Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Organobentonite/Sodium Alginate Beads
2.2. Batch Cr(VI) Adsorption Tests Using the Organobentonite/Sodium Alginate Beads
2.3. Fixed-Bed Column Adsorption Tests for Cr(VI) Removal
2.4. Breakthrough Curve Modelling for Cr(VI) Removal
2.5. Removal of Cr(VI) from a Sample of Tannery Wastewater
Parameter | Standard Method | TWW | Typical Composition [62,63,64] | Permissible Limits [7] |
---|---|---|---|---|
pH | 4500-H+ B | 4.1 ± 0.3 | 8–11 | 6.0–9.0 |
Conductivity (μS/cm) | 2510 B | 16,191 ± 318 | 6300–9100 | Not established |
COD, mg/L | 5220 D | 2352 ± 269 | 9922–10,180 | 1200 |
Sulfates, mg/L | 4500- E | 9497 ± 635 | 1951–574 | Not established |
Total chromium, mg/L | 3111 B | 2515 ± 118 | 60–100 | 1.5 |
Cr(III), mg/L | 3111 B | 2359 ± 108 | Not established | |
Cr(VI), mg/L | 3500-Cr B | 156 ± 7 | <0.11 | Not established |
3. Conclusions
4. Materials and Methods
4.1. Reagents and Materials
4.2. Preparation of the Organobentonite/Sodium Alginate Beads
4.3. Batch Adsorption Tests
4.4. Fixed-Bed Column Adsorption Tests
4.5. Sample of Tannery Wastewater
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, A.; Kumar, S.; Singh, D. Tannery effluent treatment and its environmental impact: A review of current practices and emerging technologies. Water Qual. Res. J. 2023, 58, 128–152. [Google Scholar] [CrossRef]
- Appiah-Brempong, M.; Essandoh, H.M.K.; Asiedu, N.Y.; Dadzie, S.K.; Momade, F.W.Y. Artisanal tannery wastewater: Quantity and characteristics. Heliyon 2022, 8, e08680. [Google Scholar] [CrossRef] [PubMed]
- Dargo, H.; Ayalew, A. Tannery waste water treatment: A review. Int. J. Emerg. Trends Sci. Technol. 2014, 1, 1488–1494. [Google Scholar]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium removal from tannery wastewater by electrocoagulation: Optimization and sludge characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Hashem, M.A.; Momen, M.A.; Hasan, M.; Nur-A-Tomal, M.S.; Sheikh, M.H.R. Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent. Int. J. Environ. Sci. Technol. 2019, 16, 1395–1404. [Google Scholar] [CrossRef]
- Benítez Campo, N. Realidad Social, Económica y Ambiental de las Curtiembres de El Cerrito; Programa Editorial de la Universidad del Valle: Cali, Colombia, 2018. [Google Scholar]
- Resolución 0631 de 2015. Por la Cual se Establecen los Parámetros y los Valores Límites Máximos Permisibles en los Vertimientos Puntuales a Cuerpos de Aguas Superficiales y a los Sistemas de Alcantarillado Público y Se Dictan Otras Disposiciones; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2015.
