Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of MCA
2.2. Adsorption Studies of Pb2+, Cu2+ and Cd2+
2.2.1. Effects of Preparation and Adsorption Conditions on Adsorption Performance
2.2.2. Adsorption Kinetics, Adsorption Isothermal Curve and Thermodynamic Parameters Analysis
2.3. Adsorption Selectivity
2.4. Adsorption Mechanism
2.5. Desorption and Regeneration
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Preparation of DB18C6/PA
4.3. Characterization
4.4. Adsorption Experiment of Pb2+, Cu2+ and Cd2+
4.5. Regenerative Performance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Tran, T.-K.; Leu, H.-J.; Chiu, K.-F.; Lin, C.-Y. Electrochemical Treatment of Heavy Metal-containing Wastewater with the Removal of COD and Heavy Metal Ions. J. Chin. Chem. Soc. 2017, 64, 493–502. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Z.; Li, H.; Yuan, S.; Zhang, Y.; Dong, Y. Direct current electrochemical method for removal and recovery of heavy metals from water using straw biochar electrode. J. Clean. Prod. 2022, 339, 130746. [Google Scholar] [CrossRef]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002, 36, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Hossain, M.M.; Jeong, H.M.; Kim, K. Heavy metal removal applications using adsorptive membrane. Nano Converg. 2020, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Meng, X. Photocatalysis for Heavy Metal Treatment: A Review. Processes 2021, 9, 1729. [Google Scholar] [CrossRef]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Priya, A.K.; Kumar, P.S.; Hoang, T.K.A.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater—A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Liu, Z.; Nalluri, S.K.M.; Stoddart, J.F. Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 2017, 46, 2459–2478. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, F.; Baroncini, M.; Silvi, S.; Groppi, J.; Credi, A. Direct synthetic routes to functionalised crown ethers. Org. Chem. Front. 2021, 8, 5531–5549. [Google Scholar] [CrossRef] [PubMed]
- Nisola, G.M.; Parohinog, K.J.; Cho, M.K.; Burnea, F.K.B.; Lee, J.Y.; Gil Seo, J.; Lee, S.-P.; Chung, W.-J. Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Chem. Eng. J. 2020, 389, 123421. [Google Scholar] [CrossRef]
- Oral, I.; Tamm, S.; Herrmann, C.; Abetz, V. Lithium selectivity of crown ethers: The effect of heteroatoms and cavity size. Sep. Purif. Technol. 2022, 294, 121142. [Google Scholar] [CrossRef]
- Fang, Y.; Ha, R.; Sun, J.; Liu, X.; Ding, X.; Shi, W. Research progress on lithium isotopes separation by chemical exchange with crown ethers decorated materials. Green Energy Environ. 2024; in press. [Google Scholar]
- Kanagasundaram, T.; Murphy, O.; Haji, M.N.; Wilson, J.J. The recovery and separation of lithium by using solvent extraction methods. Coord. Chem. Rev. 2024, 509, 215727. [Google Scholar] [CrossRef]
- Jing, W.; Yin, L.; Lin, X.; Yu, Y.; Lian, D.; Shi, Z.; Chen, P.; Tang, M.; Yang, C. Simultaneous adsorption of Cu2+ and Cd2+ by a simple synthesis of environmentally friendly bamboo pulp aerogels: Adsorption properties and mechanisms. Polymers 2022, 14, 4909. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Yang, C.; Luo, S.; Lin, X.; Tang, M.; Zheng, R.; Lian, D.; Luo, X. One-pot method to synthesize silver nanoparticle-modified bamboo-based carbon aerogels for formaldehyde removal. Polymers 2022, 14, 860. [Google Scholar] [CrossRef] [PubMed]
- Abidli, A.; Ben Rejeb, Z.; Zaoui, A.; Naguib, H.E.; Park, C.B. Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features. Adv. Colloid Interface Sci. 2025, 355, 103338. [Google Scholar] [CrossRef]
- Boccia, A.C.; Neagu, M.; Pulvirenti, A. Bio-based aerogels for the removal of heavy metal ions and oils from water: Novel solutions for environmental remediation. Gels 2024, 10, 32–52. [Google Scholar] [CrossRef] [PubMed]
- Komarov, V.V. A review of radio frequency and microwave sustainability-oriented technologies. Sustain. Mater. Technol. 2021, 28, e00234. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, H.; Cheng, J. Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Res. Int. 2022, 156, 111300. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ke, Y.; Shang, Q.; Yang, X.; Wang, D.; Liao, G. Fabrication of multifunctional biomass-based aerogel with 3D hierarchical porous structure from waste reed for the synergetic adsorption of dyes and heavy metal ions. Chem. Eng. J. 2023, 451, 138934. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, S.; Luo, X.; Wang, C.; Yang, R.; Zhang, Q.; Huang, C.; Shao, T. Synthesis and characterization of cellulose triacetate aerogels with ultralow densities. RSC Adv. 2016, 6, 54054–54059. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Wang, L. Preparation and characterization of magnetic carbon aerogel from pyrolysis of sodium carboxymethyl cellulose aerogel crosslinked by iron trichloride. J. Porous Mater. 2016, 23, 997–1003. [Google Scholar] [CrossRef]
