systems for Antifouling Coatings" Gels 10, no. 12: 768. https://doi.org/10.3390/gels10120768
APA StyleBös, M., Gabler, L., Leopold, W. M., Steudel, M., Weigel, M., & Kraushaar, K. (2024). Molecular Design and Nanoarchitectonics of Inorganic–Organic Hybrid Sol–Gel Systems for Antifouling Coatings. Gels, 10(12), 768. https://doi.org/10.3390/gels10120768