- Mallik, A.K.; Moktadir, M.A.; Rahman, M.A.; Shahruzzaman, M.; Rahman, M.M. Progress in surface-modified silicas for Cr(VI) adsorption: A review. J. Hazard. Mater. 2022, 423, 127041. [Google Scholar] [CrossRef]
- Kumar, A.; Jena, H.M. Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4. J. Environ. Chem. Eng. 2017, 5, 2032–2041. [Google Scholar] [CrossRef]
- Ali, S.W.; Mirza, M.L.; Bhatti, T.M. Removal of Cr(VI) using iron nanoparticles supported on porous cation-exchange resin. Hydrometallurgy 2015, 157, 82–89. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, C.; Doudrick, K.; Chan, C.K. Hexavalent chromium removal using metal oxide photocatalysts. Appl. Catal. B Environ. 2015, 176–177, 740–748. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, X.; Liu, N.; Lv, J.; Yang, Y. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar. Chemosphere 2020, 245, 125542. [Google Scholar] [CrossRef]
- Lu, W.; Duan, C.; Zhang, Y.; Gao, K.; Dai, L.; Shen, M.; Wang, W.; Wang, J.; Ni, Y. Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydr. Polym. 2021, 258, 117676. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Kumar, A. Separation of Cr(VI) by zeolite–clay composite membranes modified by reaction with NOx. Sep. Purif. Technol. 2007, 52, 423–429. [Google Scholar] [CrossRef]
- Rengaraj, S.; Joo, C.K.; Kim, Y.; Yi, J. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater. 2003, 102, 257–275. [Google Scholar] [CrossRef]
- Rivera-Arenas, D.; Macías-Quiroga, I.F.; Dávila-Arias, M.T.; Vélez-Upegui, J.J.; Sanabria-González, N.R. Adsorption of Acid Yellow 23 dye on organobentonite/alginate hydrogel beads in a fixed-bed column. J. Compos. Sci. 2023, 7, 362. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, H.; Qin, C.; Li, X.; Xu, D.; Zhao, Y. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. Chemosphere 2024, 360, 142395. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, Y.; Hu, J.; Zheng, Q.; Zhao, Y.; Lv, G.; Liao, L. Clay minerals and clay-based materials for heavy metals pollution control. Sci. Total Environ. 2024, 954, 176193. [Google Scholar] [CrossRef] [PubMed]
- Chafiq Elidrissi, Z.; El Machtani Idrissi, D.; Kouzi, Y.; Achiou, B.; Tahiri, S.; Ouammou, M.; Alami Younssi, S. Effective conversion of fly ash waste into Na-P1 zeolite and its application on the adsorption of Cr(VI). Inorg. Chem. Commun. 2023, 156, 111192. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liu, Y.; Zhang, T.a. Removal of Cr(VI) and Ag(I) by grafted magnetic zeolite/chitosan for water purification: Synthesis and adsorption mechanism. Int. J. Biol. Macromol. 2022, 222, 2615–2627. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fang, X.; Yuan, W.; Zhang, X.; Yu, J.; Chen, J.; Qiu, X. Preparing of layered double hydroxide-alginate microspheres for Cr(VI)-contaminated soil remediation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130655. [Google Scholar] [CrossRef]
- Mutabazi, E.; Qiu, X.; Song, Y.; Li, C.; Jia, X.; Hakizimana, I.; Niu, J.; Nuramkhaan, M.; Zhao, Y. Cr(VI) adsorption on activated carbon, sludge derived biochar, and peanut shells derived biochar: Performance, mechanisms during the reuse process and site energy distribution analysis. J. Water Process Eng. 2024, 57, 104679. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Zhou, S.; Gao, X. Adsorption mechanism of Cr(VI) on woody-activated carbons. Heliyon 2023, 9, e13267. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef]
- Weng, C.-H.; Sharma, Y.C.; Chu, S.-H. Adsorption of Cr(VI) from aqueous solutions by spent activated clay. J. Hazard. Mater. 2008, 155, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ayoko, G.A.; Frost, R.L. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J. Colloid. Interface Sci. 2011, 354, 292–305. [Google Scholar] [CrossRef]
