Effect of High-Pressure Homogenization on the Properties and Structure of Cold-Induced Chiba Tofu Gel in Soy Protein Isolate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Homogeneous Modification on Particle Size Distribution
2.2. Analysis of the SDS-PAGE
2.3. Analysis of the FT-IR Spectroscopy
2.4. Two-Dimensional Fluorescence Spectroscopy Analysis
2.5. Effect of Different Homogeneous Pressure Treatments on the Water Holding Capacity of Soy Protein Gel
2.6. Analysis of Texture Properties of Gel Samples
2.7. Analysis of Rheological Properties of Gel Samples
2.8. Intermolecular Force Analysis of Gel Samples
2.9. SEM Analysis of the Gel Samples
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of SPI Modified by High-Pressure Homogenization Technology
4.3. Preparation of Cold-Induced Gel (Chiba tofu)
4.4. Determination of Particle Size and Distribution
4.5. Distribution and Determination of Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.6. Determination of Fourier Transform Infrared Spectroscopy (FT-IR)
4.7. Determination of the Fluorescence Spectrum
4.8. Determination of the Water-Holding Capacity of Gels
4.9. Determination of TPA (Texture Profile Analysis) of Gels
4.10. Determination of Rheological Properties of Gel Samples
4.11. Determination of Gel Intermolecular Force
4.12. Determination of Microstructure of Gel Samples
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.Y.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.Z.; Sui, X.N. The development history and recent updates on soy protein-based meat alternatives. Trends Food Sci. Technol. 2021, 109, 702–710. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Niu, H.; Li, Y.; Han, J.; Liu, Q.; Kong, B. Gelation and rheological properties of myofibrillar proteins influenced by the addition of soybean protein isolates subjected to an acidic pH treatment combined with a mild heating. Food Hydrocoll. 2017, 70, 269–276. [Google Scholar] [CrossRef]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Igarzabal, C.I.A. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Tansaz, S.; Durmann, A.K.; Detsch, R.; Boccaccini, A.R. Hydrogel films and microcapsules based on soy protein isolate combined with alginate. J. Appl. Polym. Sci. 2016, 134, 44358. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Teng, F.; Li, Y. Tofu products: A review of their raw materials, processing conditions, and packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3683–3714. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.J.; Kong, Y.; Ma, Z.L.; Wu, C.L.; Regenstein, J.M.; Teng, F.; Li, Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocoll. 2021, 110, 106115. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Z.J.; Qi, B.K.; Ran, A.Q.; Guo, Z.W.; Jiang, L.Z. Effect of oxidation on quality of Chiba tofu produced by soy isolate protein when subjected to storage. Foods 2020, 9, 1877. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, H.; Yang, A.S.; Wu, Z.H.; Li, X.; Tong, P.; Chen, H.B. Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct. 2019, 10, 5485–5497. [Google Scholar] [CrossRef]
- Li, C.Y.; Wu, X.F.; Mu, D.D.; Zhao, Y.Y.; Luo, S.Z.; Zhong, X.Y.; Jiang, S.T.; Li, X.J.; Zheng, Z. Effect of partial hydrolysis with papain on the characteristics of transglutaminase-crosslinked tofu gel. J. Food Sci. 2018, 83, 3092–3098. [Google Scholar] [CrossRef]