- Liu, B.; Zhong, H.; Hu, D. Construction of network-like cross-linked cellulose aerogel films with water-responsive properties for visualization of pH changes. Eng. Asp. 2023, 656, 130420. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, F.; Liu, R.; Yu, Y.; Yu, W. Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose 2019, 26, 7067–7078. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, J.; Wen, L.; Yang, C.; Zhang, L. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere 2019, 224, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Xu, S.; Lu, Z.; Wang, L.; Chen, L.; Zhang, D.; Tian, J.; Wei, T.; Chen, J.; Guo, C. Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries. Diam. Relat. Mater. 2023, 136, 110065. [Google Scholar] [CrossRef]
- Oprea, M.; Pandele, A.M.; Nicoara, A.I.; Nicolescu, A.; Deleanu, C.; Voicu, S.I. Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration. Int. J. Biol. Macromol. 2023, 230, 123162. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Kang, H.; Liu, W.; Tian, D. Adsorption behavior of copper ions using crown ether-modified konjac glucomannan. Int. J. Biol. Macromol. 2021, 177, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Musci, J.J.; Casoni, A.I.; Gutiérrez, V.S.; Ocsachoque, M.A.; Merlo, A.B.; Volpe, M.A.; Lick, I.D.; Casella, M.L. Upgrading of Tall Fescue Grass Pyrolytic Bioliquid and Catalytic Valorization of The Biofurfural Obtained. Chemistryselect 2022, 7, e202202233. [Google Scholar] [CrossRef]
- Setter, C.; Oliveira, T.J.P. Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis. Renew. Energy 2022, 189, 1007–1019. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, H.; Wang, Y.; Wang, F.; Wang, H.; Liu, H.; Liu, H. Influence mechanism of K on, cellulose pyrolysis by stepwise isothermal method in-situ DRIFTS method. Fuel 2024, 360, 130601. [Google Scholar] [CrossRef]
- Calisir, U.; Çiçek, B. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions. J. Mol. Struct. 2017, 1148, 505–511. [Google Scholar] [CrossRef]
- Bagheri, S.; Khalil, I.; Julkapli, N.M. Cerium(IV) oxide nanocomposites: Catalytic properties and industrial application. J. Rare Earths 2021, 39, 129–139. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, G.; Liang, S.; Wang, P. Microwave Assisted Preparation of Thio-Functionalized Polyacrylonitrile Fiber for the Selective and Enhanced Adsorption of Mercury and Cadmium from Water. ACS Sustain. Chem. Eng. 2017, 5, 6054–6063. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Guo, M.; Lv, B.; Wu, Z.; Zhou, W. Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J. Hazard. Mater. 2019, 371, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zheng, J.; Yang, Q.; Dang, Z.; Zhang, L. Insights into the Glyphosate Adsorption Behavior and Mechanism by a MnFe2O4@Cellulose-Activated Carbon Magnetic Hybrid. ACS Appl. Mater. Interfaces 2019, 11, 15478. [Google Scholar] [CrossRef]
- Costa, A.M.F.; Filho, S.Q.d.A.; Santos, T.J.; Pereira, D.H. Theoretical insights about the possibility of removing Pb2+ and Hg2+ metal ions using adsorptive processes and matrices of carboxymethyl diethylaminoethyl cellulose and cellulose nitrate biopolymers. J. Mol. Liq. 2021, 331, 115730. [Google Scholar] [CrossRef]
- Ibrahim, B.M.; Fakhre, N.A.; Jalhoom, M.G.; Qader, I.N.; Shareef, H.Y.; Jalal, A.F. Removal of lead ions from aqueous solutions by modified cellulose. Environ. Technol. 2024, 45, 2335–2347. [Google Scholar] [CrossRef] [PubMed]
- Akl, M.A.; Hashem, M.A.; Ismail, M.A.; Abdelgalil, D.A. Novel diaminoguanidine functionalized cellulose: Synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions. BMC Chem. 2022, 16, 65. [Google Scholar] [CrossRef]