- Castro-Castro, J.D.; Macías-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. Sci. World J. 2020, 2020, 3628163. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Long, A.; Zhang, W.; Wang, Z.; Xiao, X.; Gao, Y.; Zhou, L.; Li, Y.; Wang, J.; Sun, S.; et al. Recent advances in alginate-based hydrogels for the adsorption–desorption of heavy metal ions from water: A review. Sep. Purif. Technol. 2025, 353, 128265. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Chowdhury, M.; Rahman, M.M. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium(VI) ions from aqueous solution. Mater. Today Sustain. 2021, 13, 100077. [Google Scholar] [CrossRef]
- Olad, A.; Farshi Azhar, F. A study on the adsorption of chromium(VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite. Desalin. Water Treat. 2014, 52, 2548–2559. [Google Scholar] [CrossRef]
- Santoso, S.P.; Kurniawan, A.; Angkawijaya, A.E.; Shuwanto, H.; Warmadewanthi, I.D.A.A.; Hsieh, C.-W.; Hsu, H.-Y.; Soetaredjo, F.E.; Ismadji, S.; Cheng, K.-C. Removal of heavy metals from water by macro-mesoporous calcium alginate–exfoliated clay composite sponges. Chem. Eng. J. 2023, 452, 139261. [Google Scholar] [CrossRef]
- Kimani, P.K. Asymmetrical fixed-bed breakthrough curve modelling: Comparing simplistic, log-modified, fractal-like, and probability distribution function models. Chem. Eng. Res. Des. 2024, 201, 446–456. [Google Scholar] [CrossRef]
- Macías-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Characterization of colombian clay and its potential use as adsorbent. Sci. World J. 2018, 2018, 5969178. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, J.; Shrivastava, R.; Bajpai, A.K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf. A Physicochem. Eng. Asp. 2004, 236, 81–90. [Google Scholar] [CrossRef]
- Nigam, M.; Rajoriya, S.; Rani Singh, S.; Kumar, P. Adsorption of Cr (VI) ion from tannery wastewater on tea waste: Kinetics, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 2019, 7, 103188. [Google Scholar] [CrossRef]
- Agrawal, P.; Bajpai, A.K. Biosorption of chromium(VI) ions from aqueous solutions by iron oxide-impregnated alginate nanocomposites: Batch and column studies. Toxicol. Environ. Chem. 2011, 93, 1277–1297. [Google Scholar] [CrossRef]
- Achazhiyath Edathil, A.; Pal, P.; Kannan, P.; Banat, F. Total organic acid adsorption using alginate/clay hybrid composite for industrial lean amine reclamation using fixed-bed: Parametric study coupled with foaming. Int. J. Greenh. Gas Control 2020, 94, 102907. [Google Scholar] [CrossRef]
- Oussalah, A.; Boukerroui, A.; Aichour, A.; Djellouli, B. Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: Adsorption and reusability studies. Int. J. Biol. Macromol. 2019, 124, 854–862. [Google Scholar] [CrossRef]
- Ranjan, D.; Srivastava, P.; Talat, M.; Hasan, S.H. Biosorption of Cr(VI) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables. Appl. Biochem. Biotechnol. 2009, 158, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, H.; Xu, J.; Du, X.; Cheng, X.; Du, Z.; Wang, H. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution. J. Hazard. Mater. 2021, 416, 125777. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Bar, N.; Das, S.K. Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column—Statistical and GA-ANN hybrid modelling. Chem. Eng. Sci. 2020, 226, 115904. [Google Scholar] [CrossRef]