- Cao, F.H.; Li, X.J.; Luo, S.Z.; Mu, D.D.; Zhong, X.Y.; Jiang, S.T.; Zheng, Z.; Zhao, Y.Y. Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu. LWT Food Sci. Technol. 2017, 85, 58–65. [Google Scholar] [CrossRef]
- Li, M.; Chen, F.S.; Yang, B.; Lai, S.J.; Deng, Y. Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chem. 2015, 167, 168–174. [Google Scholar] [CrossRef]
- Zhang, H.; Lite, L.I.; Mittal, G.S. Preparation of tofu gel by high-pressure processing. J. Food Process. Preserv. 2009, 33, 560–569. [Google Scholar] [CrossRef]
- Liu, H.H.; Chien, J.T.; Kuo, M.I. Ultra high pressure homogenized soy flour for tofu making. Food Hydrocoll. 2013, 32, 278–285. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Yu, L.; Wu, K. Improved emulsifying capabilities of hydrolysates of soy protein isolate pretreated with high pressure microfluidization. LWT Food Sci. Technol. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Yu, A.H.; Sun, B.; Lin, Y. Process optimization of low-allergenic soy flour by high-pressure microfluidization assisted enzymatic hydrolysis. Food Sci. Technol. 2019, 44, 7. [Google Scholar]
- Li, C.; Dou, Z.; Ma, P.; Wang, C.; Jiang, L.Z. Effect of homogenization at a lower pressure on structural and functional properties of soy protein isolate. J. Oleo Sci. 2020, 69, 1417–1426. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, F.; Xue, W.; Lee, L. FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocoll. 2008, 22, 568–575. [Google Scholar] [CrossRef]
- Schubert, H. Food particle technology. Part I: Properties of particles and particulate food systems. J. Food Eng. 1987, 6, 1–32. [Google Scholar] [CrossRef]
- Ma, Z.L.; Li, L.J.; Wu, C.L.; Huang, Y.Y.; Teng, F.; Li, Y. Effects of combined enzymatic and ultrasonic treatments on the structure and gel properties of soybean protein isolate. LWT Food Sci. Technol. 2022, 158, 113123. [Google Scholar] [CrossRef]
- Ippoushi, K.; Wakagi, M.; Hashimoto, N.; Takano–Ishikawa, Y. Absolute quantification of the α, α′, and β subunits of β-conglycinin from soybeans by liquid chromatography/tandem mass spectrometry using stable isotope–labelled peptides. Food Res. Int. 2019, 116, 1223–1228. [Google Scholar] [CrossRef]
- Yuan, D.B.; Yang, X.Q.; Tang, C.H.; Zheng, Z.X.; Wei, M.; Ahmad, I.; Yin, S.W. Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin. Food Res. Int. 2009, 42, 700–706. [Google Scholar] [CrossRef]
- Bouaouina, H.; Desrumaux, A.; Loisel, C.; Legrand, J. Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int. Dairy J. 2006, 16, 275–284. [Google Scholar] [CrossRef]
- Gao, X.Q.; Kang, Z.L.; Zhang, W.G.; Li, Y.P.; Zhou, G.H. Combination of κ-carrageenan and soy protein isolate effects on functional properties of chopped low-fat pork batters during heat-induced gelation. Food Bioprocess Technol. 2015, 8, 1524–1531. [Google Scholar] [CrossRef]
- Sow, L.C.; Yang, H. Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocoll. 2015, 45, 72–82. [Google Scholar] [CrossRef]
- Molina, E.; Defaye, A.B.; Ledward, D.A. Soy protein pressure-induced gels. Food Hydrocoll. 2002, 16, 625–632. [Google Scholar] [CrossRef]
- Cheftel, J.C. High Pressure and Biotechnology; Balny, C., Hayashi, R., Heremans, K., Masson, P., Eds.; Colloques INSERM 224; J Libbey: London, UK, 1992; pp. 195–210. [Google Scholar]