- Adriana, V.G.; Raúl, C.M.; Ruth, A.C.V.; Rivera-Muñoz, E.M.; Huirache-Acuña, R. Cd(II) and Pb(II) Adsorption Using a Composite Obtained from Moringa oleifera Lam. Cellulose Nanofibrils Impregnated with Iron Nanoparticles. Water 2021, 13, 89. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, F.; Wei, T.; Zhang, C.; Xiao, H. Hydrophobic modification of bagasse cellulose fibers with cationic latex: Adsorption kinetics and mechanism. Chem. Eng. J. 2016, 302, 33–43. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Tang, B.; Xu, J.; Lu, G.; Liu, P. Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem. Eng. J. 2012, 209, 325–333. [Google Scholar] [CrossRef]
- Qu, J.; Tian, X.; Jiang, Z.; Cao, B.; Akindolie, M.S.; Hu, Q.; Feng, C.; Feng, Y.; Meng, X.; Zhang, Y. Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. J. Hazard. Mater. 2020, 387, 121718. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, Y.; Meng, P.; Peng, D. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis. Carbohydr. Polym. 2019, 209, 38–50. [Google Scholar] [CrossRef]
- Hokkanen, S.; Repo, E.; Suopajärvi, T.; Liimatainen, H.; Niinimaa, J.; Sillanpää, M. Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 2014, 21, 1471–1487. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, D. Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. J. Mol. Liq. 2019, 276, 105–114. [Google Scholar] [CrossRef]
- Li, L.; Liu, F.; Jing, X.; Ling, P.; Li, A. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling. Water Res. 2011, 45, 1177–1188. [Google Scholar] [CrossRef]
- Ma, J.; Li, T.; Liu, Y.; Cai, T.; Wei, Y.; Dong, W.; Chen, H. Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems. Bioresour. Technol. 2019, 290, 121793. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Hu, C.; Zhang, W.; Guan, L.; Gu, J. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Int. J. Biol. Macromol. 2020, 164, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms. J. Hazard. Mater. 2015, 300, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Liu, Y.; Amano, F.; Ouchi, M.; Tai, A.; Hakushi, T. Uncommon complex stoicheiometry in solvent extraction: Solution-phase dicationic complex formation of crown ethers. J. Chem. Soc. Dalton Trans. 1988, 11, 2735–2738. [Google Scholar] [CrossRef]
- Liu, T.; Gou, S.; He, Y.; Fang, S.; Zhou, L.; Gou, G.; Liu, L. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment. Carbohydr. Polym. 2021, 269, 118355. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I.; Sajid, M.; Khan, S.; Bilal, M. Aerogel-Based Adsorbents as Emerging Materials for the Removal of Heavy Metals from Water: Progress, Challenges, and Prospects. Sep. Purif. Technol. 2022, 291, 120923. [Google Scholar] [CrossRef]
- You, N.; Song, Y.-X.; Wang, H.-R.; Kang, L.-X.; Fan, H.-T.; Yao, H. Sol–Gel Derived Benzo-Crown Ether-Functionalized Silica Gel for Selective Adsorption of Ca2+ Ions. J. Chem. Eng. Data 2019, 64, 1378–1384. [Google Scholar] [CrossRef]
- Grad, O.A.; Ciopec, M.; Negrea, A.; Duteanu, N.; Negrea, P.; Vodă, R. Evaluation of Performance of Functionalized Amberlite XAD7 with Dibenzo-18-Crown Ether-6 for Palladium Recovery. Materials 2021, 14, 1003. [Google Scholar] [CrossRef]
- Hong, M.; Wang, X.; You, W.; Zhuang, Z.; Yu, Y. Adsorbents Based on Crown Ether Functionalized Composite Mesoporous Silica for Selective Extraction of Trace Silver. Chem. Eng. J. 2017, 313, 1278–1287. [Google Scholar] [CrossRef]
- Pan, S.-X.; Xie, T.-Z.; Xiao, T.-F.; Xie, J.-H. Extensive Removal of Thallium by Graphene Oxide Functionalized with Aza-Crown Ether. RSC Adv. 2020, 10, 44470–44480. [Google Scholar] [CrossRef]
No. | Additive Dosage/% | Microwave Power/W | Reaction Time/min | Frozen Type |
---|---|---|---|---|
DB18C6/PA1-1 | 15 | 700 | 30 | n/d * |
DB18C6/PA1-2 | 30 | 700 | 30 | n/d |
DB18C6/PA1-3 | 60 | 700 | 30 | n/d |
DB18C6/PA2-1 | 30 | 700 | 10 | d |
DB18C6/PA2-2 | 30 | 700 | 20 | d |
DB18C6/PA3-1 | 30 | 560 | 30 | d |
DB18C6/PA3-2 | 30 | 350 | 30 | d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, W.; Tang, M.; Lin, X.; Yang, C.; Lian, D.; Yu, Y.; Liu, D. Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+). Gels 2024, 10, 778. https://doi.org/10.3390/gels10120778
Jing W, Tang M, Lin X, Yang C, Lian D, Yu Y, Liu D. Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+). Gels. 2024; 10(12):778. https://doi.org/10.3390/gels10120778
Chicago/Turabian StyleJing, Wenxiang, Min Tang, Xiaoyan Lin, Chai Yang, Dongming Lian, Ying Yu, and Dongyang Liu. 2024. "Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+)" Gels 10, no. 12: 778. https://doi.org/10.3390/gels10120778
APA StyleJing, W., Tang, M., Lin, X., Yang, C., Lian, D., Yu, Y., & Liu, D. (2024). Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+). Gels, 10(12), 778. https://doi.org/10.3390/gels10120778