- Mthombeni, N.H.; Mbakop, S.; Ray, S.C.; Leswifi, T.; Ochieng, A.; Onyango, M.S. Highly efficient removal of chromium(VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite-polypyrrole composite. J. Environ. Chem. Eng. 2018, 6, 4008–4017. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A fixed bed column study of natural and chemically modified Lagerstroemia speciosa bark for removal of synthetic Cr(VI) ions from aqueous solution. Int. J. Phytoremediation 2020, 22, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Nithya, K.; Sathish, A.; Kumar, P.S. Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent. J. Water Process Eng. 2020, 33, 101069. [Google Scholar] [CrossRef]
- Chu, K.H. Fixed bed adsorption of chromium and the Weibull function. J. Hazard. Mater. Lett. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Balsamo, M.; Montagnaro, F. Fractal-like Vermeulen kinetic equation for the description of diffusion-controlled adsorption dynamics. J. Phys. Chem. C 2015, 119, 8781–8785. [Google Scholar] [CrossRef]
- Rojas-Mayorga, C.K.; Aguayo-Villarreal, I.A.; Moreno-Pérez, J.; Muñiz-Valencia, R.; Montes-Morán, M.Á.; Ocampo-Pérez, R. Influence of calcium species on SO2 adsorption capacity of a novel carbonaceous materials and their ANN modeling. J. Environ. Chem. Eng. 2021, 9, 104810. [Google Scholar] [CrossRef]
- Aslam, M.M.A.; Den, W.; Kuo, H.-W. Removal of hexavalent chromium by encapsulated chitosan-modified magnetic carbon nanotubes: Fixed-bed column study and modelling. J. Water Process Eng. 2021, 42, 102143. [Google Scholar] [CrossRef]
- Demarchi, C.A.; Debrassi, A.; Magro, J.D.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Greneche, J.-M.; Rodrigues, C.A. Adsorption of Cr(VI) on crosslinked chitosan–Fe(III) complex in fixed-bed systems. J. Water Process Eng. 2015, 7, 141–152. [Google Scholar] [CrossRef]
- Agani, I.; Fatombi, J.K.; Osseni, S.A.; Idohou, E.A.; Neumeyer, D.; Verelst, M.; Mauricot, R.; Aminou, T. Removal of atrazine from aqueous solutions onto a magnetite/chitosan/activated carbon composite in a fixed-bed column system: Optimization using response surface methodology. RSC Adv. 2020, 10, 41588–41599. [Google Scholar] [CrossRef]
- González-López, M.E.; Pérez-Fonseca, A.A.; Arellano, M.; Gómez, C.; Robledo-Ortíz, J.R. Fixed-bed adsorption of Cr(VI) onto chitosan supported on highly porous composites. Environ. Technol. Innov. 2020, 19, 100824. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, Q.; Yang, D.; Liu, H. Prediction of breakthrough curves in a fixed-bed column based on normalized Gudermannian and error functions. J. Mol. Liq. 2021, 323, 115061. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Charalambous, C. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads. Water Res. 2005, 39, 4385–4396. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Younesi, H.; Hajati, S.; Borghei, S.M. Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int. J. Biol. Macromol. 2015, 80, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Stanković, K.; Telečki, I.; Bajuk-Bogdanović, D.; Petrović, Đ.; Potočnik, J.; Vladisavljević, G.T.; Kumrić, K.R. Citric Acid Functionalized Chitosan Hydrogel Beads for Enhanced Cr(VI) Removal: Experimental Assessment and COMSOL Modelling of ADSORPTION in a Fixed-Bed System. J. Ind. Eng. Chem. 2024, in press. [CrossRef]