- Zheng, L.; He, M.Y.; Zhang, X.N.; Regenstein, J.M.; Wang, Z.J.; Ma, Z.L.; Kong, Y.; Wu, C.L.; Teng, F.; Li, Y. Gel properties and structural characteristics of soy protein isolate treated with different salt ions before spray drying combined with dynamic high-pressure micro-fluidization. Food Bioprod. Process. 2021, 125, 68–78. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Aguilera, J.M.; Kinsella, J.E. Emulsified milkfat effects on rheology of acid-induced milk gels. J. Food Sci. 2010, 56, 920–925. [Google Scholar] [CrossRef]
- Luo, L.J.; Wang, Z.M.; Deng, Y.Y.; Wei, Z.C.; Zhang, Y.; Tang, X.J.; Liu, G.; Zhou, P.F.; Zhao, Z.H.; Zhang, M.W.; et al. High-pressure homogenization: A potential technique for transforming insoluble pea protein isolates into soluble aggregates. Food Chem. 2022, 397, 133684. [Google Scholar] [CrossRef]
- Chao, W.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocoll. 2017, 66, 389–395. [Google Scholar]
- Speroni, F.; Jung, S.; Lamballerie, M.D. Effects of calcium and pressure treatment on thermal gelation of soybean protein. J. Food Sci. 2010, 75, 30–38. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Zhou, L.Y.; Wang, Z.J. Soy protein isolates: A review of their composition, aggregation and gelation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1940–1957. [Google Scholar] [CrossRef]
- Renkema, J.M.S.; Van Gruppen, H.; Vliet, T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J. Agric. Food Chem. 2002, 50, 6064–6071. [Google Scholar] [CrossRef]
- Wang, W.J.; Shen, M.Y.; Liu, S.C.; Jiang, L.; Song, Q.Q. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydr. Polym. 2018, 192, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.R.; Lopes-Da-Silva, J.A. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation. Food Res. Int. 2017, 102, 14–24. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Decker, E.; Faustman, C.; LopezBote, C.J. Protein oxidation and implications for muscle food quality. Antioxid. Muscle Foods Nutr. Strateg. Improv. Qual. 2000, 85–111. [Google Scholar]
- Jiang, J.; Xiong, Y.L. Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase. Meat Sci. 2013, 93, 469–476. [Google Scholar] [CrossRef]
- Niu, H.; Xia, X.; Wang, C.; Kong, B.H.; Liu, Q. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating. Food Chem. 2018, 242, 188–195. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, Y.L.; Tang, X.Z.; Chen, Y.J.; You, Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem. 2015, 188, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yildiz, G.; Dos Santos, L.C.; Jiang, S.; Andrade, J.E.; Engeseth, N.J.; Feng, H. Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocoll. 2016, 55, 200–209. [Google Scholar] [CrossRef]
- Yildiz, G.; Andrade, J.; Engeseth, N.E.; Feng, H. Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. J. Colloid Interface Sci. 2017, 505, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhao, Y.; Li, T.; Li, D.; Chen, S.; Wu, N.; Jiang, L.; Wang, L. Effect of electrochemical modification on the structural characteristics and emulsion storage stability of soy protein isolate. Process Biochem. 2018, 75, 166–172. [Google Scholar] [CrossRef]