- Pérez-Fonseca, A.A.; Gómez, C.; Dávila, H.; González-Núñez, R.; Robledo-Ortíz, J.R.; Vázquez-Lepe, M.O.; Herrera-Gómez, A. Chitosan supported onto agave fiber—Postconsumer HDPE composites for Cr(VI) adsorption. Ind. Eng. Chem. Res. 2012, 51, 5939–5946. [Google Scholar] [CrossRef]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Batch and continuous flow studies of Cr(VI) adsorption from synthetic and real wastewater by magnetic pine cone composite. Chem. Eng. Res. Des. 2020, 153, 806–818. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- El-Gawad, H.A.; Hassan, G.K.; Aboelghait, K.M.; Mahmoud, W.H.; Mohamed, R.M.; Afify, A.A. Removal of chromium from tannery industry wastewater using iron-based electrocoagulation process: Experimental; kinetics; isotherm and economical studies. Sci. Rep. 2023, 13, 19597. [Google Scholar] [CrossRef]
- Castro-Castro, J.D.; Sanabria-González, N.R.; Giraldo-Gómez, G.I. Experimental data of adsorption of Cr(III) from aqueous solution using a bentonite: Optimization by response surface methodology. Data Brief 2020, 28, 105022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, W. A review for tannery wastewater treatment: Some thoughts under stricter discharge requirements. Environ. Sci. Pollut. Res. 2019, 26, 26102–26111. [Google Scholar] [CrossRef] [PubMed]
- Isarain-Chávez, E.; de la Rosa, C.; Godínez, L.A.; Brillas, E.; Peralta-Hernández, J.M. Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J. Electroanal. Chem. 2014, 713, 62–69. [Google Scholar] [CrossRef]
- Horn, E.J.; van Hille, R.P.; Oyekola, O.O.; Welz, P.J. Functional microbial communities in hybrid Linear flow channel reactors for desulfurization of tannery effluent. Microorganisms 2022, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Otavo-Loaiza, R.A.; Sanabria-González, N.R.; Giraldo-Gómez, G.I. Tartrazine removal from aqueous solution by HDTMA-Br-modified Colombian bentonite. Sci. World J. 2019, 2019, 2042563. [Google Scholar] [CrossRef]
- Benhouria, A.; Islam, M.A.; Zaghouane-Boudiaf, H.; Boutahala, M.; Hameed, B.H. Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chem. Eng. J. 2015, 270, 621–630. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Mohammed, N.; Grishkewich, N.; Waeijen, H.A.; Berry, R.M.; Tam, K.C. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr. Polym. 2016, 136, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Aichour, A.; Zaghouane-Boudiaf, H.; Mohamed Zuki, F.B.; Kheireddine Aroua, M.; Ibbora, C.V. Low-cost, biodegradable and highly effective adsorbents for batch and column fixed bed adsorption processes of methylene blue. J. Environ. Chem. Eng. 2019, 7, 103409. [Google Scholar] [CrossRef]
- Harripersadth, C.; Musonge, P. The dynamic behaviour of a binary adsorbent in a fixed bed column for the removal of Pb2+ ions from contaminated water bodies. Sustainability 2022, 14, 7662. [Google Scholar] [CrossRef]
- Ideam–Invemar. Protocolo de Monitoreo y Seguimiento del Agua; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, DC, Colombia, 2021. [Google Scholar]
cm | cm | g | mg/L | min | min | mL | mg | mg/g | mg | mg/L | % |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | 4.10 | 20 | 8.25 | 323.50 | 323.5 | 2.665 | 0.649 | 7.60 | 15.26 | 35.06 |
2 | 10 | 4.10 | 20 | 2.57 | 243.92 | 487.8 | 2.596 | 0.633 | 11.60 | 18.46 | 22.38 |
3 | 10 | 4.10 | 20 | 1.09 | 183.36 | 550.1 | 2.580 | 0.629 | 14.40 | 21.49 | 17.92 |
3 | 10 | 4.10 | 20 | 1.09 | 183.036 | 549.1 | 2.580 | 0.629 | 14.40 | 21.53 | 17.92 |
3 | 15 | 5.97 | 20 | 1.44 | 264.94 | 794.8 | 4.753 | 0.796 | 19.20 | 18.18 | 24.75 |
3 | 20 | 8.21 | 20 | 2.87 | 353.69 | 1061.1 | 7.827 | 0.954 | 26.40 | 17.50 | 29.65 |
3 | 15 | 5.97 | 10 | 2.05 | 378.83 | 1136.5 | 3.463 | 0.580 | 13.80 | 9.10 | 25.09 |
3 | 15 | 5.97 | 20 | 1.44 | 264.94 | 794.8 | 4.753 | 0.796 | 19.20 | 18.18 | 24.75 |
3 | 15 | 5.97 | 30 | 1.09 | 221.71 | 665.1 | 5.673 | 0.951 | 24.30 | 28.01 | 23.34 |
Model—Equation | Parameters |
---|---|
Fractal-like modified Thomas | = influent Cr(VI) concentration, mg/L = effluent Cr(VI)e concentration (mg/L) at time t = time, min = fractal-like Thomas rate constant, = adsorption capacity per unit mass of adsorbent, mg/g = volumetric flow rate, mL/min = fractal-like component = adsorbent amount, g |
mL/min | cm | mg/mL | mg/g | ||||
---|---|---|---|---|---|---|---|
1 | 10 | 20 | 1.064 ± 0.251 | 0.519 ± 0.035 | 0.128 ± 0.053 | 0.972 | 0.0031 |
2 | 10 | 20 | 3.412 ± 1.447 | 0.265 ± 0.056 | 0.374 ± 0.091 | 0.928 | 0.0058 |
3 | 10 | 20 | 13.136 ± 2.629 | 0.135 ± 0.013 | 0.562 ± 0.046 | 0.985 | 0.0014 |
3 | 10 | 20 | 13.136 ± 2.659 | 0.135 ± 0.013 | 0.562 ± 0.047 | 0.985 | 0.0014 |
3 | 15 | 20 | 2.081 ± 0.822 | 0.311 ± 0.064 | 0.286 ± 0.084 | 0.946 | 0.0041 |
3 | 20 | 20 | 1.672 ± 0.333 | 0.484 ± 0.043 | 0.251 ± 0.042 | 0.978 | 0.0021 |
3 | 15 | 10 | 2.797 ± 0.707 | 0.235 ± 0.030 | 0.233 ± 0.051 | 0.969 | 0.0023 |
3 | 15 | 20 | 2.081 ± 0.822 | 0.311 ± 0.064 | 0.286 ± 0.084 | 0.946 | 0.0041 |
3 | 15 | 30 | 1.787 ± 1.075 | 0.399 ± 0.040 | 0.371 ± 0.083 | 0.958 | 0.0032 |
Adsorbent | Process | pH | , mg/g | Ref. |
---|---|---|---|---|
Alginate–montmorillonite/polyaniline nanocomposite | Batch | 2.0 | 29.89 | [31] |
Bio-polymer beads (crosslinked alginate + gelatin) | Batch | 6.0 | 0.833 | [35] |
Alginate–goethite beads | Batch | 3.0 | 23.38 | [54] |
Chitosan–citric acid nanoparticles | Batch | 3.0 | 22.4 | [55] |
Crosslinked chitosan hydrogel functionalized with citric acid | Fixed-bed | 3.0 | 128 | [56] |
Polyethylene/agave fiber/chitosan composites | Fixed-bed | 4.0 | 5.67 | [57] |
Magnetic pine cone composite | Fixed-bed | 3.0 | 5.07–33.08 | [58] |
Organoclay/alginate hydrogel beads | Fixed-bed | 3.4 | 0.519 | This study |
Parameter | Symbol and Units | Formulas |
---|---|---|
Breakthrough time | min | Time required for the effluent’s Cr(VI) concentration to reach 10% of that in the influent (= 0.1) |
Exhaustion time | min | Time required for the effluent’s Cr(VI) concentration to attain 95% of the influent concentration ( = 0.95) |
Treated effluent volume | mL | |
= volumetric flow rate (mL/min) = exhaustion time (min) | ||
Total column capacity | mg | |
= adsorbed Cr(V) concentration = influent Cr(VI) concentration (mg/L) = effluent Cr(VI) concentration (mg/L) = total flow time (min) | ||
Maximum adsorption capacity | mg/g | |
= total column capacity (mg) m = total amount of adsorbent in the column (g) | ||
Total amount of adsorbate that entered the column | mg | |
= influent Cr(VI) concentration (mg/L) = volumetric flow rate (mL/min) = total flow time (min) | ||
Adsorbate concentration at equilibrium | mg/L | |
= total amount of Cr(VI) that entered the column = total column capacity (mg) | ||
Total amount of adsorbate removed in the column | % | |
= total column capacity (mg) = total amount of Cr(VI) that entered the column |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Martinez, M.X.; Macías-Quiroga, I.F.; Sanabria-González, N.R. Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent. Gels 2024, 10, 779. https://doi.org/10.3390/gels10120779
Muñoz-Martinez MX, Macías-Quiroga IF, Sanabria-González NR. Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent. Gels. 2024; 10(12):779. https://doi.org/10.3390/gels10120779
Chicago/Turabian StyleMuñoz-Martinez, Mayra X., Iván F. Macías-Quiroga, and Nancy R. Sanabria-González. 2024. "Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent" Gels 10, no. 12: 779. https://doi.org/10.3390/gels10120779
APA StyleMuñoz-Martinez, M. X., Macías-Quiroga, I. F., & Sanabria-González, N. R. (2024). Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent. Gels, 10(12), 779. https://doi.org/10.3390/gels10120779