- Valdez-Hurtado, S.; López-Bermúdez, L.; Higuera-Barraza, O.; Del Toro-Sanchez, C.; Ruiz-Cruz, S.; Suárez-Jiménez, M.; Marquez-Rios, E. Effect of ultrasonication time on the functional properties of giant squid (Dosidicus gigas) mantle protein concentrate. Food Biosci. 2019, 27, 1–5. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Cao, F.H.; Li, X.J.; Mu, D.; Luo, S. Effects of different salts on the gelation behaviour and mechanical properties of citric acid-induced tofu. Int. J. Food Sci. Technol. 2020, 55, 785–794. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Li, L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. LWT Food Sci. Technol. 2020, 119, 108794. [Google Scholar] [CrossRef]
- Lin, L.H.; Shen, M.Y.; Liu, S.C.; Tang, W.; Wang, Z.J. An acidic heteropolysaccharide from Mesona chinensis:Rheological properties, gelling behavior and texture characteristics. Int. J. Biol. Macromol. 2018, 107, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
Sample | D[4,3] (nm) | PDI |
---|---|---|
SPI | 2311.33 ± 40.00 a | 0.81 ± 0.04 a |
4 MPa-SPI | 378.34 ± 60.00 b | 0.73 ± 0.02 b |
8 MPa-SPI | 367.20 ± 30.00 b | 0.71 ± 0.03 b |
10 MPa-SPI | 364.63 ± 20.00 b | 0.54 ± 0.01 c |
12 MPa-SPI | 330.60 ± 10.00 b | 0.49 ± 0.02 d |
14 MPa-SPI | 335.23 ± 10.00 b | 0.50 ± 0.03 cd |
Sample | α-Helix (%) | β-Sheets (%) | β-Turns (%) | Random Coil (%) |
---|---|---|---|---|
SPI | 16.00 ± 0.10 c | 50.10 ± 1.10 b | 14.10 ± 0.10 d | 19.80 ± 1.00 a |
4 MPa-SPI | 16.84 ± 0.03 a | 50.80 ± 1.00 b | 15.54 ± 0.02 a | 16.83 ± 0.03 b |
8 MPa-SPI | 16.83 ± 0.04 a | 51.00 ± 1.00 ab | 15.36 ± 0.01 b | 16.81 ± 0.02 b |
10 MPa-SPI | 16.82 ± 0.10 a | 51.06 ± 1.42 ab | 15.40 ± 0.01 b | 16.72 ± 1.00 b |
12 MPa-SPI | 16.91 ± 0.10 a | 53.12 ± 1.00 a | 14.93 ± 0.09 c | 15.04 ± 0.04 c |
14 MPa-SPI | 16.35 ± 0.02 b | 51.43 ± 1.20 ab | 15.45 ± 0.03 ab | 16.77 ± 1.00 b |
Different Pressure/MPa | Hardness/Pa | Springiness | Cohesiveness | Chewiness/Pa |
---|---|---|---|---|
SPI | 2.76 ± 0.07 e | 0.75 ± 0.04 c | 0.91 ± 0.01 c | 1.88 ± 0.14 e |
4 MPa-SPI | 7.70 ± 0.10 d | 0.81 ± 0.02 b | 0.93 ± 0.04 bc | 5.80 ± 0.10 d |
8 MPa-SPI | 8.41 ± 0.05 c | 0.83 ± 0.04 b | 0.9 ± 0.01 abc | 6.63 ± 0.20 c |
10 MPa-SPI | 8.60 ± 0.10 c | 0.84 ± 0.03 b | 0.97 ± 0.01 ab | 7.01 ± 0.10 b |
12 MPa-SPI | 9.10 ± 0.20 b | 0.90 ± 0.02 a | 0.97 ± 0.03 ab | 7.94 ± 0.10 a |
14 MPa-SPI | 10.90 ± 0.10 a | 0.76 ± 0.01 c | 0.98 ± 0.02 a | 8.01 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Regenstein, J.M.; Wang, Z. Effect of High-Pressure Homogenization on the Properties and Structure of Cold-Induced Chiba Tofu Gel in Soy Protein Isolate. Gels 2024, 10, 99. https://doi.org/10.3390/gels10020099
Zheng L, Regenstein JM, Wang Z. Effect of High-Pressure Homogenization on the Properties and Structure of Cold-Induced Chiba Tofu Gel in Soy Protein Isolate. Gels. 2024; 10(2):99. https://doi.org/10.3390/gels10020099
Chicago/Turabian StyleZheng, Li, Joe M. Regenstein, and Zhongjiang Wang. 2024. "Effect of High-Pressure Homogenization on the Properties and Structure of Cold-Induced Chiba Tofu Gel in Soy Protein Isolate" Gels 10, no. 2: 99. https://doi.org/10.3390/gels10020099
APA StyleZheng, L., Regenstein, J. M., & Wang, Z. (2024). Effect of High-Pressure Homogenization on the Properties and Structure of Cold-Induced Chiba Tofu Gel in Soy Protein Isolate. Gels, 10(2), 99. https://doi.org/10.3390/gels10020099